organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-(Hy­droxy­meth­yl)-2-pyrid­yl]-3-(2,4,6-tri­methyl­benz­yl)-1H-imidazol-3-ium bromide

aKey Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: luomm@scu.edu.cn

(Received 18 October 2008; accepted 24 October 2008; online 31 October 2008)

In the title compound, C19H22N3O+·Br, the imidazole ring is approximately coplanar with the pyridine ring [dihedral angle = 0.88 (13)°] and nearly perpendicular to the benzene ring [dihedral angle = 81.70 (13)°]. O—H⋯Br and C—H⋯Br hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Liddle et al. (2007[Liddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev. 36, 1732-1744.]); Ren et al. (2007[Ren, H. P., Yao, P. Y., Xu, S. S., Song, H. B. & Wang, B. Q. (2007). J. Organomet. Chem. 692, 2092-2098.]); Arnold & Wilson (2007[Arnold, P. L. & Wilson, C. (2007). Inorg. Chim. Acta, 360, 190-196.]); Chianese & Crabtree (2005[Chianese, A. R. & Crabtree, R. H. (2005). Organometallics, 24, 4432-4436.]); Dyson et al. (2008[Dyson, G., Frison, J., Simonovic, S., Whitwood, A. C. & Douthwaite, R. E. (2008). Organometallics, 27, 281-288.]); Patel et al. (2006[Patel, D., Liddle, S. T., Mungur, S. A., Rodden, M., Blake, A. J. & Arnold, P. L. (2006). Chem. Commun. 6, 1124-1126.]). For synthesis, see: Hosseinzadeh et al. (2006[Hosseinzadeh, R., Tajbakhsh, M. & Alikarami, M. (2006). Tetrahedron Lett. 47, 5203-5205.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N3O+·Br

  • Mr = 388.31

  • Monoclinic, P 21 /c

  • a = 11.2315 (3) Å

  • b = 11.5390 (3) Å

  • c = 14.3673 (4) Å

  • β = 100.833 (2)°

  • V = 1828.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 296 (2) K

  • 0.50 × 0.48 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttinger, Germany.]) Tmin = 0.320, Tmax = 0.405

  • 13818 measured reflections

  • 4184 independent reflections

  • 2287 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.01

  • 4184 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br1 0.82 2.49 3.227 (2) 151
C7—H7A⋯Br1i 0.93 2.75 3.598 (2) 152
C8—H8A⋯Br1ii 0.93 2.89 3.745 (2) 154
C10—H10B⋯Br1i 0.97 2.91 3.813 (2) 155
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The range of N-heterocyclic carbenes (NHCs) is expanding rapidly since many homogeneous catalysts rely on NHC-based supporting ligands for steric and electronic control. Recently the study of [C, O] chelating NHC ligands have attracted increasing attention. The bonding between the NHC and metal can be enhanced by alkoxide or phenoxide as a sidearm through the incorporation of chelating anionic oxygen (Liddle et al., 2007; Ren et al., 2007). These kind of ligands are of great significance to early metal catalysis and carbene chemistry (Arnold & Wilson, 2007; Chianese & Crabtree, 2005; Dyson et al., 2008; Patel et al., 2006). The title compound, a stable precursor imidazolium salt of a tridentate alkoxide-functionalized NHC ligands, was synthesized in moderate yield by reacting [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol with 2-(bromomethyl)-1,3,5-trimethylbenzene in acetonitrile.

In the title compound (Fig. 1), the pyridine and imidazole rings are coplanar, the dihedral angle between the plane of the pyridine ring and the plane of the imidazole ring is 0.88°. In addition, the dihedral angle between the imidazole ring and the benzene ring is 81.70 °. This might be a result of intermolecular O—H···Br interactions and steric effects. The O—H···Br and C—H···Br hydrogen bonding (Table 1) helps to stabilize the crystal structure.

Related literature top

For general background, see: Liddle et al. (2007); Ren et al. (2007); Arnold & Wilson (2007); Chianese & Crabtree (2005); Dyson et al. (2008); Patel et al. (2006). For synthesis, see: Hosseinzadeh et al. (2006).

Experimental top

[6-(1H-Imidazol-1-yl)pyridin-2-yl]methanol was prepared with the reported methods (Hosseinzadeh et al., 2006). The title compound was synthesized by dissolving [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol (0.35 g, 2.0 mmol) and 2-(bromomethyl)-1,3,5-trimethylbenzene (0.85 g, 4.0 mmol) in 10 ml of acetonitrile. The mixture was stirred at 333 K for 15 h and the resulting precipitate was filtered, washed with ether. After removal of the solvent in vacuo the off-white crude product was purified by flash chromatography (CH2Cl2/CH3OH (5/1, v/v)) to afford the product as a white solid (0.60 g, 77%). Colorless single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of a CH2Cl2/CH3OH solution (5/1, v/v)) over a period of several days.

Refinement top

All H atom were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å, and refined using a riding model with 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,O) for others.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates the O—H···Br hydrogen bonding.
1-[6-(Hydroxymethyl)-2-pyridyl]-3-(2,4,6-trimethylbenzyl)-1H-imidazol- 3-ium bromide top
Crystal data top
C19H22N3O+·BrF(000) = 800
Mr = 388.31Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3980 reflections
a = 11.2315 (3) Åθ = 2.8–26.7°
b = 11.5390 (3) ŵ = 2.26 mm1
c = 14.3673 (4) ÅT = 296 K
β = 100.833 (2)°Block, colourless
V = 1828.82 (9) Å30.50 × 0.48 × 0.40 mm
Z = 4
Data collection top
Bruker SAMRT CCD area-detector
diffractometer
4184 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.320, Tmax = 0.405k = 1314
13818 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.57P]
where P = (Fo2 + 2Fc2)/3
4184 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C19H22N3O+·BrV = 1828.82 (9) Å3
Mr = 388.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2315 (3) ŵ = 2.26 mm1
b = 11.5390 (3) ÅT = 296 K
c = 14.3673 (4) Å0.50 × 0.48 × 0.40 mm
β = 100.833 (2)°
Data collection top
Bruker SAMRT CCD area-detector
diffractometer
4184 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2287 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.405Rint = 0.048
13818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
4184 reflectionsΔρmin = 0.61 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28302 (3)0.00291 (3)0.05646 (2)0.05606 (10)
O10.21350 (16)0.2315 (2)0.07160 (15)0.0662 (7)
H1A0.24780.19200.02710.099*
N10.09397 (17)0.27426 (17)0.18365 (14)0.0321 (5)
N20.28135 (17)0.30337 (16)0.27893 (14)0.0305 (5)
N30.44633 (17)0.20953 (17)0.27441 (14)0.0334 (5)
C10.1546 (2)0.3348 (2)0.25443 (17)0.0316 (6)
C20.1075 (2)0.4190 (2)0.3045 (2)0.0445 (8)
H2A0.15470.45740.35530.053*
C30.0135 (3)0.4434 (3)0.2752 (2)0.0531 (9)
H3A0.05070.49890.30680.064*
C40.0795 (2)0.3852 (2)0.1986 (2)0.0444 (8)
H4A0.16060.40340.17640.053*
C50.0234 (2)0.2998 (2)0.15572 (18)0.0356 (7)
C60.0886 (2)0.2276 (2)0.0752 (2)0.0445 (8)
H6A0.07030.25630.01600.053*
H6B0.06080.14800.08320.053*
C70.3316 (2)0.2205 (2)0.23424 (18)0.0346 (6)
H7A0.29190.17750.18300.042*
C80.3694 (2)0.3481 (2)0.34984 (18)0.0380 (7)
H8A0.35980.40750.39160.046*
C90.4719 (2)0.2892 (2)0.34690 (18)0.0384 (7)
H9A0.54660.30020.38660.046*
C100.5327 (2)0.1277 (2)0.24373 (18)0.0376 (7)
H10A0.58770.17070.21210.045*
H10B0.48800.07400.19820.045*
C110.6055 (2)0.0601 (2)0.32432 (17)0.0312 (6)
C120.7292 (2)0.0816 (2)0.35423 (17)0.0320 (6)
C130.7950 (2)0.0118 (2)0.42336 (17)0.0339 (6)
H13A0.87750.02610.44270.041*
C140.7435 (2)0.0781 (2)0.46487 (18)0.0368 (7)
C150.6197 (2)0.0969 (2)0.43645 (18)0.0370 (7)
H15A0.58300.15630.46450.044*
C160.5498 (2)0.0293 (2)0.36734 (18)0.0336 (7)
C170.4158 (2)0.0533 (3)0.3403 (2)0.0470 (8)
H17A0.39710.12410.36960.070*
H17B0.39350.06040.27270.070*
H17C0.37130.00940.36150.070*
C180.7936 (2)0.1776 (2)0.3128 (2)0.0466 (8)
H18A0.87920.17210.33670.070*
H18B0.76430.25110.33030.070*
H18C0.77830.17080.24500.070*
C190.8180 (3)0.1551 (3)0.5387 (2)0.0521 (8)
H19A0.90260.13850.54230.078*
H19B0.80260.23480.52150.078*
H19C0.79630.14080.59920.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0685 (2)0.04819 (17)0.04329 (16)0.00279 (17)0.01057 (14)0.00348 (15)
O10.0395 (11)0.0820 (15)0.0724 (15)0.0069 (11)0.0020 (11)0.0294 (12)
N10.0311 (11)0.0305 (11)0.0330 (12)0.0008 (9)0.0022 (9)0.0017 (9)
N20.0304 (11)0.0302 (11)0.0296 (11)0.0007 (9)0.0021 (9)0.0001 (9)
N30.0290 (11)0.0338 (11)0.0346 (12)0.0002 (9)0.0014 (9)0.0000 (9)
C10.0312 (13)0.0309 (13)0.0324 (14)0.0006 (11)0.0049 (11)0.0053 (11)
C20.0388 (15)0.0424 (15)0.0495 (17)0.0016 (13)0.0011 (13)0.0122 (13)
C30.0433 (17)0.0473 (16)0.068 (2)0.0062 (14)0.0089 (15)0.0158 (16)
C40.0314 (14)0.0379 (15)0.0611 (19)0.0021 (12)0.0015 (13)0.0063 (14)
C50.0373 (14)0.0316 (13)0.0365 (15)0.0057 (11)0.0031 (12)0.0074 (11)
C60.0367 (15)0.0509 (17)0.0420 (16)0.0047 (13)0.0029 (13)0.0032 (14)
C70.0336 (14)0.0359 (14)0.0319 (14)0.0010 (12)0.0001 (11)0.0012 (12)
C80.0393 (14)0.0377 (14)0.0341 (15)0.0042 (12)0.0000 (12)0.0040 (12)
C90.0355 (14)0.0402 (15)0.0360 (15)0.0055 (12)0.0023 (12)0.0051 (12)
C100.0335 (14)0.0437 (15)0.0342 (15)0.0039 (12)0.0030 (12)0.0027 (12)
C110.0303 (13)0.0309 (13)0.0317 (14)0.0014 (11)0.0042 (11)0.0022 (11)
C120.0311 (13)0.0320 (13)0.0336 (14)0.0019 (11)0.0077 (11)0.0022 (11)
C130.0246 (12)0.0404 (15)0.0356 (13)0.0004 (12)0.0031 (10)0.0022 (12)
C140.0416 (15)0.0386 (14)0.0306 (14)0.0082 (12)0.0073 (12)0.0002 (12)
C150.0408 (14)0.0341 (14)0.0383 (15)0.0060 (12)0.0131 (12)0.0037 (12)
C160.0325 (13)0.0332 (14)0.0359 (14)0.0008 (11)0.0087 (11)0.0080 (11)
C170.0353 (15)0.0474 (16)0.0582 (19)0.0060 (13)0.0088 (14)0.0031 (15)
C180.0364 (15)0.0491 (17)0.0519 (18)0.0067 (13)0.0018 (13)0.0090 (14)
C190.0507 (17)0.0587 (18)0.0465 (18)0.0092 (15)0.0079 (14)0.0163 (15)
Geometric parameters (Å, º) top
O1—C61.394 (3)C10—C111.504 (3)
O1—H1A0.8200C10—H10A0.9700
N1—C11.314 (3)C10—H10B0.9700
N1—C51.336 (3)C11—C121.398 (3)
N2—C71.335 (3)C11—C161.408 (4)
N2—C81.380 (3)C12—C131.380 (3)
N2—C11.447 (3)C12—C181.505 (4)
N3—C71.315 (3)C13—C141.377 (4)
N3—C91.378 (3)C13—H13A0.9300
N3—C101.479 (3)C14—C151.390 (3)
C1—C21.372 (4)C14—C191.510 (4)
C2—C31.373 (4)C15—C161.385 (3)
C2—H2A0.9300C15—H15A0.9300
C3—C41.380 (4)C16—C171.509 (3)
C3—H3A0.9300C17—H17A0.9600
C4—C51.377 (4)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.500 (3)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C7—H7A0.9300C19—H19A0.9600
C8—C91.344 (3)C19—H19B0.9600
C8—H8A0.9300C19—H19C0.9600
C9—H9A0.9300
C6—O1—H1A109.5C11—C10—H10A108.9
C1—N1—C5117.0 (2)N3—C10—H10B108.9
C7—N2—C8108.3 (2)C11—C10—H10B108.9
C7—N2—C1123.3 (2)H10A—C10—H10B107.8
C8—N2—C1128.4 (2)C12—C11—C16119.5 (2)
C7—N3—C9108.4 (2)C12—C11—C10120.7 (2)
C7—N3—C10125.0 (2)C16—C11—C10119.8 (2)
C9—N3—C10126.6 (2)C13—C12—C11119.0 (2)
N1—C1—C2126.0 (2)C13—C12—C18118.8 (2)
N1—C1—N2113.4 (2)C11—C12—C18122.2 (2)
C2—C1—N2120.6 (2)C14—C13—C12122.6 (2)
C1—C2—C3116.2 (2)C14—C13—H13A118.7
C1—C2—H2A121.9C12—C13—H13A118.7
C3—C2—H2A121.9C13—C14—C15117.9 (2)
C2—C3—C4119.8 (3)C13—C14—C19121.6 (2)
C2—C3—H3A120.1C15—C14—C19120.4 (2)
C4—C3—H3A120.1C16—C15—C14121.5 (2)
C5—C4—C3118.8 (3)C16—C15—H15A119.2
C5—C4—H4A120.6C14—C15—H15A119.2
C3—C4—H4A120.6C15—C16—C11119.3 (2)
N1—C5—C4122.1 (2)C15—C16—C17119.0 (2)
N1—C5—C6114.9 (2)C11—C16—C17121.7 (2)
C4—C5—C6123.0 (2)C16—C17—H17A109.5
O1—C6—C5110.7 (2)C16—C17—H17B109.5
O1—C6—H6A109.5H17A—C17—H17B109.5
C5—C6—H6A109.5C16—C17—H17C109.5
O1—C6—H6B109.5H17A—C17—H17C109.5
C5—C6—H6B109.5H17B—C17—H17C109.5
H6A—C6—H6B108.1C12—C18—H18A109.5
N3—C7—N2109.0 (2)C12—C18—H18B109.5
N3—C7—H7A125.5H18A—C18—H18B109.5
N2—C7—H7A125.5C12—C18—H18C109.5
C9—C8—N2106.7 (2)H18A—C18—H18C109.5
C9—C8—H8A126.7H18B—C18—H18C109.5
N2—C8—H8A126.7C14—C19—H19A109.5
C8—C9—N3107.6 (2)C14—C19—H19B109.5
C8—C9—H9A126.2H19A—C19—H19B109.5
N3—C9—H9A126.2C14—C19—H19C109.5
N3—C10—C11113.2 (2)H19A—C19—H19C109.5
N3—C10—H10A108.9H19B—C19—H19C109.5
C5—N1—C1—C22.5 (4)C7—N3—C9—C80.4 (3)
C5—N1—C1—N2178.8 (2)C10—N3—C9—C8178.4 (2)
C7—N2—C1—N10.3 (3)C7—N3—C10—C11132.4 (2)
C8—N2—C1—N1179.0 (2)C9—N3—C10—C1149.8 (3)
C7—N2—C1—C2178.5 (2)N3—C10—C11—C12109.5 (3)
C8—N2—C1—C20.2 (4)N3—C10—C11—C1673.4 (3)
N1—C1—C2—C32.0 (4)C16—C11—C12—C132.1 (4)
N2—C1—C2—C3179.4 (2)C10—C11—C12—C13175.0 (2)
C1—C2—C3—C40.8 (4)C16—C11—C12—C18178.5 (2)
C2—C3—C4—C52.8 (4)C10—C11—C12—C184.4 (4)
C1—N1—C5—C40.2 (4)C11—C12—C13—C140.5 (4)
C1—N1—C5—C6179.6 (2)C18—C12—C13—C14179.8 (2)
C3—C4—C5—N12.4 (4)C12—C13—C14—C151.2 (4)
C3—C4—C5—C6177.0 (3)C12—C13—C14—C19178.5 (2)
N1—C5—C6—O1160.1 (2)C13—C14—C15—C161.2 (4)
C4—C5—C6—O119.3 (4)C19—C14—C15—C16178.5 (3)
C9—N3—C7—N20.9 (3)C14—C15—C16—C110.4 (4)
C10—N3—C7—N2179.0 (2)C14—C15—C16—C17179.4 (2)
C8—N2—C7—N31.0 (3)C12—C11—C16—C152.1 (4)
C1—N2—C7—N3177.9 (2)C10—C11—C16—C15175.0 (2)
C7—N2—C8—C90.8 (3)C12—C11—C16—C17177.7 (2)
C1—N2—C8—C9178.1 (2)C10—C11—C16—C175.2 (4)
N2—C8—C9—N30.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.822.493.227 (2)151
C7—H7A···Br1i0.932.753.598 (2)152
C8—H8A···Br1ii0.932.893.745 (2)154
C10—H10B···Br1i0.972.913.813 (2)155
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H22N3O+·Br
Mr388.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.2315 (3), 11.5390 (3), 14.3673 (4)
β (°) 100.833 (2)
V3)1828.82 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.50 × 0.48 × 0.40
Data collection
DiffractometerBruker SAMRT CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.320, 0.405
No. of measured, independent and
observed [I > 2σ(I)] reflections
13818, 4184, 2287
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.01
No. of reflections4184
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.61

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.822.493.227 (2)151
C7—H7A···Br1i0.932.753.598 (2)152
C8—H8A···Br1ii0.932.893.745 (2)154
C10—H10B···Br1i0.972.913.813 (2)155
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support of this work by the Natural Science Foundation of Sichuan Province of China is gratefully acknowledged.

References

First citationArnold, P. L. & Wilson, C. (2007). Inorg. Chim. Acta, 360, 190–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R. & Crabtree, R. H. (2005). Organometallics, 24, 4432–4436.  Web of Science CrossRef CAS Google Scholar
First citationDyson, G., Frison, J., Simonovic, S., Whitwood, A. C. & Douthwaite, R. E. (2008). Organometallics, 27, 281–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHosseinzadeh, R., Tajbakhsh, M. & Alikarami, M. (2006). Tetrahedron Lett. 47, 5203–5205.  Web of Science CrossRef CAS Google Scholar
First citationLiddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev. 36, 1732–1744.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatel, D., Liddle, S. T., Mungur, S. A., Rodden, M., Blake, A. J. & Arnold, P. L. (2006). Chem. Commun. 6, 1124–1126.  Web of Science CSD CrossRef Google Scholar
First citationRen, H. P., Yao, P. Y., Xu, S. S., Song, H. B. & Wang, B. Q. (2007). J. Organomet. Chem. 692, 2092–2098.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttinger, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds