Download citation
Download citation
link to html
In the crystal structure of the title metal–organic coordination polymer, [K2Zn(C9H4O6)2(H2O)3]n, the ZnII ion exists in a tetra­hedral coordination environment formed by four monodentate carboxyl­ate O atoms. There are two crystallographically distinct KI ions. Each is coordinated by one terminal water mol­ecule and four carboxyl­ate O atoms; in addition, these two KI ions share one bridging water mol­ecule. Thus, both KI ions present a distorted octa­hedral coordination environment. Two crystallographically independent benzene-1,2,4-tricarboxyl­ate dianions act as three-connected pillars to give a heterometallic three-dimensional layer-pillared network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020818/xu2244sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020818/xu2244Isup2.hkl
Contains datablock I

CCDC reference: 650514

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.032
  • wR factor = 0.110
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.18 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc.
Alert level G PLAT804_ALERT_5_G ARU-Pack Problem in PLATON Analysis ............ 4 Times
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Polycarboxylic acids such as 1,4-benzenedicarboxylic acid and 1,3,5-benzenetricarboxylic acid are recognized as efficient O donors exhibiting versatile coordination modes and hydrogen bonding interaction toward the assembly of metal-organic coordination polymers (Yaghi et al., 2003; Rao et al., 2004). Here we report the synthesis and structure of the title heterometallic coordination polymer, (I), on the basis of a unsymmetrical bridging ligand, benzene-1,2,4-tricarboxylic acid (H3btc).

The asymmetric unit of (I) (Fig. 1) consists of two partially deprotonated Hbtc2- ligands, one ZnII atom, two K+ atoms, one bridging water molecule, and two coordinating water molecules with the formula of [K2Zn(Hbtc)2(H2O)3]n. Program PLATON/ADDSYM (Spek, 2003) confirms that compound (I) is crystallized in a triclinic crystal system with space group of P-1. For (I), partially deprotonated Hbtc2- ligands are observed. There are two crystallographically distinct Hbtc2- ligands. The assignment of the carboxyl hydrogen atoms from the difference Fourier map, and asymmetrical carbon–oxygen bond lengths (C9—O5 and C9—O6; C18—O11 and C18—O12) of the carboxyl groups are revealed from crystallographic results. On the other hand, more symmetrical carbon–oxygen bond distances that range from 1.232 to 1.284 Å are observed for the rest of the carboxylate groups of the Hbtc2– ligands. The ZnII exists in a tetrahedral coordination environment that is coordinated by four monodentate carboxylate oxygen atoms with Zn–O distances range from 1.985 to 2.038 Å. A close contacting distance of 2.482 (2) Å is observed between Zn1 and O4 carboxylate oxygen atom. There are two crystallographically distinct K atoms. Each K atom is coordinated by one coordinating water molecules, four carboxylate oxygen atoms, and these two K atoms share one bridging water molecule. Both of the K atoms present a distorted octahedral coordination environment. The ZnO4 and KO6 polyhedra are linked by carboxylate and carboxyl groups of Hbtc2- ligands as well as bridging water molecules to form a two dimensional layer network that lies parallel to the ab crystal plane (Fig. 2). The Hbtc2- ligands act as three-connected Pillars to give rise to a three-dimensional layer-pillared network structure (Fig. 3).

A solely ZnII based layer-pillared coordination polymer, [Zn2(Hbtc)2(H2O)3]n, which was crystallized in a monoclinic crystal system with higher space group symmetry of C2/c was previously reported (Qin et al., 2004). The distinct coordination environment between main group K atoms and transition metal Zn atoms results in diverse solid state packing of the layer-pillared coordination networks.

Related literature top

A solely ZnII-based layer-pillared coordination polymer, [Zn2(C9H4O6)2(H2O)3]n, which crystallized in a monoclinic crystal system with space group symmetry of C2/c was previously reported (Qin et al., 2004).

For related literature, see: Rao et al. (2004); Spek (2003); Yaghi et al. (2003).

Experimental top

All reagents and solvents were used as obtained without further purification. ZnCl2 (1.5 mmol), H3btc (1.0 mmol) were dissolved in 10 ml of distilled water, and were added drop-wise of 4M KOH solution to the pH of 3.8. The mixture was sealed in a Teflon-lined stainless steel vessel and held at 383 K for 96 h. The vessel was gradually cooled to room temperature, and colorless crystals suitable for crystallographic analysis were obtained after 7 d.

Refinement top

The C-bound H atoms were placed in calculated positions (C—H = 0.95 A) and refined in the riding-model approximation with Uiso(H) = 1.2 Ueq(C). The H atoms of the water molecules and carboxyl groups were located in a difference Fourier map, and refined as riding model with O—H distances range from 0.81 to 0.85 Å, and with Uiso(H) = 1.5 Ueq(O). The carboxylate oxygen atom O8 is disordered over two positions; the occupancies of O8A and O8B refined to 0.65 (14) and 0.35 (14), respectively.

Structure description top

Polycarboxylic acids such as 1,4-benzenedicarboxylic acid and 1,3,5-benzenetricarboxylic acid are recognized as efficient O donors exhibiting versatile coordination modes and hydrogen bonding interaction toward the assembly of metal-organic coordination polymers (Yaghi et al., 2003; Rao et al., 2004). Here we report the synthesis and structure of the title heterometallic coordination polymer, (I), on the basis of a unsymmetrical bridging ligand, benzene-1,2,4-tricarboxylic acid (H3btc).

The asymmetric unit of (I) (Fig. 1) consists of two partially deprotonated Hbtc2- ligands, one ZnII atom, two K+ atoms, one bridging water molecule, and two coordinating water molecules with the formula of [K2Zn(Hbtc)2(H2O)3]n. Program PLATON/ADDSYM (Spek, 2003) confirms that compound (I) is crystallized in a triclinic crystal system with space group of P-1. For (I), partially deprotonated Hbtc2- ligands are observed. There are two crystallographically distinct Hbtc2- ligands. The assignment of the carboxyl hydrogen atoms from the difference Fourier map, and asymmetrical carbon–oxygen bond lengths (C9—O5 and C9—O6; C18—O11 and C18—O12) of the carboxyl groups are revealed from crystallographic results. On the other hand, more symmetrical carbon–oxygen bond distances that range from 1.232 to 1.284 Å are observed for the rest of the carboxylate groups of the Hbtc2– ligands. The ZnII exists in a tetrahedral coordination environment that is coordinated by four monodentate carboxylate oxygen atoms with Zn–O distances range from 1.985 to 2.038 Å. A close contacting distance of 2.482 (2) Å is observed between Zn1 and O4 carboxylate oxygen atom. There are two crystallographically distinct K atoms. Each K atom is coordinated by one coordinating water molecules, four carboxylate oxygen atoms, and these two K atoms share one bridging water molecule. Both of the K atoms present a distorted octahedral coordination environment. The ZnO4 and KO6 polyhedra are linked by carboxylate and carboxyl groups of Hbtc2- ligands as well as bridging water molecules to form a two dimensional layer network that lies parallel to the ab crystal plane (Fig. 2). The Hbtc2- ligands act as three-connected Pillars to give rise to a three-dimensional layer-pillared network structure (Fig. 3).

A solely ZnII based layer-pillared coordination polymer, [Zn2(Hbtc)2(H2O)3]n, which was crystallized in a monoclinic crystal system with higher space group symmetry of C2/c was previously reported (Qin et al., 2004). The distinct coordination environment between main group K atoms and transition metal Zn atoms results in diverse solid state packing of the layer-pillared coordination networks.

A solely ZnII-based layer-pillared coordination polymer, [Zn2(C9H4O6)2(H2O)3]n, which crystallized in a monoclinic crystal system with space group symmetry of C2/c was previously reported (Qin et al., 2004).

For related literature, see: Rao et al. (2004); Spek (2003); Yaghi et al. (2003).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit, expanded to show the complete coordination of the Zn and K atoms, with displacement ellipsoids drawn at the 50% probability level. (Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) x, y + 1, z; (iv) -x + 1, -y, -z; (v) x + 1, y, z; (vi) -x + 2, -y, -z + 1; (vii) x + 1, y + 1, z)
[Figure 2] Fig. 2. A single polymeric two-dimensional layer within (I), which lies parallel to the ab crystal plane.
[Figure 3] Fig. 3. Packing diagram illustrating the layer-pillared three-dimensional network of (I).
Poly[triaquabis(µ-benzene-1,2,4-tricarboxylato)zinc(II)dipotassium(I)] top
Crystal data top
[K2Zn(C9H4O6)2(H2O)3]Z = 2
Mr = 613.86F(000) = 620
Triclinic, P1Dx = 1.871 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9626 (2) ÅCell parameters from 12853 reflections
b = 7.0317 (2) Åθ = 2.0–25.4°
c = 22.9019 (5) ŵ = 1.59 mm1
α = 93.372 (1)°T = 200 K
β = 91.821 (1)°Block, colorless
γ = 102.932 (2)°0.24 × 0.16 × 0.14 mm
V = 1089.76 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3966 independent reflections
Radiation source: fine-focus sealed tube3510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
CCD rotation images, thick slices scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.697, Tmax = 0.792k = 88
14633 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.4828P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.57 e Å3
3966 reflectionsΔρmin = 0.82 e Å3
335 parameters
Crystal data top
[K2Zn(C9H4O6)2(H2O)3]γ = 102.932 (2)°
Mr = 613.86V = 1089.76 (5) Å3
Triclinic, P1Z = 2
a = 6.9626 (2) ÅMo Kα radiation
b = 7.0317 (2) ŵ = 1.59 mm1
c = 22.9019 (5) ÅT = 200 K
α = 93.372 (1)°0.24 × 0.16 × 0.14 mm
β = 91.821 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3966 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3510 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.792Rint = 0.059
14633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.10Δρmax = 0.57 e Å3
3966 reflectionsΔρmin = 0.82 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.27940 (4)0.36692 (4)0.253459 (12)0.01718 (13)
K10.77901 (9)0.24823 (10)0.19488 (3)0.02317 (17)
K21.16808 (11)0.11542 (10)0.31443 (3)0.0338 (2)
O10.1876 (3)0.2183 (3)0.18857 (8)0.0217 (4)
O20.4098 (3)0.0485 (3)0.22169 (8)0.0227 (4)
O30.1914 (3)0.3713 (3)0.20653 (8)0.0202 (4)
O40.4817 (3)0.5199 (3)0.17720 (9)0.0282 (5)
O50.2264 (4)0.0941 (3)0.08408 (9)0.0329 (5)
O60.1906 (3)0.3381 (3)0.02374 (9)0.0288 (5)
H6A0.18260.40720.05530.043*
O70.5338 (3)0.2617 (3)0.30286 (8)0.0217 (4)
O8A0.376 (4)0.532 (4)0.3400 (17)0.028 (4)0.65 (14)
O8B0.418 (9)0.565 (7)0.3281 (18)0.028 (6)0.35 (14)
O90.8514 (4)0.5486 (4)0.29773 (10)0.0434 (7)
O101.1090 (3)0.2940 (3)0.31484 (9)0.0306 (5)
O111.0028 (3)0.1760 (4)0.59028 (9)0.0373 (6)
O121.2497 (3)0.2064 (3)0.53400 (9)0.0293 (5)
H12A1.31540.17940.5660.044*
O190.8485 (3)0.0771 (3)0.23775 (10)0.0344 (5)
H19A0.7460.14710.24870.052*
H19B0.91720.14740.22480.052*
O290.8373 (3)0.5706 (3)0.12087 (9)0.0328 (5)
H29A0.93230.65720.1360.049*
H29B0.73130.57710.13770.049*
O391.5575 (4)0.1191 (4)0.36191 (11)0.0464 (7)
H39A1.5960.20060.33850.07*
H39B1.55450.01130.34410.07*
C10.2774 (4)0.0367 (4)0.12477 (11)0.0170 (6)
C20.3064 (4)0.2379 (4)0.11950 (11)0.0170 (6)
C30.3075 (4)0.3100 (4)0.06403 (12)0.0225 (6)
H3A0.32810.44690.06040.027*
C40.2788 (4)0.1837 (4)0.01401 (12)0.0234 (6)
H4A0.27950.23390.02360.028*
C50.2490 (4)0.0174 (4)0.01922 (11)0.0196 (6)
C60.2483 (4)0.0891 (4)0.07450 (11)0.0185 (6)
H6B0.22770.2260.0780.022*
C70.2941 (4)0.0466 (4)0.18321 (11)0.0171 (6)
C80.3316 (4)0.3842 (4)0.17159 (11)0.0182 (6)
C90.2214 (4)0.1521 (5)0.03494 (12)0.0226 (6)
C100.6679 (4)0.3545 (4)0.39147 (12)0.0201 (6)
C110.8697 (4)0.3471 (4)0.38576 (11)0.0180 (6)
C120.9984 (4)0.2982 (4)0.43456 (11)0.0200 (6)
H12B1.13540.28970.43060.024*
C130.9280 (4)0.2618 (4)0.48920 (12)0.0198 (6)
C140.7285 (4)0.2712 (5)0.49488 (13)0.0261 (7)
H14A0.68030.24680.53230.031*
C150.5998 (4)0.3157 (5)0.44640 (12)0.0258 (7)
H15A0.46360.320.45050.031*
C160.5225 (4)0.3940 (4)0.33973 (12)0.0230 (6)
C170.9456 (4)0.4033 (5)0.32786 (12)0.0231 (6)
C181.0629 (4)0.2102 (4)0.54277 (12)0.0223 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0197 (2)0.0186 (2)0.01313 (19)0.00488 (14)0.00094 (13)0.00035 (13)
K10.0247 (3)0.0265 (4)0.0166 (3)0.0027 (3)0.0002 (2)0.0008 (3)
K20.0454 (4)0.0258 (4)0.0249 (4)0.0029 (3)0.0128 (3)0.0056 (3)
O10.0278 (11)0.0211 (11)0.0161 (9)0.0049 (9)0.0005 (8)0.0037 (8)
O20.0265 (11)0.0255 (11)0.0151 (10)0.0045 (9)0.0008 (8)0.0001 (8)
O30.0225 (10)0.0214 (11)0.0169 (9)0.0055 (8)0.0049 (8)0.0018 (8)
O40.0266 (11)0.0280 (12)0.0251 (11)0.0024 (10)0.0027 (9)0.0062 (9)
O50.0528 (14)0.0319 (13)0.0132 (10)0.0081 (11)0.0021 (9)0.0003 (9)
O60.0440 (13)0.0226 (12)0.0179 (10)0.0049 (10)0.0014 (9)0.0043 (8)
O70.0226 (10)0.0261 (12)0.0161 (10)0.0043 (9)0.0007 (8)0.0039 (8)
O8A0.027 (5)0.018 (4)0.036 (7)0.000 (3)0.009 (5)0.001 (4)
O8B0.033 (10)0.022 (8)0.028 (7)0.002 (7)0.003 (7)0.002 (6)
O90.0389 (14)0.0559 (17)0.0301 (13)0.0070 (12)0.0029 (10)0.0245 (12)
O100.0401 (13)0.0324 (13)0.0203 (11)0.0089 (10)0.0122 (9)0.0018 (9)
O110.0357 (13)0.0602 (17)0.0169 (11)0.0150 (12)0.0005 (9)0.0061 (10)
O120.0244 (11)0.0437 (14)0.0194 (10)0.0087 (10)0.0036 (8)0.0042 (9)
O190.0293 (12)0.0308 (13)0.0452 (14)0.0084 (10)0.0108 (10)0.0099 (11)
O290.0361 (13)0.0312 (13)0.0266 (11)0.0004 (10)0.0056 (9)0.0089 (10)
O390.0659 (18)0.0344 (14)0.0400 (14)0.0210 (13)0.0280 (13)0.0098 (11)
C10.0155 (13)0.0198 (15)0.0160 (13)0.0043 (11)0.0023 (10)0.0011 (11)
C20.0148 (13)0.0207 (15)0.0156 (13)0.0040 (11)0.0023 (10)0.0005 (11)
C30.0290 (16)0.0197 (16)0.0199 (14)0.0073 (13)0.0022 (12)0.0031 (12)
C40.0298 (16)0.0277 (17)0.0142 (13)0.0091 (13)0.0011 (11)0.0049 (12)
C50.0194 (14)0.0229 (16)0.0149 (13)0.0024 (12)0.0008 (11)0.0015 (11)
C60.0197 (14)0.0185 (15)0.0169 (13)0.0031 (11)0.0020 (11)0.0014 (11)
C70.0195 (14)0.0204 (15)0.0137 (13)0.0094 (12)0.0045 (11)0.0011 (11)
C80.0216 (14)0.0196 (15)0.0143 (13)0.0073 (12)0.0012 (11)0.0006 (11)
C90.0224 (15)0.0277 (17)0.0172 (14)0.0047 (13)0.0017 (11)0.0001 (12)
C100.0236 (15)0.0196 (15)0.0167 (13)0.0043 (12)0.0027 (11)0.0030 (11)
C110.0225 (14)0.0181 (15)0.0133 (13)0.0048 (12)0.0004 (10)0.0009 (10)
C120.0212 (14)0.0246 (16)0.0154 (13)0.0075 (12)0.0011 (11)0.0017 (11)
C130.0223 (14)0.0205 (15)0.0162 (13)0.0043 (12)0.0001 (11)0.0008 (11)
C140.0258 (16)0.0369 (19)0.0163 (14)0.0082 (14)0.0057 (12)0.0001 (12)
C150.0179 (14)0.0389 (19)0.0211 (15)0.0067 (13)0.0021 (11)0.0029 (13)
C160.0244 (15)0.0224 (16)0.0212 (15)0.0037 (13)0.0032 (12)0.0011 (12)
C170.0261 (16)0.0297 (17)0.0161 (14)0.0129 (14)0.0016 (12)0.0015 (12)
C180.0281 (16)0.0232 (16)0.0168 (14)0.0084 (13)0.0012 (12)0.0002 (11)
Geometric parameters (Å, º) top
Zn1—O12.0322 (19)O12—H12A0.8399
Zn1—O3i2.0343 (19)O19—H19A0.8262
Zn1—O4i2.482 (2)O19—H19B0.8125
Zn1—O72.0379 (19)O29—H29A0.8421
Zn1—O10ii1.985 (2)O29—H29B0.8527
K1—O22.746 (2)O39—H39A0.8147
K1—O3iii2.807 (2)O39—H39B0.835
K1—O5iv2.696 (2)C1—C61.390 (4)
K1—O9v2.655 (2)C1—C21.397 (4)
K1—O192.676 (2)C1—C71.504 (4)
K1—O292.874 (2)C2—C31.395 (4)
K2—O2iii2.833 (2)C2—C81.508 (4)
K2—O8Avi2.600 (19)C3—C41.388 (4)
K2—O8Bvi2.51 (2)C3—H3A0.95
K2—O102.816 (2)C4—C51.395 (4)
K2—O11vii2.577 (2)C4—H4A0.95
K2—O192.827 (2)C5—C61.390 (4)
K2—O392.883 (2)C5—C91.496 (4)
O1—C71.283 (3)C6—H6B0.95
O2—C71.232 (3)C10—C151.392 (4)
O3—C81.272 (3)C10—C111.405 (4)
O4—C81.245 (3)C10—C161.505 (4)
O5—C91.218 (4)C11—C121.387 (4)
O6—C91.319 (4)C11—C171.507 (4)
O6—H6A0.8401C12—C131.389 (4)
O7—C161.284 (3)C12—H12B0.95
O8A—C161.239 (14)C13—C141.386 (4)
O8B—C161.27 (3)C13—C181.497 (4)
O9—C171.240 (4)C14—C151.380 (4)
O10—C171.278 (4)C14—H14A0.95
O11—C181.208 (4)C15—H15A0.95
O12—C181.317 (4)
O10ii—Zn1—O197.31 (8)C1—C2—C8123.0 (2)
O10ii—Zn1—O3i119.28 (9)C4—C3—C2120.7 (3)
O1—Zn1—O3i92.78 (8)C4—C3—H3A119.7
O10ii—Zn1—O793.83 (9)C2—C3—H3A119.7
O1—Zn1—O7122.86 (8)C3—C4—C5119.7 (3)
O3i—Zn1—O7128.48 (8)C3—C4—H4A120.1
O9v—K1—O1993.43 (8)C5—C4—H4A120.1
O9v—K1—O5iv168.09 (8)C6—C5—C4119.6 (3)
O19—K1—O5iv91.36 (7)C6—C5—C9121.1 (3)
O9v—K1—O294.31 (7)C4—C5—C9119.3 (2)
O19—K1—O277.08 (7)C5—C6—C1121.0 (3)
O5iv—K1—O297.39 (7)C5—C6—H6B119.5
O9v—K1—O3iii74.95 (7)C1—C6—H6B119.5
O19—K1—O3iii82.82 (6)O2—C7—O1124.4 (2)
O5iv—K1—O3iii94.87 (7)O2—C7—C1119.4 (3)
O2—K1—O3iii156.63 (6)O1—C7—C1116.1 (2)
O9v—K1—O2998.37 (8)O4—C8—O3122.1 (3)
O19—K1—O29156.20 (7)O4—C8—C2119.5 (2)
O5iv—K1—O2973.45 (6)O3—C8—C2118.3 (2)
O2—K1—O29122.18 (6)O5—C9—O6124.1 (3)
O3iii—K1—O2980.42 (6)O5—C9—C5122.9 (3)
O11vii—K2—O8Avi83.8 (11)O6—C9—C5113.0 (2)
O11vii—K2—O1098.29 (7)C15—C10—C11119.3 (3)
O8Avi—K2—O10152.0 (5)C15—C10—C16118.3 (3)
O11vii—K2—O19102.72 (7)C11—C10—C16122.4 (2)
O8Avi—K2—O19138.6 (3)C12—C11—C10119.7 (2)
O10—K2—O1968.50 (7)C12—C11—C17119.7 (2)
O11vii—K2—O2iii170.71 (7)C10—C11—C17120.5 (2)
O8Avi—K2—O2iii92.8 (12)C11—C12—C13120.4 (3)
O10—K2—O2iii80.66 (6)C11—C12—H12B119.8
O19—K2—O2iii85.54 (6)C13—C12—H12B119.8
O11vii—K2—O3999.85 (7)C14—C13—C12119.9 (3)
O8Avi—K2—O3967.6 (6)C14—C13—C18118.5 (2)
O10—K2—O3984.58 (7)C12—C13—C18121.6 (3)
O19—K2—O39146.89 (7)C15—C14—C13120.2 (3)
O2iii—K2—O3970.88 (7)C15—C14—H14A119.9
C7—O1—Zn1115.32 (17)C13—C14—H14A119.9
C8—O3—Zn1v99.94 (17)C14—C15—C10120.5 (3)
C8—O4—Zn1v80.11 (16)C14—C15—H15A119.7
C9—O6—H6A109.5C10—C15—H15A119.7
C16—O7—Zn1100.78 (17)O8A—C16—O7121.6 (6)
C17—O10—Zn1iii124.00 (19)O8B—C16—O7121.3 (10)
K1—O19—K295.75 (8)O8A—C16—C10119.0 (9)
H19A—O19—H19B108.3O8B—C16—C10119.6 (14)
H29A—O29—H29B110.1O7—C16—C10117.9 (3)
H39A—O39—H39B105.4O9—C17—O10125.5 (3)
C6—C1—C2119.4 (2)O9—C17—C11119.6 (3)
C6—C1—C7118.8 (2)O10—C17—C11114.8 (3)
C2—C1—C7121.6 (2)O11—C18—O12123.2 (3)
C3—C2—C1119.7 (2)O11—C18—C13121.9 (3)
C3—C2—C8117.4 (2)O12—C18—C13114.9 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O29iv0.841.822.657 (3)176
O12—H12A···O39viii0.841.832.668 (3)176
O19—H19A···O70.832.022.805 (3)159
O19—H19B···O1iii0.812.222.986 (3)156
O29—H29A···O1vi0.842.102.903 (3)159
O29—H29B···O40.851.962.790 (3)165
O39—H39B···O7iii0.842.062.896 (3)177
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y, z; (vi) x+1, y+1, z; (viii) x+3, y, z+1.

Experimental details

Crystal data
Chemical formula[K2Zn(C9H4O6)2(H2O)3]
Mr613.86
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.9626 (2), 7.0317 (2), 22.9019 (5)
α, β, γ (°)93.372 (1), 91.821 (1), 102.932 (2)
V3)1089.76 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.697, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
14633, 3966, 3510
Rint0.059
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.110, 1.10
No. of reflections3966
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.82

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—O12.0322 (19)K1—O192.676 (2)
Zn1—O3i2.0343 (19)K1—O292.874 (2)
Zn1—O72.0379 (19)K2—O2iii2.833 (2)
Zn1—O10ii1.985 (2)K2—O8Avi2.600 (19)
K1—O22.746 (2)K2—O102.816 (2)
K1—O3iii2.807 (2)K2—O11vii2.577 (2)
K1—O5iv2.696 (2)K2—O192.827 (2)
K1—O9v2.655 (2)K2—O392.883 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O29iv0.841.822.657 (3)176
O12—H12A···O39viii0.841.832.668 (3)176
O19—H19A···O70.832.022.805 (3)159
O19—H19B···O1iii0.812.222.986 (3)156
O29—H29A···O1vi0.842.102.903 (3)159
O29—H29B···O40.851.962.790 (3)165
O39—H39B···O7iii0.842.062.896 (3)177
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y, z; (vi) x+1, y+1, z; (viii) x+3, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds