Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, bis­(2,2′-bipyridine N-oxide-κ2N,O)hexa­cosa­oxocopper(II)molybdenum(IV), [Cu2Mo8O26(C10H8N2O)4], was obtained by a hydro­thermal reaction. The Cu atom is coordinated by two O atoms and two N atoms from two 2,2′-bipyridine N-oxide (L) ligands and one terminal O atom from one [β-Mo8O26]4− cluster with a square-pyramidal coordination geometry; the apical Cu—O bond distance is significantly longer than Cu—O bond distances in the basal plane. Two terminal O atoms of the (β-Mo8O26)4− cluster link two [Cu(L)2]2+ units, forming a centrosymmetric dimer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018363/xu2239sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018363/xu2239Isup2.hkl
Contains datablock I

CCDC reference: 646633

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.050
  • wR factor = 0.123
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O13 .. 5.81 su PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 10 PLAT432_ALERT_2_C Short Inter X...Y Contact C10 .. C19 .. 3.18 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, there has been an increasing interest in the assembly of polyoxometalate clusters into extended inorganic or hybrid inorganic-organic solids (Sadakane et al., 1999; Kin & Pope, 1999), because of the remarkable features of metal oxide surfaces and their diversities in geometric topology by inclusion of transition-metal (TM) coordination complexes. Octamolybdate is an interesting cluster with a variety of structural isomers (Hagrman et al., 1997; Yang et al., 2002). As reported previously (Finn & Zubieta, 2001; Liu et al., 2001), much of the work has been focused on the metal complexes with (β-Mo8O26)4-clusters. In order to enrich this system, the title compound, (I), was isolated by hydrothermal method.

As shown in Fig. 1, the title compound constains one CuII ion, two L ligands and one (β-Mo8O26)4- cluster. The CuII ion exhibits a square pyramidal geometry and is coordinated by two oxygen atoms (Cu—O: 1.933 (4) and 1.928 (4) Å) and two nitrogen atoms (Cu—N: 2.016 (5) and 2.058 (6) Å) from two L ligands, and one terminal oxygen (Cu—O: 2.262 (4) Å) atom from the (β-Mo8O26)4-cluster. Two kinds of L ligands coordinate to one Cu atom as bidentate ligands. The dihedral angles between two rings from the same L ligand are 33.1° and 27.5°, respectively. Each (β-Mo8O26)4- cluster acts as a bidentate bridging ligand and coordinates to two CuII ions (Fig. 2). So according to the way of the coordinated mode, five kinds of oxygen atoms exist in the cluster: terminal oxygen atoms Ot, terminal oxygen atoms Ot' coordinated to metal center, µ2-O atoms, µ3-O atoms and µ4-O atoms. All of the distances of Mo—O are similar to the reported ones (Shen et al., 2004).

Related literature top

For general background, see: Finn & Zubieta (2001); Hagrman et al. (1997); Kin & Pope (1999); Liu et al. (2001); Ramirez & von Ostwalden (1959); Sadakane et al. (1999); Yang et al. (2002). For related structures, see: Shen et al. (2004)

Experimental top

Ligand L was synthesized according to the method reported by Ramirez & Ostwalden (1959). A mixture of Cu(OAc)2.H2O (0.040 g, 0.2 mmol), Na2MoO4.2H2O (0.242 g, 1.0 mmol), L (0.172 g, 1.0 mmol) and H2O (10 ml) was stirred for 1 h and then transferred and sealed in a 25 ml Teflonlined stainless steel container. The container was heated to 150°C and held at that temperature for 72 h, then cooled to room temperature. Blue crystals of title compound were collected in 58.3% yield based on Cu(OAc)2. Elemental analyses Calcd for C40H32Cu2Mo8N8O30: C, 24.03; H, 1.61; N, 5.60%. Found: C, 24.00; H, 1.63; N, 5.62%.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, there has been an increasing interest in the assembly of polyoxometalate clusters into extended inorganic or hybrid inorganic-organic solids (Sadakane et al., 1999; Kin & Pope, 1999), because of the remarkable features of metal oxide surfaces and their diversities in geometric topology by inclusion of transition-metal (TM) coordination complexes. Octamolybdate is an interesting cluster with a variety of structural isomers (Hagrman et al., 1997; Yang et al., 2002). As reported previously (Finn & Zubieta, 2001; Liu et al., 2001), much of the work has been focused on the metal complexes with (β-Mo8O26)4-clusters. In order to enrich this system, the title compound, (I), was isolated by hydrothermal method.

As shown in Fig. 1, the title compound constains one CuII ion, two L ligands and one (β-Mo8O26)4- cluster. The CuII ion exhibits a square pyramidal geometry and is coordinated by two oxygen atoms (Cu—O: 1.933 (4) and 1.928 (4) Å) and two nitrogen atoms (Cu—N: 2.016 (5) and 2.058 (6) Å) from two L ligands, and one terminal oxygen (Cu—O: 2.262 (4) Å) atom from the (β-Mo8O26)4-cluster. Two kinds of L ligands coordinate to one Cu atom as bidentate ligands. The dihedral angles between two rings from the same L ligand are 33.1° and 27.5°, respectively. Each (β-Mo8O26)4- cluster acts as a bidentate bridging ligand and coordinates to two CuII ions (Fig. 2). So according to the way of the coordinated mode, five kinds of oxygen atoms exist in the cluster: terminal oxygen atoms Ot, terminal oxygen atoms Ot' coordinated to metal center, µ2-O atoms, µ3-O atoms and µ4-O atoms. All of the distances of Mo—O are similar to the reported ones (Shen et al., 2004).

For general background, see: Finn & Zubieta (2001); Hagrman et al. (1997); Kin & Pope (1999); Liu et al. (2001); Ramirez & von Ostwalden (1959); Sadakane et al. (1999); Yang et al. (2002). For related structures, see: Shen et al. (2004)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the contents of the asymmetric unit and the atom numbering scheme.
[Figure 2] Fig. 2. Polyhedral and ball-stick representation of the dimer.
bis(2,2'-bipyridine N-oxide-κ2N,O)hexacosaoxocopper(II)molybdenum(IV) top
Crystal data top
[Cu2Mo8O26(C10H8N2O)4]F(000) = 1924
Mr = 1999.34Dx = 2.469 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 14895 reflections
a = 10.8210 (17) Åθ = 1.8–28.6°
b = 17.799 (2) ŵ = 2.68 mm1
c = 14.187 (3) ÅT = 293 K
β = 100.166 (5)°Block, blue
V = 2689.6 (8) Å30.40 × 0.38 × 0.20 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
6238 independent reflections
Radiation source: fine-focus sealed tube4242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.357, Tmax = 0.583k = 2317
15777 measured reflectionsl = 1912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
6238 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 1.99 e Å3
Crystal data top
[Cu2Mo8O26(C10H8N2O)4]V = 2689.6 (8) Å3
Mr = 1999.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.8210 (17) ŵ = 2.68 mm1
b = 17.799 (2) ÅT = 293 K
c = 14.187 (3) Å0.40 × 0.38 × 0.20 mm
β = 100.166 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6238 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4242 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.583Rint = 0.075
15777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.95Δρmax = 1.23 e Å3
6238 reflectionsΔρmin = 1.99 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34259 (8)0.98208 (4)0.91471 (5)0.0363 (2)
Mo10.11888 (5)0.94081 (3)0.67984 (3)0.02653 (14)
Mo20.24132 (6)0.85276 (3)0.51635 (4)0.03295 (16)
Mo30.14057 (5)1.03734 (3)0.46772 (3)0.02377 (14)
Mo40.02438 (5)0.87730 (3)0.36565 (4)0.02872 (15)
C10.5002 (7)0.8671 (4)0.8542 (6)0.055 (2)
H10.47310.84150.90390.066*
C20.5840 (8)0.8310 (5)0.8052 (7)0.072 (3)
H20.61340.78300.82250.086*
C30.6217 (8)0.8685 (4)0.7309 (6)0.063 (2)
H30.67420.84520.69460.075*
C40.5811 (7)0.9415 (4)0.7103 (5)0.0501 (19)
H40.60960.96860.66230.060*
C50.4977 (6)0.9736 (4)0.7620 (5)0.0375 (15)
C60.4494 (6)1.0502 (3)0.7347 (5)0.0351 (15)
C70.4444 (6)1.0780 (4)0.6457 (5)0.0409 (16)
H70.47021.04810.59910.049*
C80.4011 (6)1.1510 (4)0.6217 (5)0.0452 (18)
H80.39671.16900.55970.054*
C90.3656 (7)1.1953 (4)0.6912 (6)0.0519 (19)
H90.33581.24380.67700.062*
C100.3746 (7)1.1670 (4)0.7814 (6)0.0476 (19)
H100.35211.19720.82920.057*
C110.1887 (7)1.1000 (4)0.9804 (6)0.057 (2)
H110.22151.12650.93400.069*
C120.0967 (8)1.1345 (4)1.0210 (6)0.055 (2)
H120.06991.18301.00330.066*
C130.0453 (7)1.0948 (4)1.0891 (5)0.0517 (19)
H130.01791.11611.11700.062*
C140.0897 (7)1.0224 (4)1.1152 (5)0.0446 (18)
H140.05650.99501.16060.053*
C150.1853 (6)0.9923 (4)1.0714 (4)0.0336 (14)
C160.2374 (6)0.9187 (3)1.1036 (4)0.0312 (14)
C170.2456 (6)0.8946 (4)1.1981 (4)0.0339 (14)
H170.21590.92551.24200.041*
C180.2969 (6)0.8258 (3)1.2277 (4)0.0343 (15)
H180.30140.81051.29090.041*
C190.3418 (6)0.7796 (4)1.1625 (5)0.0377 (15)
H190.37840.73351.18160.045*
C200.3313 (6)0.8032 (4)1.0699 (4)0.0357 (15)
H200.35770.77171.02510.043*
N10.4574 (5)0.9349 (3)0.8340 (4)0.0404 (13)
N20.4157 (5)1.0958 (3)0.8036 (4)0.0416 (14)
N30.2833 (5)0.8710 (3)1.0421 (3)0.0316 (12)
N40.2341 (5)1.0310 (3)1.0033 (4)0.0457 (15)
O10.0818 (4)0.7978 (2)0.4085 (3)0.0405 (11)
O20.0604 (5)0.8703 (2)0.2439 (3)0.0430 (12)
O30.1568 (4)0.9471 (2)0.3940 (3)0.0267 (9)
O40.0424 (4)1.0006 (2)0.3476 (3)0.0277 (9)
O50.0477 (3)1.0719 (2)0.4804 (3)0.0248 (9)
O60.1935 (4)1.1205 (2)0.4329 (3)0.0350 (10)
O70.2674 (4)0.9756 (2)0.4708 (3)0.0308 (9)
O80.1511 (4)0.8562 (2)0.3869 (3)0.0320 (10)
O90.3890 (5)0.8305 (3)0.5016 (3)0.0522 (13)
O100.1803 (5)0.7707 (2)0.5506 (3)0.0485 (13)
O110.2636 (4)0.9055 (2)0.6369 (3)0.0345 (10)
O120.0541 (4)0.8596 (2)0.7123 (3)0.0375 (11)
O130.1864 (4)0.9832 (2)0.7857 (3)0.0342 (10)
O140.2724 (4)0.8878 (3)0.9478 (3)0.0393 (11)
O150.4261 (4)1.0752 (2)0.8964 (3)0.0465 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0461 (5)0.0390 (4)0.0242 (4)0.0001 (4)0.0075 (4)0.0028 (3)
Mo10.0344 (3)0.0322 (3)0.0136 (3)0.0019 (2)0.0060 (2)0.0027 (2)
Mo20.0451 (4)0.0343 (3)0.0221 (3)0.0076 (2)0.0135 (3)0.0031 (2)
Mo30.0284 (3)0.0291 (3)0.0154 (3)0.0022 (2)0.0085 (2)0.00181 (19)
Mo40.0387 (3)0.0288 (3)0.0208 (3)0.0006 (2)0.0112 (2)0.0012 (2)
C10.060 (5)0.052 (5)0.063 (6)0.002 (4)0.035 (4)0.007 (4)
C20.073 (6)0.049 (5)0.108 (8)0.021 (4)0.054 (6)0.021 (5)
C30.060 (5)0.059 (5)0.081 (6)0.015 (4)0.043 (5)0.000 (4)
C40.061 (5)0.045 (4)0.051 (5)0.002 (4)0.030 (4)0.003 (3)
C50.033 (4)0.045 (4)0.036 (4)0.004 (3)0.012 (3)0.003 (3)
C60.034 (4)0.036 (3)0.036 (4)0.001 (3)0.008 (3)0.002 (3)
C70.039 (4)0.047 (4)0.038 (4)0.010 (3)0.010 (3)0.004 (3)
C80.039 (4)0.053 (4)0.043 (4)0.013 (3)0.006 (3)0.005 (3)
C90.049 (5)0.038 (4)0.069 (6)0.005 (3)0.012 (4)0.002 (4)
C100.050 (5)0.037 (4)0.060 (5)0.000 (3)0.022 (4)0.009 (4)
C110.055 (5)0.052 (5)0.073 (6)0.003 (4)0.031 (4)0.013 (4)
C120.069 (6)0.044 (4)0.051 (5)0.010 (4)0.012 (4)0.007 (4)
C130.061 (5)0.061 (5)0.035 (4)0.016 (4)0.015 (4)0.006 (4)
C140.059 (5)0.049 (4)0.030 (4)0.013 (4)0.021 (3)0.008 (3)
C150.034 (3)0.043 (4)0.025 (3)0.000 (3)0.009 (3)0.000 (3)
C160.034 (3)0.039 (3)0.023 (3)0.006 (3)0.011 (3)0.003 (3)
C170.041 (4)0.041 (4)0.024 (3)0.001 (3)0.015 (3)0.001 (3)
C180.046 (4)0.043 (4)0.015 (3)0.002 (3)0.008 (3)0.000 (3)
C190.041 (4)0.037 (4)0.036 (4)0.004 (3)0.008 (3)0.002 (3)
C200.041 (4)0.040 (4)0.028 (4)0.006 (3)0.011 (3)0.005 (3)
N10.035 (3)0.041 (3)0.046 (4)0.000 (3)0.011 (3)0.002 (3)
N20.042 (3)0.045 (3)0.041 (4)0.011 (3)0.015 (3)0.008 (3)
N30.037 (3)0.045 (3)0.013 (2)0.004 (2)0.003 (2)0.001 (2)
N40.050 (4)0.048 (4)0.040 (4)0.002 (3)0.011 (3)0.014 (3)
O10.051 (3)0.034 (2)0.041 (3)0.000 (2)0.022 (2)0.001 (2)
O20.065 (3)0.046 (3)0.020 (2)0.001 (2)0.014 (2)0.0080 (19)
O30.033 (2)0.033 (2)0.014 (2)0.0038 (17)0.0038 (17)0.0003 (16)
O40.035 (2)0.037 (2)0.013 (2)0.0007 (18)0.0088 (17)0.0021 (17)
O50.028 (2)0.031 (2)0.016 (2)0.0010 (17)0.0058 (17)0.0005 (16)
O60.040 (3)0.039 (2)0.029 (2)0.0037 (19)0.013 (2)0.0070 (19)
O70.035 (2)0.039 (2)0.020 (2)0.0016 (19)0.0098 (18)0.0010 (17)
O80.038 (2)0.040 (2)0.021 (2)0.0049 (19)0.0130 (19)0.0025 (18)
O90.054 (3)0.063 (3)0.044 (3)0.024 (3)0.020 (3)0.005 (2)
O100.079 (4)0.043 (3)0.025 (3)0.003 (3)0.014 (2)0.005 (2)
O110.036 (2)0.047 (3)0.021 (2)0.003 (2)0.0058 (19)0.0016 (19)
O120.047 (3)0.035 (2)0.032 (3)0.002 (2)0.012 (2)0.0044 (19)
O130.038 (2)0.047 (3)0.016 (2)0.003 (2)0.0007 (18)0.0010 (18)
O140.051 (3)0.055 (3)0.013 (2)0.006 (2)0.007 (2)0.000 (2)
O150.060 (3)0.048 (3)0.036 (3)0.014 (2)0.021 (2)0.008 (2)
Geometric parameters (Å, º) top
Cu1—O151.928 (4)C5—C61.487 (9)
Cu1—O141.933 (4)C6—C71.349 (9)
Cu1—N12.016 (5)C6—N21.368 (8)
Cu1—N42.058 (6)C7—C81.402 (9)
Cu1—O132.262 (4)C7—H70.9300
Mo1—O121.705 (4)C8—C91.369 (9)
Mo1—O131.723 (4)C8—H80.9300
Mo1—O111.885 (4)C9—C101.363 (10)
Mo1—O4i2.011 (4)C9—H90.9300
Mo1—O5i2.280 (4)C10—N21.361 (8)
Mo1—O3i2.323 (4)C10—H100.9300
Mo1—Mo3i3.2157 (8)C11—N41.342 (9)
Mo2—O91.695 (5)C11—C121.378 (10)
Mo2—O101.709 (4)C11—H110.9300
Mo2—O81.922 (4)C12—C131.389 (10)
Mo2—O111.929 (4)C12—H120.9300
Mo2—O72.311 (4)C13—C141.402 (9)
Mo2—O5i2.495 (4)C13—H130.9300
Mo3—O61.693 (4)C14—C151.405 (9)
Mo3—O71.753 (4)C14—H140.9300
Mo3—O41.955 (4)C15—N41.366 (8)
Mo3—O3i1.958 (4)C15—C161.467 (8)
Mo3—O52.166 (4)C16—N31.371 (7)
Mo3—O5i2.366 (4)C16—C171.395 (8)
Mo3—Mo1i3.2157 (8)C17—C181.378 (8)
Mo4—O11.700 (4)C17—H170.9300
Mo4—O21.706 (4)C18—C191.388 (8)
Mo4—O81.907 (4)C18—H180.9300
Mo4—O31.991 (4)C19—C201.364 (8)
Mo4—O42.339 (4)C19—H190.9300
Mo4—O5i2.365 (4)C20—N31.346 (8)
C1—N11.307 (9)C20—H200.9300
C1—C21.392 (9)N2—O151.352 (7)
C1—H10.9300N3—O141.356 (6)
C2—C31.369 (10)O3—Mo3i1.958 (4)
C2—H20.9300O3—Mo1i2.323 (4)
C3—C41.386 (10)O4—Mo1i2.011 (4)
C3—H30.9300O5—Mo1i2.280 (4)
C4—C51.383 (9)O5—Mo4i2.365 (4)
C4—H40.9300O5—Mo3i2.366 (4)
C5—N11.366 (8)O5—Mo2i2.495 (4)
O15—Cu1—O14173.07 (19)C2—C3—C4119.5 (7)
O15—Cu1—N186.0 (2)C2—C3—H3120.2
O14—Cu1—N194.8 (2)C4—C3—H3120.2
O15—Cu1—N492.9 (2)C5—C4—C3119.2 (7)
O14—Cu1—N485.9 (2)C5—C4—H4120.4
N1—Cu1—N4176.7 (2)C3—C4—H4120.4
O15—Cu1—O13100.63 (18)N1—C5—C4120.8 (6)
O14—Cu1—O1386.26 (17)N1—C5—C6120.9 (6)
N1—Cu1—O1389.5 (2)C4—C5—C6118.3 (6)
N4—Cu1—O1393.8 (2)C7—C6—N2118.7 (6)
O12—Mo1—O13105.5 (2)C7—C6—C5122.3 (6)
O12—Mo1—O11102.08 (19)N2—C6—C5118.9 (6)
O13—Mo1—O11100.29 (19)C6—C7—C8121.5 (7)
O12—Mo1—O4i96.18 (19)C6—C7—H7119.2
O13—Mo1—O4i99.31 (18)C8—C7—H7119.2
O11—Mo1—O4i148.43 (16)C9—C8—C7118.9 (7)
O12—Mo1—O5i95.85 (17)C9—C8—H8120.5
O13—Mo1—O5i158.31 (17)C7—C8—H8120.5
O11—Mo1—O5i78.36 (15)C10—C9—C8118.7 (7)
O4i—Mo1—O5i74.31 (14)C10—C9—H9120.6
O12—Mo1—O3i164.48 (19)C8—C9—H9120.6
O13—Mo1—O3i86.30 (17)N2—C10—C9121.8 (7)
O11—Mo1—O3i85.26 (16)N2—C10—H10119.1
O4i—Mo1—O3i71.58 (14)C9—C10—H10119.1
O5i—Mo1—O3i72.01 (13)N4—C11—C12124.6 (7)
O12—Mo1—Mo3i85.69 (16)N4—C11—H11117.7
O13—Mo1—Mo3i134.55 (14)C12—C11—H11117.7
O11—Mo1—Mo3i120.62 (12)C11—C12—C13118.1 (7)
O4i—Mo1—Mo3i35.23 (11)C11—C12—H12121.0
O5i—Mo1—Mo3i42.28 (9)C13—C12—H12121.0
O3i—Mo1—Mo3i78.81 (10)C12—C13—C14119.4 (6)
O9—Mo2—O10104.8 (2)C12—C13—H13120.3
O9—Mo2—O8102.7 (2)C14—C13—H13120.3
O10—Mo2—O898.2 (2)C13—C14—C15118.6 (6)
O9—Mo2—O11104.5 (2)C13—C14—H14120.7
O10—Mo2—O1199.11 (19)C15—C14—H14120.7
O8—Mo2—O11142.59 (17)N4—C15—C14121.8 (6)
O9—Mo2—O791.2 (2)N4—C15—C16119.7 (5)
O10—Mo2—O7163.9 (2)C14—C15—C16118.4 (5)
O8—Mo2—O776.66 (16)N3—C16—C17116.9 (6)
O11—Mo2—O777.58 (16)N3—C16—C15121.1 (5)
O9—Mo2—O5i160.23 (19)C17—C16—C15122.0 (5)
O10—Mo2—O5i94.96 (19)C18—C17—C16121.3 (6)
O8—Mo2—O5i73.38 (14)C18—C17—H17119.3
O11—Mo2—O5i72.29 (15)C16—C17—H17119.3
O7—Mo2—O5i68.99 (13)C17—C18—C19119.5 (6)
O6—Mo3—O7104.60 (19)C17—C18—H18120.2
O6—Mo3—O4101.40 (18)C19—C18—H18120.2
O7—Mo3—O496.58 (18)C20—C19—C18118.7 (6)
O6—Mo3—O3i101.20 (18)C20—C19—H19120.7
O7—Mo3—O3i97.59 (17)C18—C19—H19120.7
O4—Mo3—O3i149.26 (16)N3—C20—C19121.3 (5)
O6—Mo3—O598.47 (17)N3—C20—H20119.3
O7—Mo3—O5156.92 (16)C19—C20—H20119.3
O4—Mo3—O578.08 (15)C1—N1—C5118.9 (6)
O3i—Mo3—O578.21 (15)C1—N1—Cu1119.4 (5)
O6—Mo3—O5i173.94 (17)C5—N1—Cu1121.7 (4)
O7—Mo3—O5i81.39 (15)O15—N2—C10116.4 (5)
O4—Mo3—O5i78.51 (14)O15—N2—C6123.2 (6)
O3i—Mo3—O5i76.84 (14)C10—N2—C6120.3 (6)
O5—Mo3—O5i75.54 (15)C20—N3—O14116.7 (5)
O6—Mo3—Mo1i90.32 (15)C20—N3—C16122.2 (5)
O7—Mo3—Mo1i132.99 (13)O14—N3—C16120.9 (5)
O4—Mo3—Mo1i36.41 (11)C11—N4—C15117.5 (6)
O3i—Mo3—Mo1i123.28 (12)C11—N4—Cu1117.6 (5)
O5—Mo3—Mo1i45.09 (10)C15—N4—Cu1123.5 (4)
O5i—Mo3—Mo1i86.09 (9)Mo3i—O3—Mo4110.49 (18)
O1—Mo4—O2105.6 (2)Mo3i—O3—Mo1i109.81 (17)
O1—Mo4—O8101.32 (19)Mo4—O3—Mo1i104.73 (15)
O2—Mo4—O8100.90 (19)Mo3—O4—Mo1i108.35 (18)
O1—Mo4—O397.24 (18)Mo3—O4—Mo4110.44 (16)
O2—Mo4—O3101.88 (19)Mo1i—O4—Mo4103.48 (16)
O8—Mo4—O3145.40 (16)Mo3—O5—Mo1i92.63 (13)
O1—Mo4—O4163.66 (17)Mo3—O5—Mo4i91.37 (14)
O2—Mo4—O488.70 (18)Mo1i—O5—Mo4i163.22 (18)
O8—Mo4—O483.32 (16)Mo3—O5—Mo3i104.46 (14)
O3—Mo4—O471.55 (14)Mo1i—O5—Mo3i98.10 (14)
O1—Mo4—O5i94.00 (17)Mo4i—O5—Mo3i96.66 (13)
O2—Mo4—O5i160.31 (17)Mo3—O5—Mo2i163.68 (18)
O8—Mo4—O5i76.83 (15)Mo1i—O5—Mo2i86.25 (12)
O3—Mo4—O5i72.94 (14)Mo4i—O5—Mo2i85.35 (11)
O4—Mo4—O5i71.62 (13)Mo3i—O5—Mo2i91.81 (12)
N1—C1—C2123.6 (7)Mo3—O7—Mo2117.80 (19)
N1—C1—H1118.2Mo4—O8—Mo2118.75 (18)
C2—C1—H1118.2Mo1—O11—Mo2117.9 (2)
C3—C2—C1117.9 (7)Mo1—O13—Cu1147.4 (2)
C3—C2—H2121.1N3—O14—Cu1117.5 (3)
C1—C2—H2121.1N2—O15—Cu1113.8 (4)
N1—C1—C2—C31.1 (14)O1—Mo4—O4—Mo343.4 (7)
C1—C2—C3—C43.3 (14)O2—Mo4—O4—Mo3165.4 (2)
C2—C3—C4—C53.5 (13)O8—Mo4—O4—Mo364.26 (19)
C3—C4—C5—N11.5 (11)O3—Mo4—O4—Mo391.63 (19)
C3—C4—C5—C6176.3 (7)O5i—Mo4—O4—Mo314.05 (15)
N1—C5—C6—C7152.9 (7)O1—Mo4—O4—Mo1i72.4 (7)
C4—C5—C6—C724.9 (10)O2—Mo4—O4—Mo1i78.8 (2)
N1—C5—C6—N231.0 (9)O8—Mo4—O4—Mo1i179.96 (18)
C4—C5—C6—N2151.2 (6)O3—Mo4—O4—Mo1i24.15 (15)
N2—C6—C7—C82.5 (10)O5i—Mo4—O4—Mo1i101.73 (16)
C5—C6—C7—C8178.6 (6)O6—Mo3—O5—Mo1i81.92 (17)
C6—C7—C8—C91.3 (10)O7—Mo3—O5—Mo1i96.7 (4)
C7—C8—C9—C100.6 (10)O4—Mo3—O5—Mo1i18.03 (14)
C8—C9—C10—N21.2 (11)O3i—Mo3—O5—Mo1i178.32 (16)
N4—C11—C12—C131.3 (13)O5i—Mo3—O5—Mo1i99.06 (16)
C11—C12—C13—C141.1 (12)O6—Mo3—O5—Mo4i81.78 (17)
C12—C13—C14—C150.0 (11)O7—Mo3—O5—Mo4i99.6 (4)
C13—C14—C15—N41.2 (11)O4—Mo3—O5—Mo4i178.27 (15)
C13—C14—C15—C16175.9 (6)O3i—Mo3—O5—Mo4i17.98 (13)
N4—C15—C16—N333.1 (9)O5i—Mo3—O5—Mo4i97.23 (15)
C14—C15—C16—N3149.7 (6)Mo1i—Mo3—O5—Mo4i163.70 (18)
N4—C15—C16—C17145.2 (6)O6—Mo3—O5—Mo3i179.02 (18)
C14—C15—C16—C1732.0 (9)O7—Mo3—O5—Mo3i2.4 (5)
N3—C16—C17—C180.4 (9)O4—Mo3—O5—Mo3i81.04 (16)
C15—C16—C17—C18178.8 (6)O3i—Mo3—O5—Mo3i79.26 (16)
C16—C17—C18—C190.3 (10)O5i—Mo3—O5—Mo3i0.0
C17—C18—C19—C201.4 (10)Mo1i—Mo3—O5—Mo3i99.06 (16)
C18—C19—C20—N32.8 (10)O6—Mo3—O5—Mo2i3.7 (7)
C2—C1—N1—C50.9 (12)O7—Mo3—O5—Mo2i177.7 (5)
C2—C1—N1—Cu1177.2 (7)O4—Mo3—O5—Mo2i103.7 (6)
C4—C5—N1—C10.7 (10)O3i—Mo3—O5—Mo2i96.0 (6)
C6—C5—N1—C1178.5 (7)O5i—Mo3—O5—Mo2i175.3 (7)
C4—C5—N1—Cu1176.9 (5)Mo1i—Mo3—O5—Mo2i85.6 (6)
C6—C5—N1—Cu15.3 (9)O6—Mo3—O7—Mo2179.6 (2)
O15—Cu1—N1—C1143.8 (6)O4—Mo3—O7—Mo276.8 (2)
O14—Cu1—N1—C129.3 (6)O3i—Mo3—O7—Mo275.8 (2)
O13—Cu1—N1—C1115.5 (6)O5—Mo3—O7—Mo21.9 (5)
O15—Cu1—N1—C532.3 (5)O5i—Mo3—O7—Mo20.46 (18)
O14—Cu1—N1—C5154.6 (5)Mo1i—Mo3—O7—Mo275.9 (2)
O13—Cu1—N1—C568.3 (5)O9—Mo2—O7—Mo3179.4 (3)
C9—C10—N2—O15177.1 (6)O10—Mo2—O7—Mo33.7 (8)
C9—C10—N2—C60.0 (10)O8—Mo2—O7—Mo376.6 (2)
C7—C6—N2—O15175.0 (6)O11—Mo2—O7—Mo376.0 (2)
C5—C6—N2—O151.2 (9)O5i—Mo2—O7—Mo30.47 (18)
C7—C6—N2—C101.9 (9)O1—Mo4—O8—Mo269.1 (3)
C5—C6—N2—C10178.1 (6)O2—Mo4—O8—Mo2177.6 (2)
C19—C20—N3—O14177.5 (6)O3—Mo4—O8—Mo252.0 (4)
C19—C20—N3—C163.0 (10)O4—Mo4—O8—Mo295.0 (2)
C17—C16—N3—C201.7 (9)O5i—Mo4—O8—Mo222.4 (2)
C15—C16—N3—C20179.8 (6)O9—Mo2—O8—Mo4178.5 (3)
C17—C16—N3—O14176.0 (5)O10—Mo2—O8—Mo471.2 (3)
C15—C16—N3—O145.6 (8)O11—Mo2—O8—Mo445.6 (4)
C12—C11—N4—C150.2 (12)O7—Mo2—O8—Mo493.2 (2)
C12—C11—N4—Cu1167.3 (7)O5i—Mo2—O8—Mo421.51 (19)
C14—C15—N4—C111.1 (10)O12—Mo1—O11—Mo272.2 (3)
C16—C15—N4—C11176.0 (6)O13—Mo1—O11—Mo2179.4 (2)
C14—C15—N4—Cu1165.2 (5)O4i—Mo1—O11—Mo251.8 (4)
C16—C15—N4—Cu117.7 (8)O5i—Mo1—O11—Mo221.4 (2)
O15—Cu1—N4—C1139.5 (6)O3i—Mo1—O11—Mo294.0 (2)
O14—Cu1—N4—C11147.3 (6)Mo3i—Mo1—O11—Mo220.0 (3)
O13—Cu1—N4—C1161.4 (6)O9—Mo2—O11—Mo1179.7 (2)
O15—Cu1—N4—C15154.2 (5)O10—Mo2—O11—Mo172.3 (3)
O14—Cu1—N4—C1518.9 (5)O8—Mo2—O11—Mo144.3 (4)
O13—Cu1—N4—C15104.9 (5)O7—Mo2—O11—Mo191.7 (2)
O1—Mo4—O3—Mo3i70.5 (2)O5i—Mo2—O11—Mo120.1 (2)
O2—Mo4—O3—Mo3i178.1 (2)O12—Mo1—O13—Cu171.2 (4)
O8—Mo4—O3—Mo3i51.7 (3)O11—Mo1—O13—Cu134.5 (5)
O4—Mo4—O3—Mo3i97.32 (19)O4i—Mo1—O13—Cu1170.3 (4)
O5i—Mo4—O3—Mo3i21.53 (16)O5i—Mo1—O13—Cu1118.9 (5)
O1—Mo4—O3—Mo1i171.35 (19)O3i—Mo1—O13—Cu1119.0 (4)
O2—Mo4—O3—Mo1i63.7 (2)Mo3i—Mo1—O13—Cu1170.6 (3)
O8—Mo4—O3—Mo1i66.5 (3)O15—Cu1—O13—Mo1117.0 (4)
O4—Mo4—O3—Mo1i20.87 (13)O14—Cu1—O13—Mo163.7 (4)
O5i—Mo4—O3—Mo1i96.67 (16)N1—Cu1—O13—Mo131.2 (4)
O6—Mo3—O4—Mo1i74.7 (2)N4—Cu1—O13—Mo1149.3 (4)
O7—Mo3—O4—Mo1i178.90 (18)C20—N3—O14—Cu1128.7 (5)
O3i—Mo3—O4—Mo1i61.9 (4)C16—N3—O14—Cu156.8 (6)
O5—Mo3—O4—Mo1i21.66 (16)N1—Cu1—O14—N3122.5 (4)
O5i—Mo3—O4—Mo1i99.10 (17)N4—Cu1—O14—N354.3 (4)
O6—Mo3—O4—Mo4172.59 (18)O13—Cu1—O14—N3148.3 (4)
O7—Mo3—O4—Mo466.20 (19)C10—N2—O15—Cu1128.5 (5)
O3i—Mo3—O4—Mo450.8 (4)C6—N2—O15—Cu154.4 (7)
O5—Mo3—O4—Mo491.03 (17)N1—Cu1—O15—N259.8 (4)
O5i—Mo3—O4—Mo413.59 (15)N4—Cu1—O15—N2123.3 (4)
Mo1i—Mo3—O4—Mo4112.7 (2)O13—Cu1—O15—N228.9 (4)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Mo8O26(C10H8N2O)4]
Mr1999.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8210 (17), 17.799 (2), 14.187 (3)
β (°) 100.166 (5)
V3)2689.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.40 × 0.38 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.357, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
15777, 6238, 4242
Rint0.075
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 0.95
No. of reflections6238
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.99

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected bond lengths (Å) top
Cu1—O151.928 (4)Cu1—N42.058 (6)
Cu1—O141.933 (4)Cu1—O132.262 (4)
Cu1—N12.016 (5)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds