metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A one-dimensional ladder-like coordination polymer: poly[[hexa­aqua­bis­(μ-5-nitro­benzene-1,3-di­carboxyl­ato-κ3O,O′,O′′)(μ-oxalato-κ4O,O′:O′′,O′′′)diyttrium(III)] trihydrate]

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: zht2006@mail.ahnu.edu.cn

(Received 14 November 2007; accepted 29 November 2007; online 6 December 2007)

In the crystal structure of the title one-dimensional coordination polymer, [Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O, each YIII ion is bridged to its neighbours by two 5-nitro­benzene-1,3-dicarboxyl­ate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water mol­ecules coordinate to the YIII ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and ππ stacking [centrio–centriod distance = 3.819 (9) Å] in the crystal structure.

Related literature

For general background, see: Biradha (2003[Biradha, K. (2003). CrystEngComm, 5, 374-384.]); Braga et al. (2005[Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1-19.]); Burrows et al. (2003[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 766-776.]); Kongshaug & Fjellvag (2006[Kongshaug, K. O. & Fjellvag, H. (2006). Inorg. Chem. 45, 2424-2429.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Ohmori et al. (2004[Ohmori, O., Kawano, M. & Fujita, M. (2004). CrystEngComm, 6, 51-53.]); Tang et al. (2006[Tang, E., Dai, Y.-M., Zhang, J., Li, Z.-J., Yao, Y.-G., Zhang, J. & Huang, X.-D. (2006). Inorg. Chem. 45, 6276-6281.]); Janiak (2003[Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781-2804.]). For related structures, see: Thomas et al. (2002[Thomas, A. M., Neelakanta, G., Mahadevan, S., Nethaji, M. & Chakravarty, A. R. (2002). Eur. J. Inorg. Chem. pp. 2720-2726.]); Nordell et al. (2003[Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114-m115.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For related literature, see: Ren et al. (2006[Ren, Y., Chen, S. & Gao, S. (2006). J. Coord. Chem. 59, 2135-2142.]); Si et al. (2004[Si, S., Li, C., Wang, R. & Li, Y. (2004). J. Mol. Struct. 703, 11-17.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O

  • Mr = 846.21

  • Triclinic, [P \overline 1]

  • a = 7.4270 (15) Å

  • b = 9.2070 (18) Å

  • c = 11.522 (2) Å

  • α = 74.16 (3)°

  • β = 71.76 (3)°

  • γ = 80.01 (2)°

  • V = 716.5 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 298 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.48, Tmax = 0.60

  • 3018 measured reflections

  • 2785 independent reflections

  • 2260 reflections with I > 2σ(I)

  • Rint = 0.097

  • 3 standard reflections every 200 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.05

  • 2785 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

O1—Y 2.414 (4)
O2—Y 2.424 (4)
O3—Yi 2.299 (3)
O7—Yii 2.365 (3)
O8—Y 2.361 (3)
O9—Y 2.314 (4)
O10—Y 2.336 (4)
O11—Y 2.311 (4)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2iii 0.85 2.14 2.735 (5) 127
O9—H9B⋯O4iv 0.85 2.07 2.726 (5) 134
O10—H10A⋯O6iii 0.85 2.36 3.115 (7) 148
O10—H10B⋯O12ii 0.85 2.30 2.778 (6) 116
O10—H10B⋯O12ii 0.85 2.30 2.778 (6) 116
O11—H11A⋯O4v 0.85 2.09 2.694 (5) 127
O11—H11B⋯O5vi 0.85 2.57 2.987 (6) 111
O11—H11B⋯O7vii 0.85 2.23 2.784 (5) 123
O12—H12A⋯O1 0.85 2.11 2.841 (6) 144
O12—H12B⋯O10i 0.85 2.21 2.953 (6) 147
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) x+1, y-1, z; (v) x, y-1, z; (vi) -x, -y+1, -z; (vii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is an intense research interest for the crystal engineering of coordination polymers owing to their intriguing molecular topologies, such as molecular grids, ladders, rings, diamondoids and honeycombs, and potential applications as functional materials (Biradha, 2003; Braga et al., 2005; Janiak, 2003; Ohmori et al., 2004). In order to construct the infinite structure, plentiful multidentate organic ligands are used to bridge metal ions (Moulton & Zaworotko, 2001). Among them, V-shape molecules, such as isophthalic acid and 5-amino-isophthalic acid, have received much attention because such a molecular geometry can result in unexpected structure comparing with that constructed by linear ligands (Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006; Si et al., 2004; Ren et al., 2006). Herein, we present a novel ladder-like coordination polymer (I): Y2(C8H3NO6)2(C2O4)(H2O)6.3(H2O), in which metal ions are bridged by a V-shape ligand, 5-nitrobenzene-1,3-dicarboxylate (5-nitroisophthalate, abbreviated as 5-NIP), and oxalate ligands.

As shown in Figure 1, the Y(III) ion adopts an eight-coordinate geometry which may be described as a distorted dodecahedron (Table 1): it is bounded to three water oxygen atoms (O9, O10 and O11) and five carboxylate oxygen atoms, in which O1, O2 and O3iii [symmetry code: (iii) x, y - 1, z] are from two 5-NIP ligands and O7i, O8 [symmetry code: (i) 1 - x, -y, 1 - z] are from one oxalate ligand. The H13A/O13/H13B water molecule has a fractional site occupancy of 0.50. The ligand 5-NIP chelates the Y(III) ion via its O1/C1/O2 carboxylate group, while its another O3/C8/O4 carboxylate group coordinates to a symmetry related Y(III) ion in monodentate fashion via the atom O3. The O5/N1/O6 nitro group is almost coplanar with the phenyl ring (C2/C3/C4/C5/C6/C7). The O1/C1/O2 carboxylate group is slightly twisted from the phenyl ring with the dihedral angel of 10.26 (41)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O1/C1/O2) planes. The O3/C8/O4 carboxylate group is out of the phenyl plane with the dihedral angel of 44.41 (36)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O3/C8/O4) planes. Both two carboxylate groups of the oxalate ligand bridge two symmetry related Y(III) ions in η1:η12 mode. The oxalate is almost perpendicular to the phenyl plane of 5-NIP with the dihedral angel of 87.42 (26)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the oxalate (O7/C9/O8/C9i/O7i/O8i) [symmetry code: (i) 1 - x, -y, 1 - z] planes. The bond distance of two sp2 C9—C9i [symmetry code: (i) 1 - x, -y, 1 - z] in oxalate is elongated similar with other coordination compounds containing oxalate (Thomas et al., 2002; Nordell et al., 2003). Thus, the ligands 5-NIP link the neighbouring Y(III) ions in the head-to-tail mode to construct an infinite zigzag chain which runs along the b axis direction. Two adjacent zigzag chains are connected via oxalate bridging in the c axis direction to form a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17)Å based on the intra-ladder intervals of Yttrium (III) ions.

(Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006).

All ladders are assembled together through a number of hydrogen bonding (Table 2) between 5-NIP carboxyl O atoms (O1, O2 and O4), nitro O atoms (O5 and O6), oxalate O7 atom and coordination water O atoms (O9, O10 and O11) as well as lattice water molecules (O12 and O13). Among them, H10A and H11B atoms are involved in a three-centered hydrogen bond, respectively. Moreover, the center-center distance between two adjacent phenyl rings of the different ladders is 3.819 (9) Å. It indicates the presence of π-π staking between two adjacent inter-ladder 5-NIP (Janiak et al., 2000). Therefore all ladders are packing via hydrogen bonding and the π-π interactions in the crystal.

Related literature top

For general background, see: Biradha (2003); Braga et al. (2005); Burrows et al. (2003); Kongshaug & Fjellvag (2006); Moulton & Zaworotko (2001); Ohmori et al. (2004); Tang et al. (2006); Janiak (2003). For related structures, see: Thomas et al. (2002); Nordell et al. (2003); Janiak (2000).

For related literature, see: Ren et al. (2006); Si et al. (2004).

Experimental top

Y2O3 (22.5 mg, 0.10 mmol), 5-nitro-isophthalic acid (42.2 mg, 0.20 mmol) and Na2C2O4 (26.8 mg, 0.20 mmol) were dissolved in 13 ml water. The mixture was placed in a Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 443 K for 1 week, then cooled to room temperature. Colorless block crystals were collected by filtration, followed by washing with water and ethanol in 45% yield (38.5 mg). The crystals becam opaque when exposed for a long time in air.

Refinement top

The lattice O13 water molecule was refined with a fixed site occupancy factor of 0.50. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H = 0.93 Å. All water H atoms were located in difference maps at an intermediate stage of the refinement and were then treated as riding, with O—H = 0.85 Å. Uiso(H) = 1.2Uiso(C,O).

Structure description top

There is an intense research interest for the crystal engineering of coordination polymers owing to their intriguing molecular topologies, such as molecular grids, ladders, rings, diamondoids and honeycombs, and potential applications as functional materials (Biradha, 2003; Braga et al., 2005; Janiak, 2003; Ohmori et al., 2004). In order to construct the infinite structure, plentiful multidentate organic ligands are used to bridge metal ions (Moulton & Zaworotko, 2001). Among them, V-shape molecules, such as isophthalic acid and 5-amino-isophthalic acid, have received much attention because such a molecular geometry can result in unexpected structure comparing with that constructed by linear ligands (Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006; Si et al., 2004; Ren et al., 2006). Herein, we present a novel ladder-like coordination polymer (I): Y2(C8H3NO6)2(C2O4)(H2O)6.3(H2O), in which metal ions are bridged by a V-shape ligand, 5-nitrobenzene-1,3-dicarboxylate (5-nitroisophthalate, abbreviated as 5-NIP), and oxalate ligands.

As shown in Figure 1, the Y(III) ion adopts an eight-coordinate geometry which may be described as a distorted dodecahedron (Table 1): it is bounded to three water oxygen atoms (O9, O10 and O11) and five carboxylate oxygen atoms, in which O1, O2 and O3iii [symmetry code: (iii) x, y - 1, z] are from two 5-NIP ligands and O7i, O8 [symmetry code: (i) 1 - x, -y, 1 - z] are from one oxalate ligand. The H13A/O13/H13B water molecule has a fractional site occupancy of 0.50. The ligand 5-NIP chelates the Y(III) ion via its O1/C1/O2 carboxylate group, while its another O3/C8/O4 carboxylate group coordinates to a symmetry related Y(III) ion in monodentate fashion via the atom O3. The O5/N1/O6 nitro group is almost coplanar with the phenyl ring (C2/C3/C4/C5/C6/C7). The O1/C1/O2 carboxylate group is slightly twisted from the phenyl ring with the dihedral angel of 10.26 (41)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O1/C1/O2) planes. The O3/C8/O4 carboxylate group is out of the phenyl plane with the dihedral angel of 44.41 (36)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O3/C8/O4) planes. Both two carboxylate groups of the oxalate ligand bridge two symmetry related Y(III) ions in η1:η12 mode. The oxalate is almost perpendicular to the phenyl plane of 5-NIP with the dihedral angel of 87.42 (26)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the oxalate (O7/C9/O8/C9i/O7i/O8i) [symmetry code: (i) 1 - x, -y, 1 - z] planes. The bond distance of two sp2 C9—C9i [symmetry code: (i) 1 - x, -y, 1 - z] in oxalate is elongated similar with other coordination compounds containing oxalate (Thomas et al., 2002; Nordell et al., 2003). Thus, the ligands 5-NIP link the neighbouring Y(III) ions in the head-to-tail mode to construct an infinite zigzag chain which runs along the b axis direction. Two adjacent zigzag chains are connected via oxalate bridging in the c axis direction to form a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17)Å based on the intra-ladder intervals of Yttrium (III) ions.

(Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006).

All ladders are assembled together through a number of hydrogen bonding (Table 2) between 5-NIP carboxyl O atoms (O1, O2 and O4), nitro O atoms (O5 and O6), oxalate O7 atom and coordination water O atoms (O9, O10 and O11) as well as lattice water molecules (O12 and O13). Among them, H10A and H11B atoms are involved in a three-centered hydrogen bond, respectively. Moreover, the center-center distance between two adjacent phenyl rings of the different ladders is 3.819 (9) Å. It indicates the presence of π-π staking between two adjacent inter-ladder 5-NIP (Janiak et al., 2000). Therefore all ladders are packing via hydrogen bonding and the π-π interactions in the crystal.

For general background, see: Biradha (2003); Braga et al. (2005); Burrows et al. (2003); Kongshaug & Fjellvag (2006); Moulton & Zaworotko (2001); Ohmori et al. (2004); Tang et al. (2006); Janiak (2003). For related structures, see: Thomas et al. (2002); Nordell et al. (2003); Janiak (2000).

For related literature, see: Ren et al. (2006); Si et al. (2004).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), a drawing of the asymmetric unit (solid line portion) with displacement ellipsoids at the 30% probability level, H Atoms have been omitted for clarity [symmetry code: (i) 1 - x, -y, 1 - z; (iii) x, y - 1, z].
[Figure 2] Fig. 2. Two adjacent zigzag chains connected via oxalate bridging to generate a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17) Å. All hydrogen atoms and the lattice water molecules have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of the title compound viewed down the c axis. All hydrogen atoms have been omitted for clarity.
poly[[hexaaquabis(µ-5-nitrobenzene-1,3-dicarboxylato-κ3O,O',O'')(µ- oxalato-κ4O,O':O'',O''')diyttrium(III)] trihydrate] top
Crystal data top
[Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2OZ = 1
Mr = 846.21F(000) = 424
Triclinic, P1Dx = 1.961 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4270 (15) ÅCell parameters from 25 reflections
b = 9.2070 (18) Åθ = 2.3–15.0°
c = 11.522 (2) ŵ = 4.14 mm1
α = 74.16 (3)°T = 298 K
β = 71.76 (3)°Block, colorless
γ = 80.01 (2)°0.20 × 0.15 × 0.12 mm
V = 716.5 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.097
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω/2θ scansh = 09
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 1111
Tmin = 0.48, Tmax = 0.60l = 1314
3018 measured reflections3 standard reflections every 200 reflections
2785 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0432P)2 + 2.6078P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2Oγ = 80.01 (2)°
Mr = 846.21V = 716.5 (3) Å3
Triclinic, P1Z = 1
a = 7.4270 (15) ÅMo Kα radiation
b = 9.2070 (18) ŵ = 4.14 mm1
c = 11.522 (2) ÅT = 298 K
α = 74.16 (3)°0.20 × 0.15 × 0.12 mm
β = 71.76 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2260 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.097
Tmin = 0.48, Tmax = 0.603 standard reflections every 200 reflections
3018 measured reflections intensity decay: 1.0%
2785 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
2785 reflectionsΔρmin = 0.64 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3395 (7)0.2400 (6)0.1373 (5)0.0176 (10)
C20.2913 (7)0.3978 (6)0.0685 (5)0.0182 (10)
C30.2644 (7)0.4243 (6)0.0506 (5)0.0200 (11)
H30.28530.34610.09090.024*
C40.2095 (7)0.5698 (6)0.1067 (5)0.0188 (10)
C50.1769 (7)0.6925 (6)0.0509 (5)0.0187 (10)
H50.13210.78780.09040.022*
C60.2101 (7)0.6653 (6)0.0648 (5)0.0181 (10)
C70.2687 (7)0.5187 (6)0.1238 (5)0.0201 (11)
H70.28620.49940.20300.024*
C80.1873 (7)0.7916 (6)0.1298 (5)0.0187 (10)
C90.6051 (7)0.0058 (6)0.4632 (5)0.0177 (10)
N10.1769 (7)0.5962 (5)0.2319 (4)0.0265 (10)
O10.3821 (6)0.2183 (4)0.2395 (3)0.0261 (9)
O20.3332 (5)0.1288 (4)0.0962 (3)0.0228 (8)
O30.3182 (5)0.7902 (4)0.1793 (3)0.0223 (8)
O40.0460 (5)0.8849 (4)0.1325 (4)0.0251 (8)
O50.1269 (9)0.7245 (5)0.2819 (5)0.0564 (15)
O60.1979 (8)0.4894 (5)0.2778 (4)0.0461 (12)
O70.7221 (5)0.0136 (4)0.5150 (3)0.0214 (8)
O80.6444 (5)0.0325 (4)0.3571 (3)0.0232 (8)
O90.6774 (5)0.0796 (4)0.1250 (3)0.0244 (8)
H9A0.66410.03160.05340.029*
H9B0.76420.04280.13860.029*
O100.4350 (6)0.3006 (4)0.3988 (4)0.0326 (10)
H10A0.55260.33220.38070.039*
H10B0.39680.30090.47650.039*
O110.0652 (5)0.0383 (5)0.3376 (4)0.0318 (10)
H11B0.01910.01930.38840.038*
H11A0.02520.00360.27280.038*
O120.3768 (8)0.3842 (5)0.4156 (5)0.0492 (13)
H12B0.39420.47640.37930.059*
H12A0.42990.32850.36390.059*
O130.0067 (15)0.3583 (14)0.5020 (11)0.068 (3)0.50
H13A0.00370.26700.50030.081*0.50
H13B0.10350.39330.53920.081*0.50
Y0.39399 (7)0.05405 (6)0.27921 (5)0.01386 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (2)0.018 (3)0.017 (2)0.0018 (19)0.005 (2)0.004 (2)
C20.019 (3)0.017 (3)0.019 (3)0.002 (2)0.005 (2)0.005 (2)
C30.020 (3)0.020 (3)0.022 (3)0.002 (2)0.007 (2)0.008 (2)
C40.020 (3)0.024 (3)0.015 (2)0.004 (2)0.004 (2)0.007 (2)
C50.024 (3)0.012 (2)0.022 (3)0.002 (2)0.011 (2)0.002 (2)
C60.021 (3)0.018 (3)0.020 (3)0.004 (2)0.009 (2)0.006 (2)
C70.022 (3)0.021 (3)0.020 (3)0.002 (2)0.009 (2)0.005 (2)
C80.017 (2)0.020 (3)0.018 (2)0.004 (2)0.002 (2)0.006 (2)
C90.018 (3)0.016 (3)0.019 (3)0.0011 (19)0.006 (2)0.003 (2)
N10.034 (3)0.027 (3)0.021 (2)0.004 (2)0.013 (2)0.004 (2)
O10.044 (2)0.0195 (19)0.0213 (19)0.0005 (17)0.0204 (17)0.0047 (15)
O20.037 (2)0.0142 (18)0.0217 (19)0.0004 (15)0.0135 (16)0.0062 (15)
O30.0254 (19)0.0190 (19)0.033 (2)0.0032 (15)0.0188 (17)0.0132 (16)
O40.0216 (19)0.025 (2)0.036 (2)0.0056 (15)0.0149 (17)0.0160 (17)
O50.113 (5)0.028 (3)0.036 (3)0.007 (3)0.046 (3)0.000 (2)
O60.078 (4)0.038 (3)0.034 (2)0.007 (2)0.029 (2)0.020 (2)
O70.0161 (17)0.036 (2)0.0171 (18)0.0056 (15)0.0082 (14)0.0089 (16)
O80.0213 (19)0.037 (2)0.0159 (18)0.0030 (16)0.0066 (15)0.0118 (16)
O90.0205 (19)0.039 (2)0.0171 (18)0.0029 (16)0.0058 (15)0.0124 (16)
O100.046 (3)0.028 (2)0.028 (2)0.0010 (19)0.0182 (19)0.0061 (17)
O110.0196 (19)0.057 (3)0.028 (2)0.0038 (18)0.0103 (16)0.027 (2)
O120.079 (4)0.036 (3)0.044 (3)0.008 (2)0.033 (3)0.008 (2)
O130.045 (6)0.075 (8)0.074 (8)0.031 (6)0.011 (6)0.006 (6)
Y0.0155 (2)0.0154 (2)0.0136 (2)0.00013 (16)0.00695 (17)0.00552 (17)
Geometric parameters (Å, º) top
C1—O21.253 (6)N1—O61.204 (6)
C1—O11.269 (6)N1—O51.215 (6)
C1—C21.495 (7)O1—Y2.414 (4)
C1—Y2.790 (5)O2—Y2.424 (4)
C2—C71.388 (7)O3—Yii2.299 (3)
C2—C31.398 (7)O7—Yi2.365 (3)
C3—C41.372 (7)O8—Y2.361 (3)
C3—H30.9264O9—Y2.314 (4)
C4—C51.397 (7)O9—H9A0.8500
C4—N11.484 (7)O9—H9B0.8501
C5—C61.380 (7)O10—Y2.336 (4)
C5—H50.9288O10—H10A0.8500
C6—C71.398 (7)O10—H10B0.8501
C6—C81.507 (7)O11—Y2.311 (4)
C7—H70.9274O11—H11B0.8500
C8—O41.233 (6)O11—H11A0.8498
C8—O31.268 (6)O12—H12B0.8499
C9—O81.247 (6)O12—H12A0.8500
C9—O71.258 (6)O13—H13A0.8500
C9—C9i1.527 (9)O13—H13B0.8500
O2—C1—O1119.8 (5)H10A—O10—H10B108.3
O2—C1—C2120.3 (4)Y—O11—H11B110.1
O1—C1—C2119.9 (4)Y—O11—H11A109.8
O2—C1—Y60.2 (3)H11B—O11—H11A109.8
O1—C1—Y59.8 (3)H12B—O12—H12A109.7
C2—C1—Y174.6 (3)H13A—O13—H13B109.5
C7—C2—C3119.5 (5)O3iii—Y—O1174.28 (13)
C7—C2—C1120.2 (4)O3iii—Y—O978.95 (13)
C3—C2—C1120.3 (4)O11—Y—O9147.86 (13)
C4—C3—C2118.1 (5)O3iii—Y—O1074.18 (13)
C4—C3—H3121.0O11—Y—O1095.62 (16)
C2—C3—H3120.8O9—Y—O1093.86 (15)
C3—C4—C5123.7 (5)O3iii—Y—O8138.88 (13)
C3—C4—N1117.7 (4)O11—Y—O8139.85 (13)
C5—C4—N1118.6 (4)O9—Y—O872.16 (12)
C6—C5—C4117.4 (5)O10—Y—O879.18 (14)
C6—C5—H5122.0O3iii—Y—O7i133.63 (13)
C4—C5—H5120.5O11—Y—O7i71.41 (12)
C5—C6—C7120.3 (5)O9—Y—O7i140.67 (12)
C5—C6—C8121.3 (5)O10—Y—O7i79.12 (14)
C7—C6—C8118.4 (4)O8—Y—O7i68.51 (12)
C2—C7—C6120.9 (5)O3iii—Y—O1132.35 (12)
C2—C7—H7118.6O11—Y—O190.19 (15)
C6—C7—H7120.4O9—Y—O194.96 (14)
O4—C8—O3125.6 (5)O10—Y—O1153.26 (13)
O4—C8—C6119.0 (4)O8—Y—O179.61 (13)
O3—C8—C6115.4 (4)O7i—Y—O178.08 (13)
O8—C9—O7126.2 (4)O3iii—Y—O279.18 (12)
O8—C9—C9i117.0 (5)O11—Y—O280.27 (14)
O7—C9—C9i116.8 (5)O9—Y—O277.50 (13)
O6—N1—O5123.2 (5)O10—Y—O2153.13 (13)
O6—N1—C4118.6 (5)O8—Y—O2120.73 (13)
O5—N1—C4118.2 (5)O7i—Y—O2123.38 (13)
C1—O1—Y93.2 (3)O1—Y—O253.60 (12)
C1—O2—Y93.2 (3)O3iii—Y—C1105.48 (14)
C8—O3—Yii136.0 (3)O11—Y—C183.57 (15)
C9—O7—Yi118.6 (3)O9—Y—C186.78 (14)
C9—O8—Y119.0 (3)O10—Y—C1179.19 (14)
Y—O9—H9A109.9O8—Y—C1101.50 (14)
Y—O9—H9B109.8O7i—Y—C1100.69 (14)
H9A—O9—H9B108.4O1—Y—C127.01 (13)
Y—O10—H10A109.3O2—Y—C126.64 (13)
Y—O10—H10B109.8
O2—C1—C2—C7169.7 (5)C9—O8—Y—O3iii134.9 (4)
O1—C1—C2—C78.3 (7)C9—O8—Y—O111.1 (5)
O2—C1—C2—C38.9 (7)C9—O8—Y—O9177.5 (4)
O1—C1—C2—C3173.0 (5)C9—O8—Y—O1084.8 (4)
C7—C2—C3—C42.3 (7)C9—O8—Y—O7i2.3 (4)
C1—C2—C3—C4176.3 (4)C9—O8—Y—O178.8 (4)
C2—C3—C4—C50.8 (8)C9—O8—Y—O2114.6 (4)
C2—C3—C4—N1178.6 (4)C9—O8—Y—C194.7 (4)
C3—C4—C5—C62.9 (8)C1—O1—Y—O3iii6.7 (4)
N1—C4—C5—C6179.3 (4)C1—O1—Y—O1175.3 (3)
C4—C5—C6—C71.8 (7)C1—O1—Y—O972.9 (3)
C4—C5—C6—C8177.3 (4)C1—O1—Y—O10178.3 (3)
C3—C2—C7—C63.3 (8)C1—O1—Y—O8143.7 (3)
C1—C2—C7—C6175.3 (4)C1—O1—Y—O7i146.3 (3)
C5—C6—C7—C21.2 (8)C1—O1—Y—O22.4 (3)
C8—C6—C7—C2179.7 (4)C1—O2—Y—O3iii170.8 (3)
C5—C6—C8—O444.6 (7)C1—O2—Y—O1195.1 (3)
C7—C6—C8—O4136.2 (5)C1—O2—Y—O9108.3 (3)
C5—C6—C8—O3136.3 (5)C1—O2—Y—O10178.3 (3)
C7—C6—C8—O342.8 (7)C1—O2—Y—O848.1 (3)
C3—C4—N1—O60.8 (7)C1—O2—Y—O7i35.1 (3)
C5—C4—N1—O6177.1 (5)C1—O2—Y—O12.4 (3)
C3—C4—N1—O5179.5 (5)O2—C1—Y—O3iii9.4 (3)
C5—C4—N1—O51.5 (8)O1—C1—Y—O3iii174.9 (3)
O2—C1—O1—Y4.3 (5)O2—C1—Y—O1181.1 (3)
C2—C1—O1—Y173.8 (4)O1—C1—Y—O11103.2 (3)
O1—C1—O2—Y4.3 (5)O2—C1—Y—O968.2 (3)
C2—C1—O2—Y173.8 (4)O1—C1—Y—O9107.5 (3)
O4—C8—O3—Yii6.0 (8)O2—C1—Y—O8139.3 (3)
C6—C8—O3—Yii175.0 (3)O1—C1—Y—O836.4 (3)
O8—C9—O7—Yi177.9 (4)O2—C1—Y—O7i150.8 (3)
C9i—C9—O7—Yi2.7 (7)O1—C1—Y—O7i33.5 (3)
O7—C9—O8—Y177.5 (4)O2—C1—Y—O1175.7 (5)
C9i—C9—O8—Y1.9 (7)O1—C1—Y—O2175.7 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O2iv0.852.142.735 (5)127
O9—H9B···O4v0.852.072.726 (5)134
O10—H10A···O6iv0.852.363.115 (7)148
O10—H10B···O12i0.852.302.778 (6)116
O10—H10B···O12i0.852.302.778 (6)116
O11—H11A···O4iii0.852.092.694 (5)127
O11—H11B···O5vi0.852.572.987 (6)111
O11—H11B···O7vii0.852.232.784 (5)123
O12—H12A···O10.852.112.841 (6)144
O12—H12B···O10ii0.852.212.953 (6)147
C3—H3···O9iv0.932.543.432 (6)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x, y+1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O
Mr846.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4270 (15), 9.2070 (18), 11.522 (2)
α, β, γ (°)74.16 (3), 71.76 (3), 80.01 (2)
V3)716.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.48, 0.60
No. of measured, independent and
observed [I > 2σ(I)] reflections
3018, 2785, 2260
Rint0.097
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.05
No. of reflections2785
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.64

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected bond lengths (Å) top
O1—Y2.414 (4)O8—Y2.361 (3)
O2—Y2.424 (4)O9—Y2.314 (4)
O3—Yi2.299 (3)O10—Y2.336 (4)
O7—Yii2.365 (3)O11—Y2.311 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O2iii0.852.142.735 (5)126.5
O9—H9B···O4iv0.852.072.726 (5)133.7
O10—H10A···O6iii0.852.363.115 (7)148.3
O10—H10B···O12ii0.852.302.778 (6)115.7
O10—H10B···O12ii0.852.302.778 (6)115.7
O11—H11A···O4v0.852.092.694 (5)127.2
O11—H11B···O5vi0.852.572.987 (6)111.3
O11—H11B···O7vii0.852.232.784 (5)122.7
O12—H12A···O10.852.112.841 (6)144.0
O12—H12B···O10i0.852.212.953 (6)146.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y1, z; (vi) x, y+1, z; (vii) x1, y, z.
 

Acknowledgements

This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64).

References

First citationBiradha, K. (2003). CrystEngComm, 5, 374–384.  Web of Science CrossRef CAS Google Scholar
First citationBraga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1–19.  Web of Science CrossRef CAS Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 766–776.  CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781–2804.  CrossRef Google Scholar
First citationKongshaug, K. O. & Fjellvag, H. (2006). Inorg. Chem. 45, 2424–2429.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhmori, O., Kawano, M. & Fujita, M. (2004). CrystEngComm, 6, 51–53.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, Y., Chen, S. & Gao, S. (2006). J. Coord. Chem. 59, 2135–2142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSi, S., Li, C., Wang, R. & Li, Y. (2004). J. Mol. Struct. 703, 11–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, E., Dai, Y.-M., Zhang, J., Li, Z.-J., Yao, Y.-G., Zhang, J. & Huang, X.-D. (2006). Inorg. Chem. 45, 6276–6281.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThomas, A. M., Neelakanta, G., Mahadevan, S., Nethaji, M. & Chakravarty, A. R. (2002). Eur. J. Inorg. Chem. pp. 2720–2726.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds