organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Di­hydro-4-(4-meth­oxy­phen­yl)-3-methyl-6-oxo-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbo­nitrile

aSchool of Chemical and Environmental Sciences, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
*Correspondence e-mail: xyzh518@sohu.com

(Received 22 August 2008; accepted 30 August 2008; online 6 September 2008)

In the title compound, C21H16N4O2, the dihedral angle between the meth­oxy-substituted benzene ring and the ring system formed by the pyridinone ring and the pyrazole ring is 57.4 (1)°, and that between the unsubstituted phenyl ring and the ring system is 135.6 (1)°. In the crystal structure, mol­ecules are linked together via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological and pharmacological activities of pyrazolo[3,4-b]pyridine derivatives, see Falcó et al. (2005[Falcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem. 40, 1179-1187.]); Ludwig et al. (2004[Ludwig, S., Planz, O., Sedlacek, H. H. & Pleschka, S. (2004). PCT Int. Appl. WO 2 004 085 682.]). For a related structure, see Quiroga et al. (1999[Quiroga, J., Alvarado, M., Insuasty, B., Moreno, R., Ravina, E., Estevez, I. & de Almedia, R. H. (1999). J. Heterocycl. Chem. 36, 1311-1316.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N4O2

  • Mr = 356.38

  • Triclinic, [P \overline 1]

  • a = 7.0621 (11) Å

  • b = 11.0272 (17) Å

  • c = 12.1743 (19) Å

  • α = 68.467 (2)°

  • β = 78.949 (2)°

  • γ = 87.471 (2)°

  • V = 865.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.43 × 0.30 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6198 measured reflections

  • 3136 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.02

  • 3136 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.06 2.8523 (18) 153
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supporting information


Comment top

Pyrazolo[3,4-b]pyridine derivatives have been found of interests for their biological and pharmacological activities, such as antiviral (Ludwig et al., 2004). Moreover, pyrazolo[3,4-b]pyridin-6-ones as a subunit of pyrazolo[3,4-b]pyridine acted as potential hypnotic drugs in many cases (Falcó et al., 2005). Due to their importance, many methods have been reported for the construction of pyrazolo[3,4-b]pyridine derivatives including pyrazolo[3,4-b]pyridin-6-ones (Quiroga et al., 1999; Falcó et al., 2005). Herein, we report the crystal structure of the title compound, one of pyrazolo[3,4-b]pyridin-6-one derivatives.

In the title compound there are four rings including two phenyl rings, one pyridinone ring and one pyrazole ring. The pyridinone ring and the pyrazole ring is almost co-planar and formed a ring system. The dihedral angle between this ring system and the methoxy-substituted phenyl ring is 57.4 (1)°, which is probably due to the repulsion of the cyano group on the pyridinone ring and the hydrogen atoms on the ortho-positions of the phenyl ring connected with the pyridinone ring, and the repulsion between these hydrogen atoms and the methyl group on the pyrazole ring. The dihedral angle between the non-substituted phenyl ring and the ring system is 135.6 (1)°.

In the crystal structure the molecules are connected via intermolecular N—H···O hydrogen bonding (Table 1).

Related literature top

For biological and pharmacological activities of pyrazolo[3,4-b]pyridine derivatives, see Falcó et al. (2005); Ludwig et al. (2004). For a related structure, see Quiroga et al. (1999).

Experimental top

To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) were added 4-methoxybenzaldehyde (1 mmol, II) and ethyl cyanoacetate (1 mmol). The mixture was stirred at 80 °C until the disappearance of II. Then, 5-amino-3-methyl-1-phenylpyrazole (1 mmol) and FeCl3.6H2O (0.2 mmol) was added and the mixture was continued to be stirred at the same temperature to complete the reaction (monitored by TLC). The reaction time was 10 h totally. Upon completion, the mixture was cooled to room temperature and 2 ml of 50% ethanol in water was added. The product was collected by suction and rinsed with water and cool ethanol in a yield of 90% as white solid. Single crystals of the title compound were obtained by slow evaporation of the solvent from an ethyl acetate-ethanol (1:1 v/v) solution.

Refinement top

H-atoms were included in calculated positions and treated as riding atoms with N—H = 0.86 Å and C—H = 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(N,C) for others.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal Structure of the title compound with view along the a axis. Intermolecular N—H···O hydrogen bonding is shown as dashed lines.
6,7-Dihydro-4-(4-methoxyphenyl)-3-methyl-6-oxo-1-phenyl-1H- pyrazolo[3,4-b]pyridine-5-carbonitrile top
Crystal data top
C21H16N4O2Z = 2
Mr = 356.38F(000) = 372
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0621 (11) ÅCell parameters from 1698 reflections
b = 11.0272 (17) Åθ = 3.2–26.3°
c = 12.1743 (19) ŵ = 0.09 mm1
α = 68.467 (2)°T = 295 K
β = 78.949 (2)°Block, colourless
γ = 87.471 (2)°0.43 × 0.30 × 0.11 mm
V = 865.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.5°, θmin = 2.9°
ϕ and ω scansh = 88
6198 measured reflectionsk = 1313
3136 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1601P]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H16N4O2γ = 87.471 (2)°
Mr = 356.38V = 865.2 (2) Å3
Triclinic, P1Z = 2
a = 7.0621 (11) ÅMo Kα radiation
b = 11.0272 (17) ŵ = 0.09 mm1
c = 12.1743 (19) ÅT = 295 K
α = 68.467 (2)°0.43 × 0.30 × 0.11 mm
β = 78.949 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2236 reflections with I > 2σ(I)
6198 measured reflectionsRint = 0.019
3136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
3136 reflectionsΔρmin = 0.21 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2756 (2)0.56351 (17)0.91520 (16)0.0390 (4)
C20.4579 (2)0.63083 (17)0.84855 (16)0.0396 (4)
C30.5717 (2)0.60459 (16)0.75386 (16)0.0380 (4)
C40.5056 (2)0.50171 (17)0.72613 (16)0.0390 (4)
C50.3325 (2)0.43515 (16)0.79290 (15)0.0382 (4)
C60.5776 (3)0.43251 (18)0.64820 (17)0.0450 (5)
C70.5055 (3)0.7343 (2)0.88358 (19)0.0534 (5)
C80.7609 (3)0.4528 (2)0.55762 (19)0.0583 (6)
H8A0.77380.38320.52730.087*
H8B0.86860.45370.59500.087*
H8C0.75800.53450.49240.087*
C90.1563 (3)0.23971 (18)0.79607 (16)0.0457 (5)
C100.0341 (3)0.2728 (2)0.81733 (18)0.0549 (5)
H100.06650.35850.80650.066*
C110.1762 (3)0.1761 (3)0.8550 (2)0.0736 (7)
H110.30520.19660.87130.088*
C120.1284 (5)0.0504 (3)0.8685 (2)0.0857 (9)
H120.22500.01370.89230.103*
C130.0630 (5)0.0186 (2)0.8470 (2)0.0813 (8)
H130.09470.06700.85670.098*
C140.2069 (3)0.1128 (2)0.81120 (19)0.0623 (6)
H140.33600.09150.79750.075*
C150.7532 (2)0.68056 (16)0.68722 (16)0.0386 (4)
C160.8942 (3)0.69110 (18)0.74930 (17)0.0455 (5)
H160.87410.64980.83250.055*
C171.0627 (3)0.76181 (18)0.68909 (17)0.0490 (5)
H171.15530.76780.73200.059*
C181.0963 (2)0.82417 (17)0.56554 (17)0.0437 (5)
C190.9568 (3)0.81699 (17)0.50216 (17)0.0452 (5)
H190.97680.86000.41920.054*
C200.7868 (3)0.74526 (17)0.56307 (16)0.0429 (4)
H200.69360.74040.52010.051*
C211.3193 (3)0.9516 (2)0.39001 (19)0.0655 (6)
H21A1.32230.88770.35340.098*
H21B1.44400.99400.36860.098*
H21C1.22481.01510.36230.098*
N10.22050 (19)0.46471 (13)0.88333 (13)0.0391 (4)
H10.11440.42130.92090.047*
N20.3060 (2)0.33757 (15)0.75584 (14)0.0446 (4)
N30.4599 (2)0.33551 (16)0.66572 (14)0.0510 (4)
N40.5383 (3)0.8162 (2)0.9136 (2)0.0929 (8)
O10.17078 (18)0.59323 (13)0.99468 (12)0.0513 (4)
O21.27013 (19)0.88929 (14)0.51707 (13)0.0605 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (9)0.0395 (10)0.0403 (10)0.0069 (8)0.0009 (8)0.0136 (8)
C20.0333 (9)0.0393 (10)0.0432 (10)0.0072 (8)0.0002 (8)0.0141 (8)
C30.0308 (9)0.0356 (9)0.0413 (10)0.0025 (7)0.0011 (8)0.0091 (8)
C40.0307 (9)0.0399 (10)0.0413 (10)0.0024 (7)0.0026 (7)0.0131 (8)
C50.0343 (9)0.0380 (10)0.0401 (10)0.0019 (7)0.0001 (8)0.0148 (8)
C60.0369 (10)0.0442 (11)0.0488 (11)0.0016 (8)0.0053 (8)0.0173 (9)
C70.0392 (11)0.0556 (13)0.0624 (13)0.0165 (9)0.0130 (9)0.0272 (11)
C80.0484 (12)0.0595 (13)0.0603 (13)0.0036 (10)0.0143 (10)0.0260 (11)
C90.0490 (11)0.0476 (11)0.0413 (11)0.0137 (9)0.0009 (9)0.0200 (9)
C100.0488 (12)0.0673 (14)0.0520 (12)0.0157 (10)0.0024 (9)0.0273 (11)
C110.0568 (14)0.108 (2)0.0591 (14)0.0353 (14)0.0017 (11)0.0365 (15)
C120.105 (2)0.095 (2)0.0552 (15)0.0659 (18)0.0019 (14)0.0253 (14)
C130.117 (2)0.0580 (15)0.0675 (16)0.0362 (15)0.0015 (15)0.0248 (13)
C140.0752 (15)0.0500 (13)0.0617 (14)0.0137 (11)0.0039 (11)0.0269 (11)
C150.0301 (9)0.0368 (10)0.0430 (10)0.0029 (7)0.0023 (8)0.0117 (8)
C160.0358 (10)0.0496 (11)0.0407 (10)0.0060 (8)0.0007 (8)0.0070 (9)
C170.0346 (10)0.0534 (12)0.0508 (12)0.0058 (9)0.0056 (9)0.0101 (10)
C180.0339 (10)0.0387 (10)0.0512 (12)0.0066 (8)0.0069 (8)0.0144 (9)
C190.0470 (11)0.0420 (10)0.0377 (10)0.0051 (8)0.0063 (8)0.0105 (8)
C200.0390 (10)0.0443 (10)0.0434 (11)0.0039 (8)0.0023 (8)0.0158 (9)
C210.0598 (14)0.0550 (13)0.0643 (15)0.0165 (10)0.0248 (11)0.0179 (11)
N10.0316 (8)0.0390 (8)0.0424 (8)0.0108 (6)0.0065 (6)0.0151 (7)
N20.0395 (8)0.0440 (9)0.0488 (9)0.0099 (7)0.0068 (7)0.0215 (7)
N30.0469 (9)0.0504 (10)0.0520 (10)0.0053 (8)0.0107 (8)0.0238 (8)
N40.0738 (14)0.0961 (17)0.1204 (19)0.0448 (12)0.0337 (13)0.0735 (16)
O10.0405 (7)0.0616 (9)0.0534 (8)0.0166 (6)0.0137 (6)0.0320 (7)
O20.0430 (8)0.0640 (9)0.0589 (9)0.0189 (7)0.0111 (7)0.0125 (7)
Geometric parameters (Å, º) top
C1—O11.236 (2)C11—H110.9300
C1—N11.377 (2)C12—C131.381 (4)
C1—C21.452 (2)C12—H120.9300
C2—C31.388 (2)C13—C141.376 (3)
C2—C71.429 (3)C13—H130.9300
C3—C41.417 (2)C14—H140.9300
C3—C151.484 (2)C15—C201.391 (2)
C4—C51.398 (2)C15—C161.392 (2)
C4—C61.433 (2)C16—C171.375 (2)
C5—N21.343 (2)C16—H160.9300
C5—N11.361 (2)C17—C181.382 (3)
C6—N31.313 (2)C17—H170.9300
C6—C81.496 (2)C18—O21.364 (2)
C7—N41.139 (2)C18—C191.384 (3)
C8—H8A0.9600C19—C201.389 (2)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—H200.9300
C9—C101.379 (3)C21—O21.421 (2)
C9—C141.383 (3)C21—H21A0.9600
C9—N21.427 (2)C21—H21B0.9600
C10—C111.383 (3)C21—H21C0.9600
C10—H100.9300N1—H10.8600
C11—C121.369 (4)N2—N31.394 (2)
O1—C1—N1120.55 (15)C14—C13—H13119.8
O1—C1—C2123.12 (16)C12—C13—H13119.8
N1—C1—C2116.32 (15)C13—C14—C9118.8 (2)
C3—C2—C7122.01 (15)C13—C14—H14120.6
C3—C2—C1124.02 (16)C9—C14—H14120.6
C7—C2—C1113.84 (15)C20—C15—C16118.08 (16)
C2—C3—C4116.42 (15)C20—C15—C3121.91 (16)
C2—C3—C15120.98 (16)C16—C15—C3119.99 (16)
C4—C3—C15122.60 (15)C17—C16—C15120.78 (17)
C5—C4—C3119.12 (16)C17—C16—H16119.6
C5—C4—C6103.83 (15)C15—C16—H16119.6
C3—C4—C6136.83 (16)C16—C17—C18120.81 (18)
N2—C5—N1127.97 (15)C16—C17—H17119.6
N2—C5—C4108.43 (15)C18—C17—H17119.6
N1—C5—C4123.53 (16)O2—C18—C17114.81 (17)
N3—C6—C4111.18 (15)O2—C18—C19125.76 (17)
N3—C6—C8118.63 (17)C17—C18—C19119.43 (16)
C4—C6—C8130.17 (17)C18—C19—C20119.69 (17)
N4—C7—C2178.0 (2)C18—C19—H19120.2
C6—C8—H8A109.5C20—C19—H19120.2
C6—C8—H8B109.5C19—C20—C15121.20 (18)
H8A—C8—H8B109.5C19—C20—H20119.4
C6—C8—H8C109.5C15—C20—H20119.4
H8A—C8—H8C109.5O2—C21—H21A109.5
H8B—C8—H8C109.5O2—C21—H21B109.5
C10—C9—C14121.36 (18)H21A—C21—H21B109.5
C10—C9—N2120.09 (18)O2—C21—H21C109.5
C14—C9—N2118.54 (18)H21A—C21—H21C109.5
C9—C10—C11118.8 (2)H21B—C21—H21C109.5
C9—C10—H10120.6C5—N1—C1120.54 (14)
C11—C10—H10120.6C5—N1—H1119.7
C12—C11—C10120.4 (2)C1—N1—H1119.7
C12—C11—H11119.8C5—N2—N3110.21 (14)
C10—C11—H11119.8C5—N2—C9130.98 (15)
C11—C12—C13120.2 (2)N3—N2—C9118.76 (14)
C11—C12—H12119.9C6—N3—N2106.35 (15)
C13—C12—H12119.9C18—O2—C21118.36 (16)
C14—C13—C12120.4 (3)
O1—C1—C2—C3175.69 (18)C4—C3—C15—C2056.1 (2)
N1—C1—C2—C32.7 (3)C2—C3—C15—C1654.0 (2)
O1—C1—C2—C70.3 (3)C4—C3—C15—C16125.4 (2)
N1—C1—C2—C7178.62 (16)C20—C15—C16—C171.0 (3)
C7—C2—C3—C4178.28 (17)C3—C15—C16—C17179.57 (17)
C1—C2—C3—C42.6 (3)C15—C16—C17—C180.0 (3)
C7—C2—C3—C152.3 (3)C16—C17—C18—O2179.12 (17)
C1—C2—C3—C15177.93 (17)C16—C17—C18—C191.1 (3)
C2—C3—C4—C50.8 (2)O2—C18—C19—C20179.00 (17)
C15—C3—C4—C5179.76 (16)C17—C18—C19—C201.3 (3)
C2—C3—C4—C6172.7 (2)C18—C19—C20—C150.3 (3)
C15—C3—C4—C66.7 (3)C16—C15—C20—C190.8 (3)
C3—C4—C5—N2176.16 (16)C3—C15—C20—C19179.38 (16)
C6—C4—C5—N20.7 (2)N2—C5—N1—C1175.58 (17)
C3—C4—C5—N10.9 (3)C4—C5—N1—C10.9 (3)
C6—C4—C5—N1176.38 (16)O1—C1—N1—C5177.60 (16)
C5—C4—C6—N30.4 (2)C2—C1—N1—C50.8 (2)
C3—C4—C6—N3174.6 (2)N1—C5—N2—N3176.14 (17)
C5—C4—C6—C8177.7 (2)C4—C5—N2—N30.8 (2)
C3—C4—C6—C83.5 (4)N1—C5—N2—C91.4 (3)
C3—C2—C7—N4171 (8)C4—C5—N2—C9178.32 (18)
C1—C2—C7—N45 (8)C10—C9—N2—C544.7 (3)
C14—C9—C10—C110.3 (3)C14—C9—N2—C5136.3 (2)
N2—C9—C10—C11179.32 (18)C10—C9—N2—N3137.97 (19)
C9—C10—C11—C121.3 (3)C14—C9—N2—N341.1 (3)
C10—C11—C12—C131.4 (4)C4—C6—N3—N20.0 (2)
C11—C12—C13—C140.3 (4)C8—C6—N3—N2178.40 (17)
C12—C13—C14—C90.7 (4)C5—N2—N3—C60.5 (2)
C10—C9—C14—C130.7 (3)C9—N2—N3—C6178.39 (17)
N2—C9—C14—C13178.32 (19)C17—C18—O2—C21177.44 (17)
C2—C3—C15—C20124.5 (2)C19—C18—O2—C212.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.8523 (18)153
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H16N4O2
Mr356.38
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.0621 (11), 11.0272 (17), 12.1743 (19)
α, β, γ (°)68.467 (2), 78.949 (2), 87.471 (2)
V3)865.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.30 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6198, 3136, 2236
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.02
No. of reflections3136
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.8523 (18)152.5
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFalcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem. 40, 1179–1187.  Web of Science PubMed Google Scholar
First citationLudwig, S., Planz, O., Sedlacek, H. H. & Pleschka, S. (2004). PCT Int. Appl. WO 2 004 085 682.  Google Scholar
First citationQuiroga, J., Alvarado, M., Insuasty, B., Moreno, R., Ravina, E., Estevez, I. & de Almedia, R. H. (1999). J. Heterocycl. Chem. 36, 1311–1316.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds