Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the asymmetric unit of the crystal structure of the title compound, [Zn(C3H2O4)(C6H6N4S2)(H2O)]·H2O, there are two independent ZnII complex mol­ecules. Each ZnII ion assumes a distorted square-pyramidal coordination geometry formed by a diamino­bithia­zole (DABT) ligand, a malonate dianion and a water mol­ecule. Within the chelating DABT ligand, the two thia­zole rings are twisted with respect to each other, with dihedral angles of 3.23 (19) and 2.54 (18)°. O—H...O and N—H...O hydrogen bonding occurs in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031741/xu2284sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031741/xu2284Isup2.hkl
Contains datablock I

CCDC reference: 657527

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.038
  • wR factor = 0.086
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O21 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.27 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.50 PLAT322_ALERT_2_C Check Hybridisation of S11 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S12 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S21 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S22 in Main Residue . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 2.03 PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn2 (2) 2.01
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of serial structural investigation of metal complexes with DABT (Liu & Xu, 2004; Luo et al., 2004), the title ZnII complex was recently prepared and its X-ray structure is presented here.

Asymmetric unit of the crystal of the title compound contains two independent ZnII complexes (Fig. 1). Each ZnII ion has a distorted square pyramid coordination geometry (Table 1) formed by one of DABT ligand, one of malonate dianion and one water molecules. The O atom of coordinated water lies on the apical position of square pyramid. The The Zn1 and Zn2 atoms are out of the base plane of pyramidal by 0.437 (2) Å and 0.413 (2) Å, respectively.

Within the complex, each DABT moiety is approximately coplanar with a dihedral angles of 3.23 (19)° for Zn1 complex and 2.54 (18)° for Zn1 and Zn2 complex respectively. The average distances of 1.334 (4) Å of CN(amino) within Zn1 complex and 1.329 (4) Å of CN(amino) within Zn2 complex imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT agrees with reported CuII complex of DABT (Wu et al., 2003).

The malonate dianion chelates to the ZnII atom with a nearly planar configuration with the maximum atomic deviation of 0.025 (2) Å (C17) to the mean plane defined by O11 O13 C17 C18 C19 and 0.071 (3) Å (C29) to the mean plane defined by O21 O23 C27 C28 C29. The extensive hydrogen bonding between lattice water and complex molecules helps to stabilize the crystal structure (Fig. 1. and Table 2).

Related literature top

For general background, see: Sun et al. (1997); Liu & Xu (2004); Luo et al. (2004). For related structures, see: Wu et al. (2003).

Experimental top

An ethanol solution (20 ml) containing DABT (0.20 g, 1 mmol) and ZnCl2 (0.14 g, 1 mmol) was mixed with an aqueous solution (10 ml) of malonic acid (0.21 g, 2 mmol) and NaOH (0.16 g, 4 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 2 d.

Refinement top

H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (aromatic) or C—H = 0.97 (methylene), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C). H atoms on amino groups and coordinated water molecules were located in a difference Fourier map and included in the structure factor calculations with fixed positional and isotropic displacement parameters Uiso(H) = 0.05 Å2. H atoms of lattice water were located in a difference Fourier map and included in the final cycles of refinement in riding mode with Uiso(H) = 1.5Ueq(O).

Structure description top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of serial structural investigation of metal complexes with DABT (Liu & Xu, 2004; Luo et al., 2004), the title ZnII complex was recently prepared and its X-ray structure is presented here.

Asymmetric unit of the crystal of the title compound contains two independent ZnII complexes (Fig. 1). Each ZnII ion has a distorted square pyramid coordination geometry (Table 1) formed by one of DABT ligand, one of malonate dianion and one water molecules. The O atom of coordinated water lies on the apical position of square pyramid. The The Zn1 and Zn2 atoms are out of the base plane of pyramidal by 0.437 (2) Å and 0.413 (2) Å, respectively.

Within the complex, each DABT moiety is approximately coplanar with a dihedral angles of 3.23 (19)° for Zn1 complex and 2.54 (18)° for Zn1 and Zn2 complex respectively. The average distances of 1.334 (4) Å of CN(amino) within Zn1 complex and 1.329 (4) Å of CN(amino) within Zn2 complex imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT agrees with reported CuII complex of DABT (Wu et al., 2003).

The malonate dianion chelates to the ZnII atom with a nearly planar configuration with the maximum atomic deviation of 0.025 (2) Å (C17) to the mean plane defined by O11 O13 C17 C18 C19 and 0.071 (3) Å (C29) to the mean plane defined by O21 O23 C27 C28 C29. The extensive hydrogen bonding between lattice water and complex molecules helps to stabilize the crystal structure (Fig. 1. and Table 2).

For general background, see: Sun et al. (1997); Liu & Xu (2004); Luo et al. (2004). For related structures, see: Wu et al. (2003).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 25% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding [symmetry code: (i) 1 - x, 1 - y, -z; (ii) 2 - x, -y, 1 - z; (iii) -1 + x, y, z].
Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole-κ2N,N')(malonato-κ2O,O')zinc(II) monohydrate top
Crystal data top
[Zn(C3H2O4)(C6H6N4S2)(H2O)]·H2OZ = 4
Mr = 401.72F(000) = 816
Triclinic, P1Dx = 1.850 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4695 (11) ÅCell parameters from 4880 reflections
b = 12.5509 (15) Åθ = 2.4–25.0°
c = 14.8615 (19) ŵ = 2.03 mm1
α = 68.895 (1)°T = 295 K
β = 88.074 (2)°Prism, yellow
γ = 78.337 (2)°0.25 × 0.22 × 0.15 mm
V = 1442.1 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4992 independent reflections
Radiation source: fine-focus sealed tube3768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 410
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1314
Tmin = 0.628, Tmax = 0.735l = 1717
7536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
4992 reflections(Δ/σ)max < 0.001
398 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn(C3H2O4)(C6H6N4S2)(H2O)]·H2Oγ = 78.337 (2)°
Mr = 401.72V = 1442.1 (3) Å3
Triclinic, P1Z = 4
a = 8.4695 (11) ÅMo Kα radiation
b = 12.5509 (15) ŵ = 2.03 mm1
c = 14.8615 (19) ÅT = 295 K
α = 68.895 (1)°0.25 × 0.22 × 0.15 mm
β = 88.074 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4992 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3768 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.735Rint = 0.024
7536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
4992 reflectionsΔρmin = 0.40 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.88504 (5)0.31911 (3)0.43082 (3)0.02935 (14)
Zn20.56845 (6)0.21371 (3)0.00971 (3)0.03282 (14)
O10.7108 (3)0.3062 (2)0.34771 (16)0.0329 (6)
H1A0.65460.37300.32070.050*
H1B0.64730.26490.37870.050*
O20.7538 (3)0.2748 (2)0.04109 (18)0.0449 (7)
H2A0.78020.24600.09730.050*
H2B0.75390.34810.02150.050*
O111.0722 (3)0.2090 (2)0.40389 (18)0.0435 (7)
O121.2746 (3)0.0620 (2)0.42855 (19)0.0468 (8)
O130.8758 (3)0.1976 (2)0.56278 (18)0.0444 (7)
O140.9634 (4)0.0497 (2)0.69622 (18)0.0543 (8)
O210.3790 (4)0.3220 (2)0.03881 (18)0.0488 (8)
O220.2502 (4)0.4952 (2)0.03062 (18)0.0487 (8)
O230.5257 (3)0.3127 (2)0.13198 (17)0.0375 (7)
O240.4464 (3)0.4715 (2)0.25955 (17)0.0427 (7)
O1W0.5480 (3)0.1515 (2)0.4527 (2)0.0537 (8)
H1WA0.47560.13210.42660.080*
H1WB0.60350.08890.49130.080*
O2W0.8814 (4)0.1887 (2)0.22125 (19)0.0658 (10)
H2WA0.89840.11750.24400.099*
H2WB0.83610.21550.26000.099*
N110.9577 (4)0.4616 (2)0.3251 (2)0.0305 (7)
N121.0922 (4)0.3928 (3)0.2089 (2)0.0526 (10)
H12A1.14030.41320.15460.050*
H12B1.07190.32370.23300.050*
N130.7881 (3)0.4519 (2)0.4811 (2)0.0269 (7)
N140.6448 (4)0.3689 (3)0.6174 (2)0.0370 (8)
H14A0.67170.30020.61880.050*
H14B0.57620.38710.65800.050*
N210.6930 (3)0.0708 (2)0.02042 (19)0.0270 (7)
N220.7906 (4)0.1492 (3)0.1752 (2)0.0374 (8)
H22A0.72840.21200.18130.050*
H22B0.83730.13330.22210.050*
N230.5398 (4)0.0760 (2)0.1367 (2)0.0332 (8)
N240.3770 (4)0.1607 (3)0.2345 (2)0.0560 (11)
H24A0.35840.22540.19070.050*
H24B0.32530.15010.28790.050*
S111.08320 (13)0.61328 (9)0.19332 (7)0.0411 (3)
S120.65560 (13)0.59502 (8)0.56222 (7)0.0373 (3)
S210.87839 (14)0.08109 (9)0.07459 (8)0.0464 (3)
S220.48746 (14)0.07143 (9)0.30120 (7)0.0417 (3)
C110.9206 (4)0.5639 (3)0.3433 (3)0.0291 (9)
C120.9765 (5)0.6532 (3)0.2810 (3)0.0383 (10)
H120.96020.72710.28440.046*
C131.0418 (5)0.4746 (3)0.2469 (3)0.0336 (9)
C140.8246 (4)0.5596 (3)0.4274 (3)0.0285 (8)
C150.7636 (5)0.6456 (3)0.4602 (3)0.0354 (9)
H150.77770.72210.43180.043*
C160.6984 (4)0.4580 (3)0.5546 (2)0.0276 (8)
C171.1553 (4)0.1141 (3)0.4571 (2)0.0276 (8)
C181.1183 (4)0.0575 (3)0.5623 (2)0.0307 (9)
H18A1.11010.02170.57140.037*
H18B1.21330.05140.59990.037*
C190.9751 (5)0.1053 (3)0.6098 (3)0.0309 (9)
C210.7058 (4)0.0363 (3)0.0549 (3)0.0297 (9)
C220.7968 (5)0.1257 (3)0.0372 (3)0.0448 (11)
H220.81400.20270.07990.054*
C230.7787 (4)0.0603 (3)0.0939 (3)0.0282 (8)
C240.6192 (4)0.0337 (3)0.1401 (3)0.0291 (9)
C250.6045 (5)0.1218 (3)0.2222 (3)0.0388 (10)
H250.65140.19970.23470.047*
C260.4637 (5)0.0694 (3)0.2172 (3)0.0332 (9)
C270.3292 (5)0.4292 (3)0.0072 (3)0.0339 (9)
C280.3635 (5)0.4842 (3)0.1126 (3)0.0464 (12)
H28A0.26000.52460.14600.056*
H28B0.42330.54390.11680.056*
C290.4506 (4)0.4174 (3)0.1717 (2)0.0277 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0343 (3)0.0237 (2)0.0243 (2)0.0011 (2)0.00842 (19)0.00496 (19)
Zn20.0455 (3)0.0231 (2)0.0225 (2)0.0025 (2)0.0076 (2)0.00518 (19)
O10.0318 (15)0.0292 (14)0.0308 (14)0.0005 (12)0.0044 (12)0.0062 (12)
O20.070 (2)0.0277 (15)0.0331 (16)0.0085 (14)0.0064 (14)0.0061 (12)
O110.0491 (18)0.0325 (15)0.0308 (15)0.0100 (14)0.0134 (13)0.0007 (12)
O120.0482 (18)0.0398 (16)0.0350 (16)0.0096 (14)0.0164 (14)0.0041 (13)
O130.0508 (18)0.0331 (15)0.0300 (15)0.0095 (14)0.0192 (13)0.0001 (12)
O140.069 (2)0.0470 (17)0.0237 (15)0.0155 (16)0.0163 (14)0.0006 (13)
O210.070 (2)0.0270 (15)0.0307 (15)0.0098 (14)0.0227 (14)0.0000 (12)
O220.078 (2)0.0261 (14)0.0360 (16)0.0020 (15)0.0293 (15)0.0110 (13)
O230.0520 (18)0.0281 (14)0.0237 (14)0.0078 (13)0.0059 (12)0.0080 (12)
O240.0509 (18)0.0408 (16)0.0191 (14)0.0118 (14)0.0089 (13)0.0023 (12)
O1W0.0516 (19)0.0375 (16)0.056 (2)0.0105 (15)0.0030 (16)0.0026 (14)
O2W0.098 (3)0.0513 (19)0.0321 (17)0.0173 (18)0.0027 (17)0.0139 (15)
N110.0317 (18)0.0269 (17)0.0268 (17)0.0026 (14)0.0137 (14)0.0056 (14)
N120.076 (3)0.0297 (19)0.050 (2)0.0131 (19)0.039 (2)0.0127 (17)
N130.0268 (17)0.0264 (16)0.0251 (16)0.0019 (14)0.0049 (14)0.0086 (13)
N140.043 (2)0.0363 (19)0.0308 (18)0.0071 (16)0.0177 (16)0.0125 (15)
N210.0307 (18)0.0220 (16)0.0226 (16)0.0000 (14)0.0065 (14)0.0049 (13)
N220.046 (2)0.0349 (18)0.0275 (18)0.0055 (16)0.0147 (16)0.0097 (15)
N230.042 (2)0.0300 (17)0.0212 (16)0.0002 (15)0.0091 (15)0.0061 (14)
N240.080 (3)0.044 (2)0.0281 (19)0.009 (2)0.0252 (19)0.0081 (16)
S110.0486 (7)0.0357 (6)0.0340 (6)0.0127 (5)0.0187 (5)0.0058 (5)
S120.0432 (6)0.0350 (6)0.0352 (6)0.0034 (5)0.0111 (5)0.0178 (5)
S210.0559 (7)0.0343 (6)0.0405 (6)0.0091 (5)0.0123 (5)0.0141 (5)
S220.0538 (7)0.0376 (6)0.0256 (5)0.0099 (5)0.0104 (5)0.0020 (4)
C110.025 (2)0.029 (2)0.029 (2)0.0022 (17)0.0013 (17)0.0071 (17)
C120.044 (3)0.034 (2)0.037 (2)0.011 (2)0.010 (2)0.0127 (19)
C130.034 (2)0.027 (2)0.029 (2)0.0031 (18)0.0053 (18)0.0002 (17)
C140.026 (2)0.029 (2)0.027 (2)0.0060 (17)0.0013 (17)0.0073 (17)
C150.043 (2)0.031 (2)0.032 (2)0.0102 (19)0.0073 (19)0.0104 (18)
C160.024 (2)0.031 (2)0.024 (2)0.0004 (17)0.0037 (16)0.0093 (17)
C170.031 (2)0.027 (2)0.027 (2)0.0074 (18)0.0052 (17)0.0114 (17)
C180.032 (2)0.030 (2)0.025 (2)0.0012 (17)0.0060 (17)0.0066 (17)
C190.038 (2)0.025 (2)0.025 (2)0.0013 (18)0.0074 (18)0.0071 (17)
C210.034 (2)0.025 (2)0.029 (2)0.0055 (17)0.0037 (17)0.0089 (17)
C220.058 (3)0.028 (2)0.036 (2)0.004 (2)0.009 (2)0.0044 (19)
C230.028 (2)0.028 (2)0.028 (2)0.0013 (17)0.0041 (17)0.0119 (17)
C240.031 (2)0.0252 (19)0.027 (2)0.0037 (17)0.0017 (17)0.0065 (17)
C250.049 (3)0.026 (2)0.031 (2)0.0023 (19)0.0037 (19)0.0007 (17)
C260.039 (2)0.033 (2)0.0206 (19)0.0034 (18)0.0033 (17)0.0029 (17)
C270.039 (2)0.027 (2)0.031 (2)0.0031 (18)0.0064 (18)0.0067 (18)
C280.065 (3)0.038 (2)0.023 (2)0.009 (2)0.010 (2)0.0076 (18)
C290.030 (2)0.025 (2)0.023 (2)0.0004 (17)0.0032 (17)0.0066 (16)
Geometric parameters (Å, º) top
Zn1—O12.023 (2)N21—C231.323 (4)
Zn1—O112.013 (2)N21—C211.392 (4)
Zn1—O132.016 (2)N22—C231.334 (4)
Zn1—N112.098 (3)N22—H22A0.8308
Zn1—N132.077 (3)N22—H22B0.8556
Zn2—O22.016 (3)N23—C261.324 (4)
Zn2—O212.026 (3)N23—C241.388 (4)
Zn2—O232.023 (2)N24—C261.333 (4)
Zn2—N212.076 (3)N24—H24A0.8259
Zn2—N232.097 (3)N24—H24B0.8748
O1—H1A0.8365S11—C121.725 (4)
O1—H1B0.8334S11—C131.737 (4)
O2—H2A0.8010S12—C151.728 (4)
O2—H2B0.8594S12—C161.729 (4)
O11—C171.248 (4)S21—C221.721 (4)
O12—C171.238 (4)S21—C231.729 (3)
O13—C191.265 (4)S22—C251.722 (4)
O14—C191.232 (4)S22—C261.735 (4)
O21—C271.258 (4)C11—C121.332 (5)
O22—C271.239 (4)C11—C141.459 (5)
O23—C291.268 (4)C12—H120.9300
O24—C291.234 (4)C14—C151.343 (5)
O1W—H1WA0.8536C15—H150.9300
O1W—H1WB0.8432C17—C181.517 (5)
O2W—H2WA0.8169C18—C191.511 (5)
O2W—H2WB0.8148C18—H18A0.9700
N11—C131.319 (4)C18—H18B0.9700
N11—C111.379 (4)C21—C221.331 (5)
N12—C131.334 (4)C21—C241.449 (5)
N12—H12A0.8687C22—H220.9300
N12—H12B0.8623C24—C251.342 (5)
N13—C161.326 (4)C25—H250.9300
N13—C141.391 (4)C27—C281.513 (5)
N14—C161.324 (4)C28—C291.501 (5)
N14—H14A0.8392C28—H28A0.9700
N14—H14B0.8809C28—H28B0.9700
O11—Zn1—O1388.83 (10)C12—C11—N11115.4 (3)
O11—Zn1—O199.45 (11)C12—C11—C14129.0 (3)
O13—Zn1—O1106.13 (11)N11—C11—C14115.6 (3)
O11—Zn1—N13152.32 (12)C11—C12—S11111.0 (3)
O13—Zn1—N1391.05 (11)C11—C12—H12124.5
O1—Zn1—N13107.14 (10)S11—C12—H12124.5
O11—Zn1—N1190.47 (11)N11—C13—N12125.7 (3)
O13—Zn1—N11157.42 (12)N11—C13—S11113.5 (3)
O1—Zn1—N1196.25 (11)N12—C13—S11120.8 (3)
N13—Zn1—N1179.29 (11)C15—C14—N13114.7 (3)
O2—Zn2—O23100.60 (11)C15—C14—C11129.3 (3)
O2—Zn2—O21100.53 (11)N13—C14—C11116.0 (3)
O23—Zn2—O2188.22 (10)C14—C15—S12111.0 (3)
O2—Zn2—N21100.54 (11)C14—C15—H15124.5
O23—Zn2—N2192.46 (10)S12—C15—H15124.5
O21—Zn2—N21158.42 (12)N14—C16—N13124.3 (3)
O2—Zn2—N23104.88 (11)N14—C16—S12121.9 (3)
O23—Zn2—N23154.14 (11)N13—C16—S12113.8 (3)
O21—Zn2—N2391.35 (11)O12—C17—O11122.5 (3)
N21—Zn2—N2378.76 (11)O12—C17—C18115.9 (3)
Zn1—O1—H1A107.9O11—C17—C18121.6 (3)
Zn1—O1—H1B114.0C19—C18—C17123.9 (3)
H1A—O1—H1B105.9C19—C18—H18A106.4
Zn2—O2—H2A111.8C17—C18—H18A106.4
Zn2—O2—H2B122.1C19—C18—H18B106.4
H2A—O2—H2B108.8C17—C18—H18B106.4
C17—O11—Zn1131.8 (2)H18A—C18—H18B106.4
C19—O13—Zn1131.3 (2)O14—C19—O13123.0 (3)
C27—O21—Zn2127.8 (3)O14—C19—C18115.9 (3)
C29—O23—Zn2129.8 (2)O13—C19—C18121.1 (3)
H1WA—O1W—H1WB106.5C22—C21—N21114.5 (3)
H2WA—O2W—H2WB110.0C22—C21—C24130.0 (3)
C13—N11—C11111.2 (3)N21—C21—C24115.5 (3)
C13—N11—Zn1134.3 (2)C21—C22—S21111.5 (3)
C11—N11—Zn1114.4 (2)C21—C22—H22124.2
C13—N12—H12A117.3S21—C22—H22124.2
C13—N12—H12B123.1N21—C23—N22124.2 (3)
H12A—N12—H12B119.3N21—C23—S21113.5 (3)
C16—N13—C14111.1 (3)N22—C23—S21122.3 (3)
C16—N13—Zn1134.4 (2)C25—C24—N23115.0 (3)
C14—N13—Zn1114.5 (2)C25—C24—C21129.5 (3)
C16—N14—H14A123.7N23—C24—C21115.5 (3)
C16—N14—H14B114.8C24—C25—S22111.0 (3)
H14A—N14—H14B121.5C24—C25—H25124.5
C23—N21—C21111.3 (3)S22—C25—H25124.5
C23—N21—Zn2133.1 (2)N23—C26—N24124.5 (3)
C21—N21—Zn2115.2 (2)N23—C26—S22113.6 (3)
C23—N22—H22A115.3N24—C26—S22121.9 (3)
C23—N22—H22B117.7O22—C27—O21122.4 (3)
H22A—N22—H22B124.2O22—C27—C28116.4 (3)
C26—N23—C24111.0 (3)O21—C27—C28121.1 (3)
C26—N23—Zn2134.2 (2)C29—C28—C27124.1 (3)
C24—N23—Zn2114.8 (2)C29—C28—H28A106.3
C26—N24—H24A119.6C27—C28—H28A106.3
C26—N24—H24B120.1C29—C28—H28B106.3
H24A—N24—H24B119.4C27—C28—H28B106.3
C12—S11—C1388.98 (19)H28A—C28—H28B106.4
C15—S12—C1689.39 (17)O24—C29—O23123.1 (3)
C22—S21—C2389.26 (18)O24—C29—C28115.8 (3)
C25—S22—C2689.37 (18)O23—C29—C28121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O24i0.841.862.694 (4)173
O1—H1B···O1W0.831.802.619 (4)168
O2—H2A···O2W0.801.882.673 (4)168
O2—H2B···O22i0.861.832.687 (4)175
O1W—H1WA···O12ii0.852.062.855 (4)154
O1W—H1WB···O12iii0.841.932.774 (4)174
O2W—H2WA···O14iii0.822.072.839 (4)156
O2W—H2WB···O10.822.152.957 (4)173
N12—H12A···O22iv0.872.062.910 (4)168
N14—H14B···O24v0.882.052.905 (4)163
N22—H22B···O14vi0.862.022.854 (4)164
N24—H24B···O12ii0.872.062.880 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C3H2O4)(C6H6N4S2)(H2O)]·H2O
Mr401.72
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.4695 (11), 12.5509 (15), 14.8615 (19)
α, β, γ (°)68.895 (1), 88.074 (2), 78.337 (2)
V3)1442.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.25 × 0.22 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.628, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
7536, 4992, 3768
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.08
No. of reflections4992
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—O12.023 (2)Zn2—O22.016 (3)
Zn1—O112.013 (2)Zn2—O212.026 (3)
Zn1—O132.016 (2)Zn2—O232.023 (2)
Zn1—N112.098 (3)Zn2—N212.076 (3)
Zn1—N132.077 (3)Zn2—N232.097 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O24i0.841.862.694 (4)173
O1—H1B···O1W0.831.802.619 (4)168
O2—H2A···O2W0.801.882.673 (4)168
O2—H2B···O22i0.861.832.687 (4)175
O1W—H1WA···O12ii0.852.062.855 (4)154
O1W—H1WB···O12iii0.841.932.774 (4)174
O2W—H2WA···O14iii0.822.072.839 (4)156
O2W—H2WB···O10.822.152.957 (4)173
N12—H12A···O22iv0.872.062.910 (4)168
N14—H14B···O24v0.882.052.905 (4)163
N22—H22B···O14vi0.862.022.854 (4)164
N24—H24B···O12ii0.872.062.880 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds