Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Co(C18H12N4O2)], the CoII ion is coordinated by four N atoms from one o-phenyl­ene­bis(picolinamide) ligand in a square-planar coordination geometry. Weak C—H...O hydrogen bonding exists in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044571/xu2308sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044571/xu2308Isup2.hkl
Contains datablock I

CCDC reference: 1296705

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.049
  • wR factor = 0.114
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 1.71
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Transition metal complexes with organic ligands, possessing diverse structures and special optical and electromagnetic properties, have aroused great interest among researchers. In the title complex, each cobalt(II) ion is four-coordinated in a square-planar geometry by four N atoms from one N-(2-(picolinamido)phenyl)picolinamide molecule (Fig. 1). The Co—N bond lengths are listed in Table 1. Atom N1, N2, N3 and N4 are approximately coplanar with the central Co1 ion, the maximum deviation from the least-squares plane through all five atoms being 0.0816 (1) Å for atom N1.

π-π stacking is observed between benzene ring and N3i-pyridine [symmetry code: (i) -x, 1 - y, -z], verified by the centroid–centroid distance of 3.818 (2) Å and dihedral angle of 3.08° No strong hydrogen bonds exist in the crystal, but weak C—H···O hydrogen bonding occurs in the crystal structure (Table 2).

Related literature top

For the structure of a related complex, [Zn(C20H14N2O2)], see: Liu et al. (2007).

Experimental top

A mixture of N-(2-(picolinamido)phenyl)picolinamide (0.316 g, 1 mmol) and Co(NO3)2.6H2O (0.291 g, 1 mmol) was dissolved in ethanol (20 ml). The mixture was closed in a steel tomb and heated at 418 K for 4 d. Single crystals suitable for X-ray diffraction analysis were obtained after cooling to room temperature.

Refinement top

All H atoms were located at calculated positions with C—h = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Transition metal complexes with organic ligands, possessing diverse structures and special optical and electromagnetic properties, have aroused great interest among researchers. In the title complex, each cobalt(II) ion is four-coordinated in a square-planar geometry by four N atoms from one N-(2-(picolinamido)phenyl)picolinamide molecule (Fig. 1). The Co—N bond lengths are listed in Table 1. Atom N1, N2, N3 and N4 are approximately coplanar with the central Co1 ion, the maximum deviation from the least-squares plane through all five atoms being 0.0816 (1) Å for atom N1.

π-π stacking is observed between benzene ring and N3i-pyridine [symmetry code: (i) -x, 1 - y, -z], verified by the centroid–centroid distance of 3.818 (2) Å and dihedral angle of 3.08° No strong hydrogen bonds exist in the crystal, but weak C—H···O hydrogen bonding occurs in the crystal structure (Table 2).

For the structure of a related complex, [Zn(C20H14N2O2)], see: Liu et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along c axis, Hydrogen bonds shown as dash lines.
[N,N'-(o-Phenylene)bis(picolinamido)- κ4N,N',N'',N''']cobalt(II) top
Crystal data top
[Co(C18H12N4O2)]F(000) = 764.0
Mr = 375.25Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6407 reflections
a = 7.052 (2) Åθ = 2.8–27.9°
b = 18.383 (5) ŵ = 1.15 mm1
c = 11.826 (3) ÅT = 293 K
β = 98.827 (4)°Block, brown
V = 1514.8 (7) Å30.31 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3607 independent reflections
Radiation source: fine-focus sealed tube2420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 89
Tmin = 0.708, Tmax = 0.776k = 2424
11141 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0344P)2 + 2.409P]
where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Co(C18H12N4O2)]V = 1514.8 (7) Å3
Mr = 375.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.052 (2) ŵ = 1.15 mm1
b = 18.383 (5) ÅT = 293 K
c = 11.826 (3) Å0.31 × 0.27 × 0.22 mm
β = 98.827 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2420 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.776Rint = 0.036
11141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.98Δρmax = 0.58 e Å3
3607 reflectionsΔρmin = 0.67 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1858 (5)0.51706 (18)0.1917 (3)0.0499 (8)
C20.1192 (6)0.5110 (2)0.3077 (3)0.0545 (9)
H20.05190.46980.33640.065*
C30.1539 (6)0.5673 (2)0.3815 (3)0.0573 (10)
H30.10840.56360.45930.069*
C40.2551 (6)0.6282 (2)0.3395 (3)0.0560 (9)
H40.27950.66490.38950.067*
C50.3209 (5)0.63537 (19)0.2233 (3)0.0526 (9)
H50.38760.67700.19570.063*
C60.2872 (5)0.58037 (18)0.1481 (3)0.0489 (9)
C70.0889 (5)0.39877 (18)0.1229 (3)0.0519 (9)
C80.0961 (5)0.35929 (18)0.0110 (3)0.0520 (9)
C90.0198 (5)0.29003 (19)0.0069 (4)0.0563 (10)
H90.03880.26730.07340.068*
C100.0321 (6)0.25519 (19)0.0976 (4)0.0586 (10)
H100.01860.20870.10190.070*
C110.1191 (5)0.28933 (19)0.1943 (4)0.0569 (10)
H110.12950.26640.26510.068*
C120.1920 (5)0.35912 (18)0.1852 (4)0.0537 (9)
H120.25120.38250.25100.064*
C130.4128 (5)0.63559 (17)0.0370 (3)0.0506 (9)
C140.4296 (5)0.61761 (18)0.1615 (3)0.0510 (9)
C150.4930 (6)0.6686 (2)0.2440 (3)0.0555 (9)
H150.53040.71460.22300.067*
C160.5007 (6)0.6509 (2)0.3582 (3)0.0581 (10)
H160.54170.68490.41490.070*
C170.4466 (6)0.5820 (2)0.3865 (3)0.0573 (10)
H170.45160.56850.46270.069*
C180.3848 (6)0.5335 (2)0.2996 (3)0.0538 (9)
H180.34840.48710.31910.065*
Co10.27021 (6)0.49353 (2)0.04659 (4)0.03724 (14)
N10.1613 (4)0.46612 (15)0.1059 (3)0.0487 (7)
N20.3428 (4)0.57967 (14)0.0291 (3)0.0477 (7)
N30.1795 (4)0.39377 (14)0.0844 (3)0.0503 (7)
N40.3747 (4)0.54978 (15)0.1889 (3)0.0502 (7)
O10.0223 (4)0.36877 (13)0.2134 (2)0.0581 (7)
O20.4601 (4)0.69679 (12)0.0071 (2)0.0561 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.0421 (18)0.050 (2)0.0018 (15)0.0098 (17)0.0009 (15)
C20.062 (2)0.050 (2)0.052 (2)0.0025 (17)0.0091 (18)0.0002 (17)
C30.065 (3)0.054 (2)0.053 (2)0.0039 (18)0.010 (2)0.0036 (18)
C40.064 (2)0.051 (2)0.054 (2)0.0044 (18)0.0116 (19)0.0064 (17)
C50.061 (2)0.0445 (19)0.054 (2)0.0032 (16)0.0121 (19)0.0060 (16)
C60.058 (2)0.0388 (17)0.051 (2)0.0018 (15)0.0113 (18)0.0032 (15)
C70.058 (2)0.0372 (17)0.061 (2)0.0034 (15)0.0095 (19)0.0082 (16)
C80.056 (2)0.0337 (17)0.067 (2)0.0029 (15)0.0128 (19)0.0036 (16)
C90.060 (2)0.0366 (18)0.074 (3)0.0034 (16)0.014 (2)0.0023 (18)
C100.062 (3)0.0384 (18)0.077 (3)0.0029 (16)0.015 (2)0.0028 (19)
C110.062 (2)0.0375 (18)0.073 (3)0.0021 (16)0.016 (2)0.0071 (18)
C120.059 (2)0.0354 (17)0.068 (2)0.0016 (15)0.0153 (19)0.0072 (16)
C130.060 (2)0.0334 (17)0.058 (2)0.0046 (15)0.0104 (19)0.0018 (15)
C140.061 (2)0.0363 (17)0.056 (2)0.0030 (15)0.0095 (18)0.0065 (15)
C150.065 (2)0.0416 (19)0.059 (2)0.0029 (17)0.0088 (19)0.0092 (17)
C160.069 (3)0.047 (2)0.058 (2)0.0019 (17)0.008 (2)0.0107 (17)
C170.070 (3)0.048 (2)0.054 (2)0.0012 (18)0.009 (2)0.0086 (17)
C180.067 (3)0.0446 (19)0.050 (2)0.0017 (17)0.0091 (19)0.0060 (16)
Co10.0450 (3)0.0240 (2)0.0429 (2)0.00014 (17)0.00702 (18)0.00024 (18)
N10.0566 (18)0.0376 (14)0.0520 (17)0.0022 (13)0.0090 (15)0.0046 (13)
N20.0580 (19)0.0330 (14)0.0527 (17)0.0026 (12)0.0103 (14)0.0017 (12)
N30.0558 (19)0.0321 (14)0.0643 (19)0.0019 (12)0.0137 (16)0.0025 (13)
N40.0617 (19)0.0385 (15)0.0507 (18)0.0019 (13)0.0097 (15)0.0054 (13)
O10.0637 (17)0.0441 (13)0.0657 (17)0.0042 (12)0.0071 (14)0.0120 (12)
O20.0665 (18)0.0362 (13)0.0658 (17)0.0076 (11)0.0105 (14)0.0002 (11)
Geometric parameters (Å, º) top
C1—C21.385 (5)C11—C121.392 (5)
C1—N11.411 (5)C11—H110.9300
C1—C61.420 (5)C12—N31.342 (5)
C2—C31.399 (5)C12—H120.9300
C2—H20.9300C13—O21.240 (4)
C3—C41.379 (5)C13—N21.339 (4)
C3—H30.9300C13—C141.496 (5)
C4—C51.387 (5)C14—N41.359 (4)
C4—H40.9300C14—C151.377 (5)
C5—C61.390 (5)C15—C161.382 (5)
C5—H50.9300C15—H150.9300
C6—N21.402 (4)C16—C171.379 (5)
C7—O11.231 (4)C16—H160.9300
C7—N11.343 (4)C17—C181.380 (5)
C7—C81.503 (5)C17—H170.9300
C8—N31.349 (5)C18—N41.334 (5)
C8—C91.386 (5)C18—H180.9300
C9—C101.382 (5)Co1—N11.916 (3)
C9—H90.9300Co1—N21.926 (3)
C10—C111.365 (5)Co1—N32.015 (3)
C10—H100.9300Co1—N42.016 (3)
C2—C1—N1126.8 (3)O2—C13—N2128.4 (3)
C2—C1—C6120.0 (3)O2—C13—C14119.8 (3)
N1—C1—C6113.2 (3)N2—C13—C14111.8 (3)
C1—C2—C3119.5 (4)N4—C14—C15122.0 (4)
C1—C2—H2120.3N4—C14—C13117.0 (3)
C3—C2—H2120.3C15—C14—C13121.0 (3)
C4—C3—C2120.5 (4)C14—C15—C16119.4 (4)
C4—C3—H3119.8C14—C15—H15120.3
C2—C3—H3119.8C16—C15—H15120.3
C3—C4—C5120.6 (4)C17—C16—C15118.9 (4)
C3—C4—H4119.7C17—C16—H16120.5
C5—C4—H4119.7C15—C16—H16120.5
C4—C5—C6120.0 (4)C16—C17—C18118.7 (4)
C4—C5—H5120.0C16—C17—H17120.7
C6—C5—H5120.0C18—C17—H17120.7
C5—C6—N2126.8 (3)N4—C18—C17123.3 (4)
C5—C6—C1119.3 (3)N4—C18—H18118.4
N2—C6—C1113.8 (3)C17—C18—H18118.4
O1—C7—N1129.0 (4)N1—Co1—N282.85 (12)
O1—C7—C8120.4 (3)N1—Co1—N382.80 (12)
N1—C7—C8110.7 (3)N2—Co1—N3165.31 (13)
N3—C8—C9121.6 (4)N1—Co1—N4164.37 (12)
N3—C8—C7117.5 (3)N2—Co1—N482.93 (12)
C9—C8—C7120.9 (3)N3—Co1—N4111.67 (12)
C10—C9—C8119.1 (4)C7—N1—C1126.2 (3)
C10—C9—H9120.5C7—N1—Co1118.2 (3)
C8—C9—H9120.5C1—N1—Co1115.3 (2)
C11—C10—C9119.6 (3)C13—N2—C6126.9 (3)
C11—C10—H10120.2C13—N2—Co1117.4 (2)
C9—C10—H10120.2C6—N2—Co1114.9 (2)
C10—C11—C12118.9 (4)C12—N3—C8118.8 (3)
C10—C11—H11120.6C12—N3—Co1130.5 (2)
C12—C11—H11120.6C8—N3—Co1110.7 (2)
N3—C12—C11122.1 (4)C18—N4—C14117.7 (3)
N3—C12—H12119.0C18—N4—Co1131.4 (2)
C11—C12—H12119.0C14—N4—Co1110.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.392.963 (5)120
C5—H5···O20.932.402.974 (5)120
C10—H10···O1i0.932.593.200 (5)124
C16—H16···O2ii0.932.543.344 (4)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C18H12N4O2)]
Mr375.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.052 (2), 18.383 (5), 11.826 (3)
β (°) 98.827 (4)
V3)1514.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.31 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.708, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
11141, 3607, 2420
Rint0.036
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 0.98
No. of reflections3607
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000).

Selected geometric parameters (Å, º) top
Co1—N11.916 (3)Co1—N32.015 (3)
Co1—N21.926 (3)Co1—N42.016 (3)
N1—Co1—N282.85 (12)N1—Co1—N4164.37 (12)
N1—Co1—N382.80 (12)N2—Co1—N482.93 (12)
N2—Co1—N3165.31 (13)N3—Co1—N4111.67 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.392.963 (5)120
C5—H5···O20.932.402.974 (5)120
C10—H10···O1i0.932.593.200 (5)124
C16—H16···O2ii0.932.543.344 (4)145
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds