Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, C18H17N3O4, intra­molecular C—H...O hydrogen bonds cause the formation of two planar five-membered rings, which are also coplanar with the adjacent rings. The oxime units have E configurations and their bond lengths and angles compare well with those in related compounds. In this configuration, the oxime groups are involved as donors in O—H...N hydrogen bonds, linking the mol­ecules into chains extending approximately parallel to the c axis and stacked along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039864/xu2310sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039864/xu2310Isup2.hkl
Contains datablock I

CCDC reference: 662413

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.110
  • Data-to-parameter ratio = 9.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.53
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Furans, oximes and amines are very important compounds in organic chemistry. Furan is a relatively highly reactive heteroaromatic compound and is frequently used as an intermediate in organic synthesis (Lipshutz, 1986). In literature, Beckmann fragmentation reaction of N-aryl-N,N-diphenacylamine dioximes has been reported as a new method for the synthesis of imidazooxadiazolones which are imidazole derivatives (Coşkun et al., 1999).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms. It is a functional group that has not been extensively explored in crystal engineering. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length 2.8 Å.

Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).

The structures of oxime and dioxime derivatives have been the subject of much interest in our laboratory; examples are 2,3-dimethylquinoxaline-dimethyl- glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenyl- amino)propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu & Batı, 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007] and (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007]. The structure determination of the title molecule, (I) was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime groups and to compare the geometry of the oxime moieties with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bonds (Table 1) cause the formation of two planar five-membered rings A (O2/N2/C2—C4/H4) and B (O4/N3/C14—C16/H16). The rings C (O1/C3—C6), D (C7—C12) and E (O3/C15—C18) are, of course, planar and rings A, C and B, D are also coplanar with dihedral angles of A/C = 1.11 (10)° and B/D = 5.60 (10)°. The coplanar ring systems containing rings A and B are oriented at a dihedral angle of 47.76 (5)°, their orientations with respect to ring C may also be given by the dihedral angles of 89.01 (9)° and 78.73 (9)°, respectively.

Some significant changes in the geometry of the oxime moieties are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moieties have E configurations [C1—C2—N2—O2 - 177.9 (2)° and C13—C14—N3—O4 - 179.2 (2)°; Chertanova et al., 1994]. In this configuration, the oxime groups are involved as donors in O—H···N intermolecular hydrogen bondings (Table 1).

In the crystal structure, the intermolecular O—H···N hydrogen bonds (Table 1) link the molecules into chains elongated approximately parallel to the c axis and stacked along the b axis (Fig. 2). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

Related literature top

For general background, see: Sevagapandian et al. (2000); Marsman et al. (1999); Coşkun et al. (1999); Karle et al. (1996); Etter et al. (1990); Chertanova et al. (1994); Balsamo et al. (1990); Lipshutz (1986); Holan et al. (1984); Forman (1964). For related literatures, see: Sarıkavaklı et al. (2007); Özel Güven et al. (2007); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu & Batı (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b). For bond length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-bromo-1-(2-furanyl)ethanone oxime (81 mg, 0.399 mmol) was added portionwise to a solution of aniline (56 mg, 0.599 mmol) in ethanol (50%, 0.4 ml) within 5 min, at room temperature. Reaction mixture was stirred at room temperature for 1 night. The formed precipitate was filtered and recrystallized from DMSO to obtain brown crystals (yield; 40 mg, 30%).

Refinement top

H atoms were located in difference syntheses and refined isotropically [O—H = 0.89 (3) and 0.94 (3) Å, Uiso(H) = 0.106 (13) and 0.101 (12) Å2 and C—H = 0.86 (2)–1.02 (2) Å, Uiso(H) = 0.040 (7)–0.085 (12) Å2].

Structure description top

Furans, oximes and amines are very important compounds in organic chemistry. Furan is a relatively highly reactive heteroaromatic compound and is frequently used as an intermediate in organic synthesis (Lipshutz, 1986). In literature, Beckmann fragmentation reaction of N-aryl-N,N-diphenacylamine dioximes has been reported as a new method for the synthesis of imidazooxadiazolones which are imidazole derivatives (Coşkun et al., 1999).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms. It is a functional group that has not been extensively explored in crystal engineering. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length 2.8 Å.

Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).

The structures of oxime and dioxime derivatives have been the subject of much interest in our laboratory; examples are 2,3-dimethylquinoxaline-dimethyl- glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenyl- amino)propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu & Batı, 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007] and (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007]. The structure determination of the title molecule, (I) was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime groups and to compare the geometry of the oxime moieties with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bonds (Table 1) cause the formation of two planar five-membered rings A (O2/N2/C2—C4/H4) and B (O4/N3/C14—C16/H16). The rings C (O1/C3—C6), D (C7—C12) and E (O3/C15—C18) are, of course, planar and rings A, C and B, D are also coplanar with dihedral angles of A/C = 1.11 (10)° and B/D = 5.60 (10)°. The coplanar ring systems containing rings A and B are oriented at a dihedral angle of 47.76 (5)°, their orientations with respect to ring C may also be given by the dihedral angles of 89.01 (9)° and 78.73 (9)°, respectively.

Some significant changes in the geometry of the oxime moieties are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moieties have E configurations [C1—C2—N2—O2 - 177.9 (2)° and C13—C14—N3—O4 - 179.2 (2)°; Chertanova et al., 1994]. In this configuration, the oxime groups are involved as donors in O—H···N intermolecular hydrogen bondings (Table 1).

In the crystal structure, the intermolecular O—H···N hydrogen bonds (Table 1) link the molecules into chains elongated approximately parallel to the c axis and stacked along the b axis (Fig. 2). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

For general background, see: Sevagapandian et al. (2000); Marsman et al. (1999); Coşkun et al. (1999); Karle et al. (1996); Etter et al. (1990); Chertanova et al. (1994); Balsamo et al. (1990); Lipshutz (1986); Holan et al. (1984); Forman (1964). For related literatures, see: Sarıkavaklı et al. (2007); Özel Güven et al. (2007); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu & Batı (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b). For bond length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity [symmetry code: (') x + 1/2, -y + 1/2, z + 1/2].
N,N-Bis[2-(2-furyl)-2-(hydroxyimino)ethyl]aniline top
Crystal data top
C18H17N3O4F(000) = 712
Mr = 339.35Dx = 1.382 Mg m3
Monoclinic, P21/nMelting point = 486–487 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.2363 (2) ÅCell parameters from 25 reflections
b = 11.9889 (3) Åθ = 2.7–21.6°
c = 12.8785 (4) ŵ = 0.10 mm1
β = 109.886 (10)°T = 298 K
V = 1631.43 (13) Å3Block, dark-yellow
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
Non–profiled ω scansh = 1213
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.976, Tmax = 0.985l = 150
2933 measured reflections3 standard reflections every 120 min
2801 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.0438P]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H17N3O4V = 1631.43 (13) Å3
Mr = 339.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2363 (2) ŵ = 0.10 mm1
b = 11.9889 (3) ÅT = 298 K
c = 12.8785 (4) Å0.25 × 0.20 × 0.15 mm
β = 109.886 (10)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1518 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.976, Tmax = 0.9853 standard reflections every 120 min
2933 measured reflections intensity decay: 1%
2801 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 0.99Δρmax = 0.17 e Å3
2801 reflectionsΔρmin = 0.19 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22619 (16)0.61727 (18)0.45244 (14)0.0707 (6)
O20.15196 (17)0.66194 (17)0.58964 (14)0.0529 (5)
H2A0.230 (3)0.687 (3)0.604 (3)0.106 (13)*
O30.15759 (15)0.60813 (16)0.08792 (13)0.0540 (5)
O40.19768 (17)0.72757 (18)0.06184 (14)0.0613 (6)
H4A0.279 (3)0.754 (3)0.071 (3)0.101 (12)*
N10.02799 (19)0.77039 (19)0.27240 (16)0.0440 (6)
N20.09068 (19)0.69508 (17)0.48006 (16)0.0427 (6)
N30.14059 (18)0.73967 (18)0.05252 (15)0.0451 (6)
C10.0994 (3)0.7060 (3)0.3259 (2)0.0445 (7)
H1A0.128 (3)0.636 (2)0.286 (2)0.069 (9)*
H1B0.176 (2)0.7478 (19)0.3208 (17)0.043 (7)*
C20.0290 (2)0.67560 (19)0.44496 (19)0.0357 (6)
C30.0995 (2)0.6263 (2)0.5084 (2)0.0392 (6)
C40.0747 (3)0.5883 (2)0.6112 (2)0.0460 (7)
H40.001 (2)0.588 (2)0.661 (2)0.050 (8)*
C50.1896 (3)0.5536 (3)0.6213 (2)0.0562 (8)
H50.197 (2)0.523 (2)0.686 (2)0.051 (7)*
C60.2763 (3)0.5709 (3)0.5256 (3)0.0762 (11)
H60.363 (3)0.560 (2)0.492 (2)0.078 (10)*
C70.0231 (2)0.8855 (2)0.27923 (19)0.0390 (6)
C80.0736 (3)0.9441 (3)0.3477 (2)0.0503 (8)
H80.108 (2)0.9039 (18)0.3939 (18)0.040 (7)*
C90.0730 (3)1.0586 (3)0.3505 (3)0.0620 (9)
H90.106 (3)1.095 (2)0.404 (2)0.079 (10)*
C100.0184 (3)1.1184 (3)0.2890 (3)0.0682 (10)
H100.019 (3)1.196 (3)0.288 (2)0.085 (12)*
C110.0357 (3)1.0632 (3)0.2229 (3)0.0616 (9)
H110.082 (2)1.100 (2)0.184 (2)0.066 (9)*
C120.0337 (2)0.9481 (3)0.2178 (2)0.0499 (8)
H120.067 (2)0.9119 (19)0.1705 (19)0.045 (7)*
C130.0401 (3)0.7107 (3)0.2132 (2)0.0439 (7)
H13A0.127 (2)0.745 (2)0.2293 (18)0.053 (7)*
H13B0.057 (2)0.634 (2)0.2408 (18)0.051 (8)*
C140.0271 (2)0.7019 (2)0.08969 (19)0.0377 (6)
C150.0415 (2)0.6506 (2)0.02531 (19)0.0401 (6)
C160.0236 (3)0.6337 (2)0.0823 (2)0.0491 (7)
H160.052 (2)0.655 (2)0.142 (2)0.067 (8)*
C170.1327 (3)0.5777 (3)0.0875 (3)0.0571 (8)
H170.145 (3)0.554 (2)0.151 (2)0.076 (10)*
C180.2093 (3)0.5647 (3)0.0156 (3)0.0604 (9)
H180.291 (2)0.529 (2)0.048 (2)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (11)0.1210 (19)0.0489 (12)0.0134 (12)0.0101 (9)0.0154 (12)
O20.0347 (11)0.0764 (15)0.0415 (11)0.0034 (10)0.0050 (9)0.0081 (10)
O30.0361 (10)0.0817 (15)0.0418 (10)0.0165 (10)0.0100 (8)0.0058 (11)
O40.0412 (11)0.0971 (17)0.0376 (10)0.0189 (11)0.0028 (9)0.0068 (11)
N10.0527 (13)0.0472 (15)0.0385 (12)0.0024 (11)0.0237 (10)0.0013 (11)
N20.0384 (13)0.0526 (14)0.0344 (12)0.0021 (10)0.0089 (10)0.0005 (11)
N30.0376 (12)0.0624 (15)0.0315 (12)0.0091 (12)0.0069 (10)0.0018 (11)
C10.0404 (17)0.054 (2)0.0370 (16)0.0042 (15)0.0106 (13)0.0001 (14)
C20.0315 (14)0.0380 (15)0.0374 (14)0.0001 (12)0.0113 (11)0.0055 (12)
C30.0287 (14)0.0451 (16)0.0403 (15)0.0003 (12)0.0069 (12)0.0035 (13)
C40.0406 (16)0.0547 (19)0.0405 (16)0.0023 (15)0.0109 (14)0.0040 (15)
C50.0562 (19)0.070 (2)0.0479 (19)0.0031 (16)0.0243 (16)0.0139 (16)
C60.045 (2)0.125 (3)0.063 (2)0.015 (2)0.0230 (18)0.016 (2)
C70.0316 (13)0.0517 (19)0.0287 (13)0.0018 (13)0.0039 (11)0.0017 (13)
C80.0467 (17)0.064 (2)0.0423 (17)0.0030 (15)0.0186 (14)0.0042 (16)
C90.065 (2)0.060 (2)0.056 (2)0.0140 (17)0.0134 (17)0.0082 (18)
C100.076 (2)0.051 (2)0.065 (2)0.0048 (19)0.0077 (19)0.003 (2)
C110.063 (2)0.059 (2)0.055 (2)0.0153 (18)0.0099 (17)0.0082 (18)
C120.0469 (16)0.064 (2)0.0399 (16)0.0026 (15)0.0161 (13)0.0024 (16)
C130.0437 (17)0.0502 (19)0.0358 (16)0.0090 (15)0.0111 (13)0.0004 (14)
C140.0334 (14)0.0430 (16)0.0357 (14)0.0017 (12)0.0103 (11)0.0001 (12)
C150.0302 (14)0.0492 (17)0.0390 (15)0.0048 (12)0.0091 (11)0.0019 (13)
C160.0403 (16)0.069 (2)0.0370 (16)0.0037 (15)0.0117 (13)0.0049 (15)
C170.0486 (17)0.082 (2)0.0460 (18)0.0007 (16)0.0225 (15)0.0165 (17)
C180.0409 (18)0.087 (3)0.056 (2)0.0131 (17)0.0195 (16)0.0115 (17)
Geometric parameters (Å, º) top
O1—C31.364 (3)C6—H60.94 (3)
O1—C61.369 (3)C7—C81.391 (3)
O2—N21.401 (2)C7—C121.393 (4)
O2—H2A0.89 (3)C8—C91.372 (4)
O3—C151.376 (3)C8—H80.94 (2)
O3—C181.357 (3)C9—C101.361 (4)
O4—H4A0.94 (3)C9—H90.98 (3)
N1—C11.446 (3)C10—H100.93 (3)
N1—C71.383 (3)C11—C101.372 (4)
N1—C131.441 (3)C11—H110.95 (3)
N2—C21.285 (3)C12—C111.381 (4)
N3—O41.400 (2)C12—H120.93 (2)
N3—C141.283 (3)C13—H13A1.02 (2)
C1—H1A0.98 (3)C13—H13B0.98 (3)
C1—H1B0.98 (2)C14—C131.515 (3)
C2—C11.512 (3)C14—C151.447 (3)
C2—C31.444 (3)C15—C161.346 (3)
C3—C41.337 (3)C16—C171.419 (4)
C4—C51.403 (4)C16—H160.97 (2)
C4—H40.86 (2)C17—H170.92 (3)
C5—C61.301 (4)C18—C171.324 (4)
C5—H50.93 (3)C18—H180.97 (3)
C3—O1—C6105.6 (2)C7—C8—H8118.9 (14)
N2—O2—H2A103 (2)C10—C9—C8120.7 (3)
C18—O3—C15106.3 (2)C10—C9—H9121.4 (17)
N3—O4—H4A99.9 (19)C8—C9—H9117.7 (17)
C7—N1—C1121.3 (2)C9—C10—C11119.3 (4)
C7—N1—C13120.8 (2)C9—C10—H10121.8 (19)
C13—N1—C1117.9 (3)C11—C10—H10118.8 (19)
C2—N2—O2113.6 (2)C10—C11—C12120.5 (3)
C14—N3—O4113.43 (19)C10—C11—H11122.9 (17)
N1—C1—C2115.3 (2)C12—C11—H11116.4 (17)
N1—C1—H1B108.1 (13)C11—C12—C7121.0 (3)
C2—C1—H1B109.6 (13)C11—C12—H12119.6 (15)
N1—C1—H1A110.4 (16)C7—C12—H12119.3 (15)
C2—C1—H1A106.8 (15)N1—C13—C14115.2 (2)
H1B—C1—H1A106 (2)N1—C13—H13B110.1 (14)
N2—C2—C3125.8 (2)C14—C13—H13B106.4 (14)
N2—C2—C1115.9 (2)N1—C13—H13A109.9 (13)
C3—C2—C1118.3 (2)C14—C13—H13A110.2 (13)
C4—C3—O1108.9 (2)H13B—C13—H13A104.5 (19)
C4—C3—C2136.9 (2)N3—C14—C15126.3 (2)
O1—C3—C2114.1 (2)N3—C14—C13116.4 (2)
C3—C4—C5107.8 (3)C15—C14—C13117.3 (2)
C3—C4—H4124.2 (17)C16—C15—O3109.1 (2)
C5—C4—H4128.0 (17)C16—C15—C14137.0 (2)
C6—C5—C4106.3 (3)O3—C15—C14113.9 (2)
C6—C5—H5129.7 (15)C15—C16—C17106.9 (2)
C4—C5—H5124.0 (15)C15—C16—H16124.0 (16)
C5—C6—O1111.5 (3)C17—C16—H16129.1 (16)
C5—C6—H6138.5 (18)C18—C17—C16106.6 (3)
O1—C6—H6110.1 (18)C18—C17—H17127.9 (18)
N1—C7—C8121.9 (2)C16—C17—H17125.5 (18)
N1—C7—C12121.2 (2)C17—C18—O3111.0 (3)
C8—C7—C12116.9 (3)C17—C18—H18132.9 (16)
C9—C8—C7121.5 (3)O3—C18—H18116.1 (16)
C9—C8—H8119.6 (14)
C6—O1—C3—C40.8 (3)C3—C2—C1—N1170.7 (2)
C6—O1—C3—C2179.2 (3)O1—C3—C4—C50.1 (3)
C3—O1—C6—C51.2 (4)C2—C3—C4—C5178.0 (3)
C15—O3—C18—C170.0 (3)C3—C4—C5—C60.6 (4)
C18—O3—C15—C160.2 (3)C4—C5—C6—O11.1 (4)
C18—O3—C15—C14179.4 (2)N1—C7—C8—C9177.2 (2)
C7—N1—C1—C286.9 (3)C12—C7—C8—C93.2 (4)
C13—N1—C1—C292.0 (3)N1—C7—C12—C11178.5 (2)
C13—N1—C7—C8171.2 (2)C8—C7—C12—C112.0 (4)
C1—N1—C7—C87.7 (4)C7—C8—C9—C102.5 (5)
C13—N1—C7—C128.4 (3)C8—C9—C10—C110.5 (5)
C1—N1—C7—C12172.8 (2)C12—C11—C10—C90.7 (5)
C7—N1—C13—C1483.6 (3)C7—C12—C11—C100.1 (4)
C1—N1—C13—C1497.5 (3)N3—C14—C13—N15.7 (4)
O2—N2—C2—C31.0 (3)C15—C14—C13—N1175.1 (2)
O2—N2—C2—C1177.9 (2)N3—C14—C15—C166.9 (5)
O4—N3—C14—C150.1 (4)C13—C14—C15—C16174.0 (3)
O4—N3—C14—C13179.2 (2)N3—C14—C15—O3174.2 (2)
N2—C2—C3—C40.6 (5)C13—C14—C15—O35.0 (3)
C1—C2—C3—C4179.5 (3)O3—C15—C16—C170.3 (3)
N2—C2—C3—O1178.4 (2)C14—C15—C16—C17179.2 (3)
C1—C2—C3—O12.7 (3)C15—C16—C17—C180.2 (4)
N2—C2—C1—N110.3 (4)O3—C18—C17—C160.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.88 (4)2.00 (4)2.795 (3)150 (3)
O4—H4A···N2ii0.94 (4)1.90 (4)2.771 (3)154 (3)
C4—H4···O20.86 (2)2.38 (2)2.797 (4)110.5 (19)
C16—H16···O40.97 (2)2.38 (2)2.822 (4)107.5 (17)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H17N3O4
Mr339.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.2363 (2), 11.9889 (3), 12.8785 (4)
β (°) 109.886 (10)
V3)1631.43 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
2933, 2801, 1518
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 0.99
No. of reflections2801
No. of parameters294
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.88 (4)2.00 (4)2.795 (3)150 (3)
O4—H4A···N2ii0.94 (4)1.90 (4)2.771 (3)154 (3)
C4—H4···O20.86 (2)2.38 (2)2.797 (4)110.5 (19)
C16—H16···O40.97 (2)2.38 (2)2.822 (4)107.5 (17)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2.
Comparison of the bond lengths and angles (Å, °) in the oxime group of (I) with the corresponding values in the related compounds (II)–(VII) top
Bond/Angle(I)(II)(III)(IV)(V)(VI)(VII)
N2-O21.401 (2)1.403 (2)1.423 (3)1.417 (1)1.429 (4)1.424 (2)1.416 (3)
N3-O41.400 (2)1.396 (2)1.396 (3)1.397 (3)
N2-C21.285 (3)1.281 (2)1.290 (3)1.290 (1)1.241 (6)1.289 (2)1.282 (3)
N3-C141.283 (3)1.281 (2)1.282 (3)1.289 (3)
C1-C21.512 (3)1.477 (3)1.489 (3)1.510 (1)1.551 (7)1.513 (2)1.501 (4)
1.515 (3)1.473 (3)1.502 (4)
C1-C2-N2115.9 (2)115.2 (2)116.6 (2)114.3 (1)118.3 (5)113.2 (1)114.4 (2)
C13-C14-N3116.4 (2)115.0 (2)115.0 (2)113.4 (2)
C2-N2-O2113.6 (2)112.4 (1)109.4 (2)110.7 (1)112.2 (4)110.6 (1)110.7 (2)
C14-N3-O4113.4 (2)112.2 (1)111.5 (2)111.1 (2)
Notes: (II), 2,3-dimethylquinoxaline-dimethylglyoxime (1/1) (Hökelek, Batı et al., 2001); (III), 1-(2,6-dimethylphenyl-amino)propane-1,2-dione dioxime (Hökelek, Zülfikaroğlu & Batı, 2001); (IV), N-hydroxy-2-oxo-2,N'-di-phenylacetamidine (Büyükgüngör et al., 2003); (V), N-(3,4-di-chloro-phenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine (Hökelek et al., 2004); (VI), N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one (Hökelek et al., 2004a); (VII), N-(3-chloro-4-methylphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine-2,3- dimethylquinoxaline-dimethyl-glyoxime (1/1) (Hökelek et al., 2004b).
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds