organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-3-(2-furo­yl)thio­urea

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, cInstituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, Habana 10400, Cuba, and dLaboratório de Física, Universidade Federal do Tocantins, CEP 77020-120, Palmas, Tocantins, Brazil
*Correspondence e-mail: hperez@fq.uh.cu

(Received 29 January 2008; accepted 6 March 2008; online 12 March 2008)

In the title compound, C13H12N2O2S, the dihedral angle between the two aromatic ring planes is 87.52 (12)°. The mol­ecule shows an intra­molecular N—H⋯O hydrogen bond. The crystal structure is stabilized by inter­molecular N—H⋯S and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Estévez-Hernández et al. (2007[Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sensors Actuators, B120, 766-772.]); Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]). For related structures, see: Arslan et al. (2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.]); Khawar Rauf et al. (2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256-o1257.]). For the synthesis, see: Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2S

  • Mr = 260.31

  • Tetragonal, P 41 21 2

  • a = 9.445 (3) Å

  • c = 27.107 (6) Å

  • V = 2418.2 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 (2) K

  • 0.3 × 0.1 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 12492 measured reflections

  • 2120 independent reflections

  • 1922 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.06

  • 2120 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 802 Friedel pairs

  • Flack parameter: −0.16 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.00 2.697 (3) 135
N2—H2⋯S1i 0.88 2.70 3.578 (2) 174
C7—H7⋯O1ii 0.95 2.58 3.423 (3) 148
Symmetry codes: (i) y, x, -z; (ii) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z-{\script{1\over 4}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted N-acylthioureas have been a subject of investigations, due to their ability to form stable metal complexes and as ionophores in potenciometric and amperometric sensors for Cd(II), Hg(II) and Pb(II) (Otazo et al., 2001; Estévez-Hernández et al., 2007). The title compound, (I) (Fig. 1), is another example of our newly synthesized furoylthiourea derivatives, which show outstanding complexation properties.

Compound (I) is a typical N,N'-disubstituted thiourea derivative with normal geometric parameters. The C2—S1 and C3—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1, C2—N2 and C3—N2 bonds indicate partial double bond character.

The dihedral angle between the aromatic rings is 87.52 (12)°, and the angles with the thiourea plane are 86.67 (19)° for the benzene ring and 4.81 (12)° for the furan ring. An intramolecular N–H···O hydrogen bond is present (Table 2), forming a six-membered ring commonly observed in this type of compounds (Arslan et al., 2004; Khawar Rauf et al., 2007). The crystal structure of (I) is stabilized by intermolecular N—H···S and C—H···O hydrogen bonding (Table 2).

Related literature top

For general background, see: Estévez-Hernández et al. (2007); Otazo et al. (2001). For related structures, see: Arslan et al. (2004); Khawar Rauf et al. (2007). For thesynthesis, see: Otazo et al. (2001).

Experimental top

The title compound, (I), was synthesized according to a procedure described by Otazo et al. (2001) by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate amine. The resulting solid product was crystallized from a dichlorometane-methanol (1:1) mixture yielding X-ray quality single crystals. Elemental analysis for C13H12N2O2S found: C 67.73, H 4.75, N 8.23, S 9.34%; calculated: C 67.86, H 4.46, N 8.33, S 9.52%

Refinement top

H atoms were placed in calculated positions with C–H = 0.95 Å (aromatic), N–H = 0.88 Å and C–H = 0.99 Å (methylene), and refined in riding model, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
1-Benzyl-3-(2-furoyl)thiourea top
Crystal data top
C13H12N2O2SDx = 1.43 Mg m3
Mr = 260.31Melting point: 402.5 K
Tetragonal, P41212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 4abw 2nwCell parameters from 9761 reflections
a = 9.445 (3) Åθ = 2.9–26.0°
c = 27.107 (6) ŵ = 0.26 mm1
V = 2418.2 (12) Å3T = 150 K
Z = 8Block, colourless
F(000) = 10880.3 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.092
ω scansθmax = 25.0°, θmin = 3.7°
12492 measured reflectionsh = 119
2120 independent reflectionsk = 811
1922 reflections with I > 2σ(I)l = 3224
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4478P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.085Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.19 e Å3
2120 reflectionsAbsolute structure: Flack (1983), 802 Friedel pairs
163 parametersAbsolute structure parameter: 0.16 (10)
0 restraints
Crystal data top
C13H12N2O2SZ = 8
Mr = 260.31Mo Kα radiation
Tetragonal, P41212µ = 0.26 mm1
a = 9.445 (3) ÅT = 150 K
c = 27.107 (6) Å0.3 × 0.1 × 0.08 mm
V = 2418.2 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
1922 reflections with I > 2σ(I)
12492 measured reflectionsRint = 0.092
2120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.19 e Å3
2120 reflectionsAbsolute structure: Flack (1983), 802 Friedel pairs
163 parametersAbsolute structure parameter: 0.16 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7270 (2)0.4402 (2)0.16180 (8)0.0311 (6)
H1A0.71040.34940.17910.037*
H1B0.63510.49040.15970.037*
C20.7259 (2)0.4740 (2)0.07225 (7)0.0251 (5)
C30.8761 (2)0.3236 (2)0.01767 (8)0.0260 (5)
C40.9003 (2)0.2913 (2)0.03448 (8)0.0270 (5)
C50.9858 (2)0.1962 (2)0.05694 (8)0.0316 (5)
H51.04860.13130.04150.038*
C60.9623 (2)0.2131 (2)0.10836 (8)0.0336 (6)
H61.00690.16160.13410.04*
C70.8651 (2)0.3157 (2)0.11361 (8)0.0330 (6)
H70.82960.34820.14440.04*
C80.8284 (2)0.5288 (2)0.19216 (8)0.0272 (5)
C90.9223 (2)0.6243 (2)0.17099 (9)0.0320 (5)
H90.92870.63130.13610.038*
C101.0065 (3)0.7093 (3)0.20046 (10)0.0389 (6)
H101.07060.77390.18550.047*
C110.9987 (3)0.7014 (3)0.25126 (10)0.0388 (6)
H111.05630.76060.27130.047*
C120.9063 (3)0.6063 (3)0.27252 (9)0.0388 (6)
H120.90010.60.30740.047*
C130.8222 (2)0.5198 (3)0.24330 (8)0.0333 (6)
H130.75980.45390.25840.04*
O10.94160 (17)0.26029 (17)0.04999 (6)0.0314 (4)
O20.82422 (16)0.36671 (15)0.06877 (5)0.0309 (4)
N10.7763 (2)0.41033 (19)0.11201 (6)0.0275 (4)
H10.84320.34650.10810.033*
N20.77589 (19)0.42680 (19)0.02701 (6)0.0262 (4)
H20.7390.46790.00090.031*
S10.60657 (6)0.60581 (6)0.072955 (19)0.03259 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (12)0.0375 (13)0.0220 (11)0.0027 (11)0.0039 (9)0.0008 (10)
C20.0253 (11)0.0269 (11)0.0231 (11)0.0052 (9)0.0015 (9)0.0028 (9)
C30.0227 (11)0.0265 (11)0.0289 (12)0.0054 (10)0.0013 (9)0.0005 (9)
C40.0289 (12)0.0274 (12)0.0248 (11)0.0019 (10)0.0021 (9)0.0017 (9)
C50.0310 (13)0.0319 (12)0.0318 (12)0.0041 (10)0.0005 (10)0.0019 (10)
C60.0396 (14)0.0353 (13)0.0260 (12)0.0033 (11)0.0041 (10)0.0041 (10)
C70.0411 (14)0.0380 (13)0.0200 (11)0.0024 (11)0.0016 (10)0.0032 (10)
C80.0304 (12)0.0266 (12)0.0246 (11)0.0077 (10)0.0000 (9)0.0018 (9)
C90.0354 (13)0.0324 (12)0.0283 (12)0.0043 (11)0.0009 (10)0.0006 (11)
C100.0381 (14)0.0358 (13)0.0427 (15)0.0012 (12)0.0005 (11)0.0003 (11)
C110.0399 (14)0.0381 (13)0.0385 (14)0.0034 (12)0.0058 (12)0.0074 (12)
C120.0451 (15)0.0452 (15)0.0261 (12)0.0097 (13)0.0045 (11)0.0035 (11)
C130.0376 (13)0.0347 (13)0.0277 (13)0.0048 (11)0.0023 (11)0.0020 (10)
O10.0327 (9)0.0354 (9)0.0262 (8)0.0035 (7)0.0005 (7)0.0009 (7)
O20.0354 (9)0.0319 (9)0.0253 (8)0.0060 (7)0.0011 (7)0.0017 (7)
N10.0303 (10)0.0287 (10)0.0236 (9)0.0027 (8)0.0016 (8)0.0010 (8)
N20.0288 (10)0.0291 (10)0.0208 (9)0.0010 (8)0.0008 (8)0.0012 (8)
S10.0371 (3)0.0324 (3)0.0283 (3)0.0066 (3)0.0013 (3)0.0021 (2)
Geometric parameters (Å, º) top
C1—N11.456 (3)C7—O21.363 (2)
C1—C81.515 (3)C7—H70.95
C1—H1A0.99C8—C91.389 (3)
C1—H1B0.99C8—C131.390 (3)
C2—N11.323 (3)C9—C101.384 (3)
C2—N21.388 (3)C9—H90.95
C2—S11.679 (2)C10—C111.381 (4)
C3—O11.228 (3)C10—H100.95
C3—N21.382 (3)C11—C121.379 (4)
C3—C41.464 (3)C11—H110.95
C4—C51.353 (3)C12—C131.387 (4)
C4—O21.374 (2)C12—H120.95
C5—C61.420 (3)C13—H130.95
C5—H50.95N1—H10.88
C6—C71.342 (3)N2—H20.88
C6—H60.95
N1—C1—C8114.11 (18)C9—C8—C1122.5 (2)
N1—C1—H1A108.7C13—C8—C1118.8 (2)
C8—C1—H1A108.7C10—C9—C8120.3 (2)
N1—C1—H1B108.7C10—C9—H9119.8
C8—C1—H1B108.7C8—C9—H9119.8
H1A—C1—H1B107.6C11—C10—C9120.9 (2)
N1—C2—N2116.84 (18)C11—C10—H10119.6
N1—C2—S1124.70 (16)C9—C10—H10119.6
N2—C2—S1118.46 (15)C12—C11—C10119.1 (2)
O1—C3—N2123.90 (19)C12—C11—H11120.5
O1—C3—C4120.59 (19)C10—C11—H11120.5
N2—C3—C4115.51 (18)C11—C12—C13120.5 (2)
C5—C4—O2110.61 (18)C11—C12—H12119.8
C5—C4—C3131.8 (2)C13—C12—H12119.8
O2—C4—C3117.63 (18)C12—C13—C8120.6 (2)
C4—C5—C6105.9 (2)C12—C13—H13119.7
C4—C5—H5127.1C8—C13—H13119.7
C6—C5—H5127.1C7—O2—C4105.78 (17)
C7—C6—C5107.0 (2)C2—N1—C1123.51 (18)
C7—C6—H6126.5C2—N1—H1118.2
C5—C6—H6126.5C1—N1—H1118.2
C6—C7—O2110.8 (2)C3—N2—C2128.43 (18)
C6—C7—H7124.6C3—N2—H2115.8
O2—C7—H7124.6C2—N2—H2115.8
C9—C8—C13118.6 (2)
O1—C3—C4—C51.4 (4)C10—C11—C12—C130.0 (4)
N2—C3—C4—C5178.1 (2)C11—C12—C13—C80.8 (3)
O1—C3—C4—O2179.53 (19)C9—C8—C13—C121.1 (3)
N2—C3—C4—O21.0 (3)C1—C8—C13—C12175.5 (2)
O2—C4—C5—C60.2 (3)C6—C7—O2—C40.1 (2)
C3—C4—C5—C6179.3 (2)C5—C4—O2—C70.1 (2)
C4—C5—C6—C70.2 (3)C3—C4—O2—C7179.4 (2)
C5—C6—C7—O20.2 (3)N2—C2—N1—C1175.32 (19)
N1—C1—C8—C927.7 (3)S1—C2—N1—C14.4 (3)
N1—C1—C8—C13155.8 (2)C8—C1—N1—C2104.7 (2)
C13—C8—C9—C100.6 (3)O1—C3—N2—C23.1 (3)
C1—C8—C9—C10175.9 (2)C4—C3—N2—C2176.4 (2)
C8—C9—C10—C110.3 (4)N1—C2—N2—C32.3 (3)
C9—C10—C11—C120.6 (4)S1—C2—N2—C3178.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.002.697 (3)135
N2—H2···S1i0.882.703.578 (2)174
C7—H7···O1ii0.952.583.423 (3)148
Symmetry codes: (i) y, x, z; (ii) y+1/2, x+3/2, z1/4.

Experimental details

Crystal data
Chemical formulaC13H12N2O2S
Mr260.31
Crystal system, space groupTetragonal, P41212
Temperature (K)150
a, c (Å)9.445 (3), 27.107 (6)
V3)2418.2 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.3 × 0.1 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12492, 2120, 1922
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.06
No. of reflections2120
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19
Absolute structureFlack (1983), 802 Friedel pairs
Absolute structure parameter0.16 (10)

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C2—N11.323 (3)C3—O11.228 (3)
C2—N21.388 (3)C3—N21.382 (3)
C2—S11.679 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.002.697 (3)135
N2—H2···S1i0.882.703.578 (2)174
C7—H7···O1ii0.952.583.423 (3)148
Symmetry codes: (i) y, x, z; (ii) y+1/2, x+3/2, z1/4.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the Brazilian agency CAPES (Project 018/05).

References

First citationArslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678.  CAS Google Scholar
First citationEstévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sensors Actuators, B120, 766–772.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds