Download citation
Download citation
link to html
The phase transition observed in a temperature-dependent experiment at 174 K is unachievable under high-pressure conditions. Negative thermal expansion for phase (II) and negative compressibility for phase (I) were observed. A new salt of 1H-pyrazole-1-carboxamidine, (HPyCA)NO3, for guanylation reaction was obtained in a crystalline form. The compound crystallizes in monoclinic space group P21/c and a phase transition at 174 K to triclinic modification P1 was found. An unusual increase of the unit-cell volume was observed just after transition. Although the volume decreases upon cooling, it remains higher down to 160 K in comparison to the unit-cell volume of phase (I). The mechanism of the phase transition is connected with a minor movement of the nitrate anions. The triclinic phase was unreachable at room-temperature high-pressure conditions up to 1.27 GPa. On further compression, delamination of the crystal was observed. Phase (I) exhibits negative linear compressibility, whereas abnormal behaviour of the b unit-cell parameter upon cooling was observed, indicating negative thermal linear expansion. The unusual nature of the compound is associated with the two-dimensional hydrogen-bonding network, which is less susceptible to deformation than stacking interactions connecting the layers of hydrogen bonds. Infrared spectroscopy and differential scanning calorimetry measurements were used to investigate the changes of intermolecular interactions during the phase transition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621010970/xk5086sup1.cif
Contains datablocks 0.12GPa, 0.13GPa, 0.19GPa, 0.28GPa, 0.32GPa, 0.39GPa, 0.44GPa, 0.46GPa, 0.52GPa, 0.58GPa, 0.67GPa, 0.89GPa, 1.11GPa, 1.15GPa, 1.27GPa, 100K, 300K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.12GPasup3.hkl
Contains datablock 0.12GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.13GPasup4.hkl
Contains datablock 0.13GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.19GPasup5.hkl
Contains datablock 0.19GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.28GPasup6.hkl
Contains datablock 0.28GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.32GPasup7.hkl
Contains datablock 0.32GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.39GPasup8.hkl
Contains datablock 0.39GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.44GPasup9.hkl
Contains datablock 044GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.46GPasup10.hkl
Contains datablock 0.46GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.52GPasup11.hkl
Contains datablock 0.52GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.58GPasup12.hkl
Contains datablock 0.58GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.67GPasup13.hkl
Contains datablock 0.67GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50860.89GPasup14.hkl
Contains datablock 0.89GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50861.11GPasup15.hkl
Contains datablock 111GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50861.15GPasup16.hkl
Contains datablock 115GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk50861.27GPasup17.hkl
Contains datablock 1.27GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk5086100Ksup18.hkl
Contains datablock 100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010970/xk5086300Ksup19.hkl
Contains datablock 300K

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621010970/xk5086sup20.pdf
A list of experimental frequencies taken from Raman and IR spectra, geometry of selected hydrogen bonds, reconstruction of a reciprocal space at (h0l) plane at 300 and 174K, evolution of the IR spectra, juxtaposition of the IR and Raman spectrum at ambient conditions, Phase diagram for (HPyCA)NO3

CCDC references: 2099980; 2099981; 2099982; 2099983; 2099984; 2099985; 2099986; 2099987; 2099988; 2099989; 2099990; 2099991; 2099992; 2099993; 2099994; 2099995; 2099996

Computing details top

For all structures, data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for 0.12GPa, 0.13GPa, 0.19GPa, 0.28GPa, 0.32GPa, 0.39GPa, 0.44GPa, 0.46GPa, 0.52GPa, 0.67GPa, 0.89GPa, 1.11GPa, 1.15GPa, 1.27GPa; ShelXT (Sheldrick, 2015) for 0.58GPa, 100K, 300K. For all structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(0.12GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1374 (19) ÅCell parameters from 438 reflections
b = 10.305 (10) Åθ = 3.5–19.9°
c = 13.935 (5) ŵ = 0.14 mm1
β = 99.71 (3)°T = 293 K
V = 727.2 (8) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
533 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 77
Tmin = 0.205, Tmax = 1.000l = 1616
3916 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.042P)2 + 1.1814P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
533 reflectionsΔρmax = 0.15 e Å3
109 parametersΔρmin = 0.17 e Å3
54 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1107 (16)0.7847 (14)0.5402 (7)0.070 (4)
H10.0418110.8240340.5075980.084*
C20.3306 (14)0.8552 (12)0.5874 (5)0.069 (3)
H20.3530750.9447440.5890480.082*
C30.4970 (17)0.7666 (14)0.6284 (5)0.066 (3)
H30.6623040.7820800.6654020.079*
C40.4752 (17)0.5217 (14)0.6284 (5)0.059 (3)
N10.3825 (13)0.6464 (11)0.6068 (4)0.057 (3)
N20.1403 (10)0.6610 (11)0.5465 (5)0.064 (4)
N30.3391 (12)0.4213 (10)0.5917 (4)0.076 (3)
H3A0.3993020.3442800.6045770.091*
H3B0.1891020.4321860.5545560.091*
N40.7069 (10)0.5069 (8)0.6858 (4)0.070 (4)
H4A0.7692220.4302970.6992450.084*
H4B0.7948830.5738090.7096050.084*
N50.2477 (19)0.6494 (19)0.8251 (6)0.066 (6)
O10.4839 (9)0.6741 (7)0.8580 (3)0.075 (3)
O20.1697 (19)0.5353 (15)0.8211 (6)0.107 (6)
O30.0898 (11)0.7371 (10)0.7940 (4)0.085 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (5)0.061 (13)0.086 (6)0.009 (5)0.000 (4)0.015 (8)
C20.065 (6)0.066 (12)0.073 (5)0.008 (4)0.004 (4)0.005 (6)
C30.058 (5)0.069 (11)0.066 (5)0.013 (4)0.001 (4)0.001 (6)
C40.043 (4)0.070 (11)0.065 (5)0.005 (4)0.011 (3)0.001 (6)
N10.035 (4)0.065 (10)0.069 (4)0.004 (3)0.004 (3)0.007 (5)
N20.045 (4)0.065 (13)0.074 (4)0.003 (4)0.008 (3)0.013 (6)
N30.057 (5)0.070 (11)0.091 (4)0.006 (4)0.017 (3)0.004 (5)
N40.057 (4)0.065 (14)0.080 (4)0.000 (3)0.013 (3)0.014 (4)
N50.056 (7)0.07 (2)0.070 (4)0.002 (5)0.001 (4)0.003 (6)
O10.048 (4)0.071 (12)0.099 (4)0.008 (3)0.007 (3)0.004 (4)
O20.078 (6)0.08 (2)0.152 (6)0.014 (6)0.022 (4)0.010 (7)
O30.054 (4)0.103 (15)0.094 (4)0.010 (4)0.002 (3)0.018 (5)
Geometric parameters (Å, º) top
C1—C21.409 (14)C4—N41.326 (9)
C1—N21.285 (14)N1—N21.387 (9)
C2—C31.313 (15)N5—O11.249 (9)
C3—N11.382 (16)N5—O21.24 (2)
C4—N11.386 (16)N5—O31.243 (19)
C4—N31.304 (14)
N2—C1—C2113.8 (8)C3—N1—N2109.9 (11)
C3—C2—C1104.9 (12)C4—N1—N2118.1 (11)
C2—C3—N1107.8 (9)C1—N2—N1103.4 (9)
N3—C4—N1120.6 (9)O2—N5—O1119.8 (19)
N3—C4—N4120.9 (12)O2—N5—O3119.1 (11)
N4—C4—N1118.6 (12)O3—N5—O1121.1 (17)
C3—N1—C4131.8 (10)
(0.13GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1439 (9) ÅCell parameters from 1185 reflections
b = 10.2415 (9) Åθ = 4.0–21.9°
c = 14.008 (9) ŵ = 0.14 mm1
β = 100.11 (4)°T = 293 K
V = 726.5 (5) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
457 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.2214 pixels mm-1θmax = 25.1°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.222, Tmax = 1.000l = 89
3998 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.797P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.10 e Å3
457 reflectionsΔρmin = 0.13 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.024 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1111 (14)0.7877 (5)0.5380 (8)0.059 (9)
H10.0354970.8273090.5008790.071*
C20.3256 (15)0.8563 (5)0.5892 (9)0.069 (9)
H20.3468470.9464750.5927810.083*
C30.4951 (15)0.7654 (4)0.6322 (9)0.067 (9)
H30.6568290.7801550.6722480.080*
C40.4781 (15)0.5226 (4)0.6294 (9)0.037 (9)
N10.3828 (11)0.6469 (3)0.6056 (7)0.040 (8)
N20.1402 (10)0.6607 (3)0.5482 (7)0.062 (7)
N30.3397 (11)0.4238 (4)0.5910 (7)0.071 (8)
H3A0.3984220.3456750.6021860.085*
H3B0.1893760.4365080.5542660.085*
N40.7073 (11)0.5080 (4)0.6856 (7)0.069 (7)
H4A0.7711110.4310930.6981100.083*
H4B0.7943730.5753850.7099910.083*
N50.2467 (12)0.6486 (4)0.8249 (8)0.077 (9)
O10.4850 (9)0.6735 (3)0.8574 (6)0.060 (6)
O20.1682 (10)0.5354 (3)0.8225 (7)0.107 (8)
O30.0896 (9)0.7382 (3)0.7936 (6)0.065 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (6)0.051 (4)0.06 (2)0.003 (3)0.000 (11)0.002 (4)
C20.076 (7)0.043 (3)0.08 (2)0.009 (3)0.001 (11)0.003 (4)
C30.060 (6)0.047 (3)0.08 (2)0.010 (3)0.006 (10)0.016 (4)
C40.036 (6)0.048 (3)0.03 (2)0.001 (3)0.020 (11)0.001 (4)
N10.033 (5)0.046 (3)0.04 (2)0.000 (2)0.011 (10)0.001 (3)
N20.045 (4)0.045 (3)0.089 (16)0.001 (2)0.011 (8)0.002 (3)
N30.063 (6)0.042 (3)0.093 (17)0.002 (2)0.027 (9)0.002 (3)
N40.055 (5)0.065 (3)0.073 (17)0.000 (2)0.026 (9)0.003 (4)
N50.063 (6)0.058 (3)0.10 (2)0.001 (3)0.027 (10)0.001 (4)
O10.041 (4)0.058 (2)0.077 (15)0.0050 (18)0.000 (7)0.009 (3)
O20.071 (5)0.055 (3)0.176 (18)0.020 (2)0.033 (9)0.001 (3)
O30.046 (5)0.071 (3)0.076 (16)0.008 (2)0.003 (8)0.013 (3)
Geometric parameters (Å, º) top
C1—C21.396 (7)C4—N41.306 (6)
C1—N21.315 (6)N1—N21.368 (5)
C2—C31.344 (7)N5—O11.256 (6)
C3—N11.367 (6)N5—O21.227 (5)
C4—N11.384 (6)N5—O31.250 (5)
C4—N31.299 (6)
N2—C1—C2112.2 (5)C3—N1—N2111.6 (4)
C3—C2—C1105.9 (4)N2—N1—C4119.0 (4)
C2—C3—N1106.4 (4)C1—N2—N1103.9 (4)
N3—C4—N1118.1 (4)O2—N5—O1119.8 (4)
N3—C4—N4122.1 (4)O2—N5—O3119.7 (5)
N4—C4—N1119.7 (4)O3—N5—O1120.5 (4)
C3—N1—C4129.5 (4)
(0.19GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1216 (12) ÅCell parameters from 1212 reflections
b = 10.2236 (11) Åθ = 4.0–22.2°
c = 13.952 (10) ŵ = 0.14 mm1
β = 99.70 (5)°T = 293 K
V = 720.1 (6) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
445 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.2214 pixels mm-1θmax = 25.1°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.353, Tmax = 1.000l = 99
3976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1077P)2 + 0.7671P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
445 reflectionsΔρmax = 0.15 e Å3
109 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1087 (19)0.7885 (6)0.5374 (11)0.077 (11)
H10.0370380.8277900.4995290.092*
C20.324 (2)0.8571 (6)0.5900 (13)0.069 (12)
H20.3442630.9474030.5950410.082*
C30.495 (2)0.7666 (5)0.6313 (12)0.073 (11)
H30.6583720.7812700.6701490.088*
C40.477 (2)0.5229 (5)0.6302 (12)0.058 (12)
N10.3806 (16)0.6468 (4)0.6050 (9)0.045 (10)
N20.1399 (15)0.6614 (4)0.5488 (9)0.077 (9)
N30.3389 (15)0.4240 (5)0.5916 (9)0.070 (8)
H3A0.4002600.3459430.6010610.084*
H3B0.1859940.4365820.5565570.084*
N40.7079 (16)0.5087 (5)0.6834 (10)0.076 (9)
H4A0.7745250.4318360.6941830.092*
H4B0.7947320.5761750.7080140.092*
N50.2461 (17)0.6480 (5)0.8264 (10)0.072 (11)
O10.4846 (12)0.6734 (4)0.8569 (8)0.088 (8)
O20.1671 (13)0.5350 (4)0.8237 (8)0.091 (10)
O30.0884 (14)0.7378 (4)0.7939 (9)0.085 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (9)0.047 (4)0.12 (2)0.001 (3)0.010 (14)0.001 (5)
C20.055 (10)0.046 (4)0.10 (3)0.002 (3)0.012 (15)0.011 (5)
C30.055 (9)0.049 (4)0.11 (2)0.011 (3)0.016 (14)0.013 (5)
C40.041 (9)0.047 (4)0.08 (3)0.003 (3)0.002 (15)0.003 (5)
N10.033 (7)0.047 (3)0.05 (2)0.002 (2)0.005 (12)0.002 (4)
N20.047 (7)0.042 (3)0.13 (2)0.001 (2)0.020 (11)0.001 (4)
N30.051 (7)0.043 (3)0.104 (18)0.000 (3)0.020 (10)0.006 (4)
N40.046 (8)0.063 (4)0.11 (2)0.005 (3)0.020 (12)0.003 (4)
N50.054 (8)0.053 (4)0.10 (2)0.000 (3)0.014 (13)0.000 (4)
O10.045 (5)0.050 (3)0.152 (17)0.003 (2)0.029 (9)0.007 (4)
O20.064 (8)0.056 (3)0.14 (2)0.015 (3)0.021 (13)0.003 (4)
O30.059 (7)0.066 (3)0.12 (2)0.005 (3)0.017 (12)0.009 (4)
Geometric parameters (Å, º) top
C1—C21.407 (10)C4—N41.294 (7)
C1—N21.315 (8)N1—N21.353 (7)
C2—C31.335 (9)N5—O11.251 (8)
C3—N11.379 (7)N5—O21.222 (6)
C4—N11.383 (8)N5—O31.256 (6)
C4—N31.298 (8)
N2—C1—C2111.2 (6)N2—N1—C3111.1 (4)
C3—C2—C1106.1 (5)N2—N1—C4120.0 (5)
C2—C3—N1106.5 (6)C1—N2—N1105.0 (4)
N3—C4—N1117.5 (6)O1—N5—O3120.1 (6)
N4—C4—N1120.1 (5)O2—N5—O1120.4 (5)
N4—C4—N3122.1 (6)O2—N5—O3119.4 (6)
C3—N1—C4128.9 (5)
(0.28GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0993 (14) ÅCell parameters from 457 reflections
b = 10.252 (8) Åθ = 3.0–19.3°
c = 13.845 (3) ŵ = 0.14 mm1
β = 99.11 (2)°T = 293 K
V = 714.6 (6) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
516 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.361, Tmax = 1.000l = 1616
3803 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.081P)2 + 0.4842P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
516 reflectionsΔρmax = 0.14 e Å3
109 parametersΔρmin = 0.12 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1087 (15)0.7869 (13)0.5390 (6)0.062 (4)
H10.0429500.8258670.5048370.075*
C20.3269 (15)0.8590 (13)0.5867 (5)0.060 (5)
H20.3489690.9490810.5885580.072*
C30.4921 (18)0.7693 (16)0.6281 (5)0.057 (5)
H30.6567830.7851960.6657910.068*
C40.4750 (17)0.5203 (16)0.6289 (5)0.052 (6)
N10.3814 (14)0.6471 (13)0.6066 (4)0.048 (5)
N20.1382 (10)0.6618 (11)0.5469 (5)0.055 (4)
N30.3363 (12)0.4238 (10)0.5915 (4)0.067 (4)
H3A0.3936950.3455060.6025430.080*
H3B0.1855230.4371890.5552580.080*
N40.7064 (9)0.5081 (8)0.6849 (3)0.060 (3)
H4A0.7727350.4318440.6981810.072*
H4B0.7918600.5763270.7082860.072*
N50.2509 (16)0.6445 (18)0.8249 (5)0.069 (5)
O10.4835 (8)0.6735 (6)0.8579 (3)0.065 (3)
O20.1637 (18)0.5365 (15)0.8242 (5)0.110 (6)
O30.0884 (10)0.7363 (9)0.7935 (3)0.073 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (4)0.061 (11)0.072 (4)0.016 (5)0.001 (3)0.003 (6)
C20.061 (7)0.05 (2)0.064 (4)0.001 (5)0.006 (4)0.003 (6)
C30.049 (6)0.06 (2)0.060 (4)0.012 (5)0.003 (4)0.001 (6)
C40.037 (6)0.07 (2)0.054 (4)0.002 (5)0.009 (4)0.007 (6)
N10.033 (5)0.05 (2)0.063 (3)0.010 (4)0.006 (3)0.011 (6)
N20.042 (4)0.048 (15)0.069 (4)0.005 (4)0.009 (3)0.002 (6)
N30.049 (5)0.063 (16)0.081 (4)0.001 (4)0.014 (3)0.002 (5)
N40.051 (4)0.048 (12)0.074 (3)0.000 (3)0.014 (3)0.006 (4)
N50.038 (6)0.10 (2)0.062 (4)0.003 (5)0.002 (3)0.002 (5)
O10.041 (3)0.056 (11)0.093 (3)0.008 (2)0.008 (2)0.007 (3)
O20.064 (5)0.12 (2)0.133 (6)0.025 (6)0.019 (3)0.007 (7)
O30.047 (4)0.086 (13)0.083 (3)0.005 (3)0.001 (2)0.011 (4)
Geometric parameters (Å, º) top
C1—C21.410 (16)C4—N41.311 (9)
C1—N21.295 (13)N1—N21.385 (10)
C2—C31.316 (18)N5—O11.238 (8)
C3—N11.386 (18)N5—O21.19 (2)
C4—N11.403 (17)N5—O31.283 (18)
C4—N31.277 (16)
N2—C1—C2114.0 (8)N2—N1—C3109.1 (13)
C3—C2—C1103.9 (13)N2—N1—C4118.2 (11)
C2—C3—N1109.1 (9)C1—N2—N1103.8 (9)
N3—C4—N1118.8 (9)O1—N5—O3118.6 (16)
N3—C4—N4123.7 (14)O2—N5—O1124.0 (18)
N4—C4—N1117.5 (14)O2—N5—O3117.3 (10)
C3—N1—C4132.6 (12)
(0.32GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1064 (10) ÅCell parameters from 1262 reflections
b = 10.1978 (9) Åθ = 4.0–22.4°
c = 13.867 (8) ŵ = 0.14 mm1
β = 99.36 (4)°T = 293 K
V = 712.5 (4) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
445 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.058, Tmax = 1.000l = 99
3886 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.11 e Å3
445 reflectionsΔρmin = 0.11 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.027 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1066 (13)0.7894 (4)0.5381 (7)0.056 (7)
H10.0417460.8290140.5019600.067*
C20.3244 (14)0.8587 (4)0.5878 (8)0.058 (8)
H20.3464490.9492370.5903780.069*
C30.4952 (13)0.7677 (4)0.6310 (8)0.059 (7)
H30.6585940.7827160.6700080.071*
C40.4770 (13)0.5233 (4)0.6291 (8)0.038 (8)
N10.3791 (11)0.6478 (3)0.6057 (6)0.049 (7)
N20.1364 (10)0.6616 (3)0.5486 (6)0.057 (6)
N30.3385 (10)0.4243 (3)0.5910 (6)0.060 (6)
H3A0.3972060.3458400.6023260.072*
H3B0.1877250.4370600.5544820.072*
N40.7065 (10)0.5096 (3)0.6850 (6)0.055 (6)
H4A0.7713540.4325160.6978370.066*
H4B0.7930950.5775660.7090290.066*
N50.2476 (11)0.6475 (3)0.8246 (7)0.055 (7)
O10.4843 (8)0.6736 (2)0.8566 (5)0.064 (5)
O20.1674 (9)0.5342 (3)0.8236 (6)0.090 (7)
O30.0875 (9)0.7378 (3)0.7929 (6)0.077 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (6)0.045 (3)0.068 (17)0.003 (2)0.002 (9)0.000 (3)
C20.056 (6)0.042 (3)0.073 (18)0.004 (2)0.004 (9)0.005 (3)
C30.053 (6)0.045 (3)0.075 (17)0.011 (2)0.006 (9)0.010 (3)
C40.030 (6)0.045 (3)0.042 (18)0.001 (2)0.012 (10)0.002 (3)
N10.041 (5)0.039 (2)0.061 (17)0.0018 (17)0.010 (9)0.003 (2)
N20.042 (4)0.042 (2)0.082 (13)0.0009 (17)0.010 (7)0.002 (2)
N30.048 (5)0.039 (2)0.085 (14)0.0019 (18)0.015 (7)0.002 (3)
N40.046 (5)0.057 (2)0.057 (13)0.0008 (19)0.011 (7)0.002 (3)
N50.044 (5)0.053 (3)0.065 (17)0.0019 (19)0.001 (9)0.002 (3)
O10.041 (4)0.0478 (18)0.095 (12)0.0042 (14)0.011 (6)0.007 (2)
O20.062 (5)0.047 (2)0.148 (15)0.0168 (17)0.023 (8)0.004 (3)
O30.054 (4)0.061 (2)0.106 (14)0.0089 (17)0.018 (8)0.010 (3)
Geometric parameters (Å, º) top
C1—C21.400 (6)C4—N41.303 (5)
C1—N21.318 (5)N1—N21.366 (4)
C2—C31.346 (6)N5—O11.247 (5)
C3—N11.380 (5)N5—O21.226 (4)
C4—N11.384 (5)N5—O31.261 (4)
C4—N31.295 (5)
N2—C1—C2112.1 (4)N2—N1—C3111.6 (3)
C3—C2—C1106.1 (4)N2—N1—C4119.3 (3)
C2—C3—N1106.1 (4)C1—N2—N1104.1 (3)
N3—C4—N1117.9 (4)O1—N5—O3120.3 (4)
N3—C4—N4122.5 (4)O2—N5—O1120.5 (3)
N4—C4—N1119.6 (3)O2—N5—O3119.2 (4)
C3—N1—C4129.1 (4)
(0.39GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0897 (19) ÅCell parameters from 424 reflections
b = 10.213 (11) Åθ = 3.6–20.1°
c = 13.789 (5) ŵ = 0.14 mm1
β = 98.86 (3)°T = 293 K
V = 708.2 (8) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
516 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.226, Tmax = 1.000l = 1616
3763 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.228 w = 1/[σ2(Fo2) + (0.1251P)2 + 0.5955P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
516 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.107 (2)0.786 (2)0.5400 (8)0.086 (9)
H10.0468300.8245940.5070500.104*
C20.3261 (18)0.8598 (17)0.5870 (6)0.064 (7)
H20.3479780.9501880.5884260.077*
C30.4930 (19)0.7684 (19)0.6286 (6)0.065 (7)
H30.6572740.7837500.6667140.078*
C40.4753 (18)0.519 (2)0.6297 (6)0.064 (7)
N10.3811 (17)0.6463 (16)0.6055 (5)0.060 (7)
N20.1382 (15)0.6637 (16)0.5466 (6)0.079 (7)
N30.3356 (14)0.4241 (13)0.5913 (5)0.080 (6)
H3A0.3926170.3451740.6008080.096*
H3B0.1841560.4386470.5558520.096*
N40.7062 (11)0.5088 (10)0.6844 (4)0.070 (4)
H4A0.7757090.4327300.6970510.084*
H4B0.7894220.5777790.7079530.084*
N50.2458 (19)0.648 (2)0.8268 (6)0.070 (7)
O10.4837 (9)0.6736 (8)0.8575 (4)0.080 (4)
O20.166 (2)0.5327 (17)0.8240 (6)0.104 (7)
O30.0868 (12)0.7364 (11)0.7940 (4)0.086 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (7)0.12 (3)0.085 (6)0.026 (9)0.003 (5)0.023 (10)
C20.073 (9)0.03 (3)0.080 (5)0.009 (5)0.013 (5)0.007 (7)
C30.046 (7)0.07 (3)0.070 (5)0.003 (6)0.008 (4)0.004 (7)
C40.027 (7)0.10 (3)0.065 (5)0.008 (5)0.002 (4)0.011 (8)
N10.040 (7)0.07 (3)0.069 (4)0.013 (5)0.005 (4)0.015 (7)
N20.027 (6)0.12 (3)0.083 (5)0.007 (6)0.010 (4)0.016 (7)
N30.053 (6)0.09 (2)0.091 (5)0.003 (5)0.027 (4)0.002 (6)
N40.059 (6)0.056 (16)0.086 (4)0.003 (3)0.018 (3)0.017 (5)
N50.045 (8)0.09 (3)0.075 (5)0.001 (5)0.003 (4)0.010 (6)
O10.034 (4)0.098 (13)0.101 (4)0.006 (3)0.012 (3)0.009 (4)
O20.065 (6)0.10 (2)0.133 (6)0.012 (6)0.018 (4)0.011 (7)
O30.043 (5)0.117 (16)0.092 (4)0.010 (4)0.007 (3)0.012 (5)
Geometric parameters (Å, º) top
C1—C21.42 (2)C4—N41.299 (10)
C1—N21.26 (2)N1—N21.382 (12)
C2—C31.33 (2)N5—O11.247 (10)
C3—N11.39 (2)N5—O21.25 (2)
C4—N11.41 (2)N5—O31.25 (2)
C4—N31.27 (2)
N2—C1—C2114.3 (11)N2—N1—C3108.6 (17)
C3—C2—C1103.3 (17)N2—N1—C4120.0 (13)
C2—C3—N1108.6 (9)C1—N2—N1105.1 (15)
N3—C4—N1117.3 (10)O1—N5—O3121.1 (19)
N3—C4—N4125.2 (18)O2—N5—O1120 (2)
N4—C4—N1117.4 (17)O2—N5—O3118.8 (11)
C3—N1—C4131.4 (15)
(0.44GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0963 (11) ÅCell parameters from 1295 reflections
b = 10.1784 (11) Åθ = 4.0–22.1°
c = 13.823 (10) ŵ = 0.14 mm1
β = 99.25 (4)°T = 293 K
V = 707.7 (5) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
447 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.239, Tmax = 1.000l = 99
3896 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.7871P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.12 e Å3
447 reflectionsΔρmin = 0.12 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.023 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1055 (14)0.7902 (4)0.5386 (8)0.048 (8)
H10.0439650.8299410.5030730.058*
C20.3247 (16)0.8592 (5)0.5876 (9)0.056 (8)
H20.3488790.9498090.5894410.067*
C30.4931 (14)0.7677 (4)0.6314 (9)0.052 (8)
H30.6548420.7825570.6716890.063*
C40.4757 (14)0.5235 (4)0.6298 (9)0.043 (8)
N10.3801 (11)0.6484 (3)0.6052 (7)0.033 (8)
N20.1360 (11)0.6620 (3)0.5486 (7)0.055 (7)
N30.3368 (12)0.4238 (3)0.5917 (7)0.066 (7)
H3A0.3966700.3453310.6026190.079*
H3B0.1850310.4363620.5556020.079*
N40.7066 (11)0.5098 (4)0.6850 (7)0.061 (7)
H4A0.7722580.4326700.6973510.073*
H4B0.7933730.5779520.7090460.073*
N50.2460 (13)0.6477 (4)0.8249 (8)0.068 (8)
O10.4838 (9)0.6737 (3)0.8570 (5)0.065 (6)
O20.1661 (10)0.5337 (3)0.8245 (6)0.086 (7)
O30.0860 (10)0.7380 (3)0.7937 (6)0.062 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (6)0.047 (3)0.06 (2)0.002 (3)0.010 (10)0.006 (4)
C20.067 (7)0.043 (3)0.06 (2)0.009 (3)0.005 (11)0.002 (4)
C30.049 (6)0.042 (3)0.062 (18)0.007 (2)0.004 (9)0.007 (4)
C40.034 (6)0.041 (3)0.05 (2)0.002 (2)0.004 (10)0.001 (4)
N10.029 (5)0.040 (3)0.029 (18)0.0000 (18)0.006 (9)0.001 (3)
N20.041 (5)0.039 (2)0.078 (15)0.0002 (18)0.008 (8)0.001 (3)
N30.057 (5)0.037 (2)0.092 (16)0.001 (2)0.025 (9)0.000 (3)
N40.049 (5)0.052 (3)0.071 (15)0.001 (2)0.020 (8)0.002 (3)
N50.060 (6)0.047 (3)0.087 (19)0.000 (2)0.021 (10)0.002 (3)
O10.043 (4)0.047 (2)0.096 (14)0.0064 (16)0.017 (7)0.005 (3)
O20.062 (5)0.047 (2)0.136 (16)0.0165 (19)0.023 (8)0.001 (3)
O30.042 (5)0.062 (3)0.078 (16)0.0089 (19)0.002 (8)0.010 (3)
Geometric parameters (Å, º) top
C1—C21.399 (7)C4—N41.303 (5)
C1—N21.319 (5)N1—N21.366 (5)
C2—C31.343 (7)N5—O11.250 (6)
C3—N11.368 (5)N5—O21.229 (5)
C4—N11.383 (5)N5—O31.258 (5)
C4—N31.299 (6)
N2—C1—C2112.0 (4)N2—N1—C3111.6 (3)
C3—C2—C1105.8 (4)N2—N1—C4119.1 (3)
C2—C3—N1106.6 (4)C1—N2—N1104.0 (3)
N3—C4—N1118.1 (4)O1—N5—O3120.3 (4)
N3—C4—N4122.4 (4)O2—N5—O1120.2 (4)
N4—C4—N1119.4 (4)O2—N5—O3119.5 (5)
C3—N1—C4129.3 (4)
(0.46GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0956 (10) ÅCell parameters from 1269 reflections
b = 10.1775 (10) Åθ = 4.0–22.0°
c = 13.792 (9) ŵ = 0.14 mm1
β = 99.13 (4)°T = 293 K
V = 706.2 (5) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
445 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.317, Tmax = 1.000l = 89
3896 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.7303P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.14 e Å3
445 reflectionsΔρmin = 0.13 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.031 (15)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1057 (15)0.7901 (5)0.5380 (9)0.059 (9)
H10.0421040.8296420.5012710.071*
C20.3233 (17)0.8596 (5)0.5885 (10)0.054 (9)
H20.3459410.9503150.5910830.065*
C30.4927 (16)0.7681 (5)0.6323 (10)0.062 (8)
H30.6536080.7828460.6730620.074*
C40.4769 (15)0.5237 (4)0.6296 (9)0.042 (9)
N10.3802 (12)0.6486 (3)0.6049 (8)0.059 (9)
N20.1360 (11)0.6620 (3)0.5488 (7)0.057 (7)
N30.3385 (13)0.4243 (4)0.5910 (8)0.085 (8)
H3A0.3977020.3456960.6019590.102*
H3B0.1876320.4370840.5543710.102*
N40.7064 (13)0.5101 (4)0.6855 (8)0.071 (8)
H4A0.7718760.4329030.6980980.086*
H4B0.7926030.5782070.7098160.086*
N50.2456 (14)0.6475 (4)0.8253 (8)0.068 (9)
O10.4857 (10)0.6735 (3)0.8558 (6)0.071 (6)
O20.1665 (10)0.5336 (3)0.8238 (7)0.094 (7)
O30.0865 (10)0.7376 (3)0.7934 (7)0.073 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (7)0.042 (3)0.07 (2)0.001 (3)0.007 (11)0.005 (4)
C20.064 (7)0.040 (3)0.06 (2)0.002 (3)0.008 (11)0.008 (4)
C30.062 (6)0.044 (3)0.07 (2)0.007 (3)0.017 (10)0.008 (4)
C40.032 (6)0.040 (3)0.05 (2)0.000 (2)0.010 (11)0.004 (4)
N10.049 (6)0.037 (3)0.08 (2)0.002 (2)0.022 (10)0.001 (3)
N20.039 (5)0.040 (3)0.086 (16)0.0004 (19)0.009 (8)0.003 (3)
N30.069 (6)0.034 (3)0.132 (19)0.002 (2)0.044 (10)0.003 (3)
N40.058 (5)0.054 (3)0.088 (18)0.002 (2)0.031 (9)0.004 (3)
N50.057 (6)0.047 (3)0.09 (2)0.002 (2)0.019 (10)0.001 (3)
O10.051 (4)0.046 (2)0.104 (14)0.0041 (18)0.023 (7)0.006 (3)
O20.068 (5)0.046 (3)0.153 (18)0.014 (2)0.030 (9)0.002 (3)
O30.055 (5)0.059 (3)0.094 (17)0.005 (2)0.014 (9)0.012 (3)
Geometric parameters (Å, º) top
C1—C21.404 (8)C4—N41.302 (6)
C1—N21.319 (6)N1—N21.363 (5)
C2—C31.347 (8)N5—O11.258 (6)
C3—N11.372 (6)N5—O21.226 (5)
C4—N11.386 (6)N5—O31.256 (5)
C4—N31.298 (6)
N2—C1—C2111.9 (5)N2—N1—C3111.8 (4)
C3—C2—C1105.9 (4)N2—N1—C4119.2 (4)
C2—C3—N1106.2 (5)C1—N2—N1104.0 (4)
N3—C4—N1117.7 (5)O2—N5—O1120.3 (4)
N3—C4—N4122.6 (4)O2—N5—O3119.5 (5)
N4—C4—N1119.6 (4)O3—N5—O1120.2 (4)
C3—N1—C4128.9 (4)
(0.52GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0851 (15) ÅCell parameters from 1174 reflections
b = 10.1654 (13) Åθ = 4.0–22.3°
c = 13.751 (13) ŵ = 0.14 mm1
β = 98.93 (6)°T = 293 K
V = 702.2 (7) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
438 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.107, Tmax = 1.000l = 89
3830 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.3747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.13 e Å3
438 reflectionsΔρmin = 0.15 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.031 (17)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1059 (15)0.7904 (5)0.5377 (9)0.058 (9)
H10.0415900.8298340.5006070.069*
C20.3226 (16)0.8606 (4)0.5880 (10)0.057 (9)
H20.3442560.9514040.5909760.068*
C30.4921 (16)0.7690 (4)0.6309 (10)0.065 (8)
H30.6550240.7841080.6704040.078*
C40.4765 (15)0.5240 (4)0.6291 (9)0.040 (9)
N10.3793 (12)0.6488 (3)0.6055 (8)0.056 (9)
N20.1349 (12)0.6626 (3)0.5489 (7)0.072 (7)
N30.3369 (12)0.4248 (4)0.5918 (8)0.072 (8)
H3A0.3952740.3460420.6033750.086*
H3B0.1855790.4375160.5553730.086*
N40.7062 (12)0.5106 (4)0.6846 (7)0.063 (7)
H4A0.7710890.4333870.6978190.076*
H4B0.7933890.5789940.7081250.076*
N50.2441 (14)0.6473 (4)0.8261 (9)0.074 (9)
O10.4830 (9)0.6734 (3)0.8567 (6)0.076 (6)
O20.1661 (10)0.5335 (3)0.8248 (7)0.095 (8)
O30.0853 (10)0.7378 (3)0.7937 (7)0.068 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (7)0.043 (3)0.08 (2)0.004 (3)0.005 (11)0.002 (4)
C20.060 (7)0.039 (3)0.07 (2)0.001 (3)0.002 (11)0.008 (3)
C30.059 (7)0.043 (3)0.085 (19)0.008 (3)0.018 (10)0.010 (4)
C40.035 (6)0.037 (3)0.05 (2)0.004 (2)0.008 (11)0.004 (4)
N10.040 (6)0.037 (3)0.08 (2)0.0022 (19)0.018 (10)0.002 (3)
N20.052 (5)0.038 (3)0.112 (17)0.002 (2)0.028 (9)0.003 (3)
N30.055 (6)0.034 (2)0.114 (18)0.004 (2)0.028 (9)0.004 (3)
N40.049 (5)0.053 (3)0.078 (17)0.002 (2)0.020 (9)0.002 (3)
N50.055 (6)0.046 (3)0.11 (2)0.001 (2)0.027 (11)0.004 (3)
O10.047 (4)0.044 (2)0.123 (15)0.0048 (17)0.026 (7)0.004 (3)
O20.064 (5)0.044 (2)0.162 (19)0.015 (2)0.031 (10)0.001 (3)
O30.045 (5)0.056 (3)0.098 (17)0.0059 (19)0.008 (9)0.011 (3)
Geometric parameters (Å, º) top
C1—C21.401 (7)C4—N41.300 (6)
C1—N21.314 (6)N1—N21.367 (6)
C2—C31.342 (7)N5—O11.251 (6)
C3—N11.372 (6)N5—O21.223 (5)
C4—N11.382 (6)N5—O31.259 (5)
C4—N31.293 (6)
N2—C1—C2112.3 (4)N2—N1—C3111.2 (3)
C3—C2—C1105.4 (4)N2—N1—C4119.2 (3)
C2—C3—N1106.9 (4)C1—N2—N1104.1 (4)
N3—C4—N1118.0 (4)O1—N5—O3120.0 (4)
N3—C4—N4122.6 (4)O2—N5—O1120.1 (4)
N4—C4—N1119.4 (4)O2—N5—O3119.9 (5)
C3—N1—C4129.6 (4)
(0.58GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.099 (4) ÅCell parameters from 239 reflections
b = 10.193 (19) Åθ = 3.0–23.4°
c = 13.666 (7) ŵ = 0.14 mm1
β = 98.65 (6)°T = 293 K
V = 702.2 (15) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
508 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.259, Tmax = 1.000l = 1616
3755 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.229 w = 1/[σ2(Fo2) + (0.1044P)2 + 1.3001P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
508 reflectionsΔρmax = 0.16 e Å3
109 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.105 (2)0.784 (2)0.5401 (10)0.098 (11)
H10.0523890.8205600.5082870.118*
C20.322 (2)0.8647 (18)0.5854 (7)0.070 (8)
H20.3406640.9554300.5857160.084*
C30.489 (2)0.772 (2)0.6268 (8)0.058 (7)
H30.6533070.7886180.6640680.070*
C40.472 (2)0.521 (2)0.6281 (7)0.056 (8)
N10.382 (2)0.6466 (17)0.6065 (6)0.048 (7)
N20.1382 (19)0.6594 (17)0.5458 (9)0.081 (8)
N30.3354 (18)0.4221 (15)0.5919 (6)0.080 (6)
H3A0.3955770.3438770.6035440.097*
H3B0.1836610.4338590.5560720.097*
N40.7054 (13)0.5097 (11)0.6835 (5)0.075 (5)
H4A0.7729450.4332620.6969470.090*
H4B0.7903780.5787150.7062830.090*
N50.247 (2)0.646 (3)0.8256 (8)0.086 (8)
O10.4827 (11)0.6741 (9)0.8565 (5)0.075 (4)
O20.160 (2)0.535 (2)0.8249 (8)0.113 (8)
O30.0842 (14)0.7375 (11)0.7931 (5)0.074 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (8)0.17 (4)0.083 (8)0.017 (10)0.016 (5)0.038 (14)
C20.067 (11)0.05 (3)0.083 (6)0.001 (7)0.011 (6)0.004 (9)
C30.059 (9)0.02 (3)0.087 (7)0.016 (7)0.003 (6)0.004 (9)
C40.045 (9)0.05 (3)0.073 (7)0.009 (7)0.003 (5)0.001 (10)
N10.047 (8)0.01 (3)0.080 (5)0.006 (6)0.007 (4)0.001 (9)
N20.038 (7)0.10 (3)0.098 (7)0.002 (7)0.011 (5)0.005 (10)
N30.059 (7)0.07 (2)0.096 (6)0.001 (5)0.031 (5)0.001 (7)
N40.056 (7)0.065 (18)0.092 (5)0.003 (4)0.026 (4)0.007 (6)
N50.032 (9)0.14 (3)0.085 (6)0.000 (7)0.004 (5)0.022 (9)
O10.036 (5)0.072 (15)0.111 (5)0.004 (3)0.013 (3)0.007 (5)
O20.063 (7)0.12 (3)0.138 (8)0.023 (7)0.029 (5)0.012 (10)
O30.042 (5)0.068 (18)0.103 (5)0.008 (4)0.011 (3)0.011 (6)
Geometric parameters (Å, º) top
C1—C21.44 (3)C4—N41.317 (12)
C1—N21.28 (3)N1—N21.393 (15)
C2—C31.34 (2)N5—O11.247 (11)
C3—N11.40 (2)N5—O21.21 (3)
C4—N11.38 (2)N5—O31.28 (3)
C4—N31.28 (2)
N2—C1—C2116.9 (12)C4—N1—N2116.9 (15)
C3—C2—C1100.2 (18)N2—N1—C3108.5 (16)
C2—C3—N1111.0 (12)C1—N2—N1103.2 (15)
N3—C4—N1120.4 (13)O1—N5—O3119 (2)
N3—C4—N4123.1 (19)O2—N5—O1124 (3)
N4—C4—N1116.5 (19)O2—N5—O3117.3 (14)
C4—N1—C3134.4 (17)
(0.67GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0608 (12) ÅCell parameters from 766 reflections
b = 10.1526 (10) Åθ = 4.0–20.5°
c = 13.677 (10) ŵ = 0.14 mm1
β = 98.54 (5)°T = 293 K
V = 695.0 (6) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
434 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.015, Tmax = 1.000l = 99
3721 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.9907P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.13 e Å3
434 reflectionsΔρmin = 0.16 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.026 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1019 (16)0.7907 (5)0.5387 (10)0.067 (10)
H10.0477040.8303880.5028710.081*
C20.3218 (17)0.8604 (5)0.5885 (10)0.052 (10)
H20.3438150.9513860.5911890.063*
C30.4935 (16)0.7695 (5)0.6315 (10)0.062 (9)
H30.6566410.7845370.6710790.075*
C40.4767 (17)0.5245 (5)0.6297 (10)0.043 (10)
N10.3785 (14)0.6495 (4)0.6051 (9)0.051 (10)
N20.1335 (12)0.6627 (4)0.5488 (8)0.056 (8)
N30.3373 (13)0.4241 (4)0.5904 (9)0.056 (9)
H3A0.3986700.3454450.6000630.068*
H3B0.1843720.4368300.5549680.068*
N40.7087 (13)0.5108 (4)0.6838 (7)0.058 (8)
H4A0.7761020.4335140.6949990.069*
H4B0.7948050.5789750.7084930.069*
N50.2457 (15)0.6475 (4)0.8257 (9)0.075 (10)
O10.4864 (10)0.6738 (3)0.8560 (6)0.076 (7)
O20.1657 (11)0.5327 (4)0.8253 (7)0.084 (9)
O30.0844 (12)0.7374 (4)0.7941 (7)0.063 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (8)0.041 (4)0.11 (2)0.003 (3)0.010 (13)0.004 (4)
C20.057 (8)0.041 (3)0.06 (2)0.004 (3)0.002 (12)0.008 (4)
C30.053 (7)0.038 (3)0.09 (2)0.008 (3)0.017 (12)0.004 (4)
C40.029 (8)0.041 (4)0.06 (2)0.004 (3)0.010 (13)0.006 (4)
N10.037 (6)0.035 (3)0.08 (2)0.002 (2)0.012 (11)0.002 (4)
N20.037 (6)0.041 (3)0.085 (18)0.001 (2)0.012 (9)0.000 (3)
N30.052 (7)0.034 (3)0.08 (2)0.001 (2)0.014 (11)0.000 (3)
N40.046 (7)0.052 (3)0.068 (19)0.002 (2)0.017 (10)0.001 (3)
N50.061 (7)0.044 (3)0.11 (2)0.005 (3)0.030 (12)0.006 (4)
O10.041 (5)0.046 (2)0.128 (16)0.004 (2)0.027 (8)0.005 (3)
O20.058 (7)0.045 (3)0.14 (2)0.014 (2)0.021 (11)0.000 (3)
O30.049 (6)0.058 (3)0.078 (18)0.008 (2)0.005 (10)0.011 (3)
Geometric parameters (Å, º) top
C1—C21.407 (7)C4—N41.299 (6)
C1—N21.314 (6)N1—N21.365 (6)
C2—C31.342 (7)N5—O11.255 (6)
C3—N11.375 (6)N5—O21.234 (6)
C4—N11.386 (6)N5—O31.258 (5)
C4—N31.308 (6)
N2—C1—C2111.8 (5)N2—N1—C3112.0 (4)
C3—C2—C1106.3 (4)N2—N1—C4119.3 (4)
C2—C3—N1105.8 (5)C1—N2—N1104.1 (4)
N3—C4—N1117.5 (5)O1—N5—O3120.5 (5)
N4—C4—N1119.8 (4)O2—N5—O1120.3 (4)
N4—C4—N3122.5 (5)O2—N5—O3119.2 (5)
C3—N1—C4128.7 (4)
(0.89GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.036 (2) ÅCell parameters from 414 reflections
b = 10.162 (2) Åθ = 4.0–20.6°
c = 13.54 (2) ŵ = 0.14 mm1
β = 97.94 (9)°T = 293 K
V = 686.1 (12) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
421 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1112
Tmin = 0.177, Tmax = 1.000l = 88
3600 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.5673P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
421 reflectionsΔρmin = 0.15 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.036 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1050 (19)0.7917 (6)0.5371 (12)0.076 (11)
H10.0425160.8315900.5001100.091*
C20.3218 (18)0.8616 (6)0.5885 (12)0.053 (10)
H20.3427600.9524660.5922760.064*
C30.4927 (19)0.7700 (5)0.6312 (12)0.079 (10)
H30.6554980.7847920.6711180.095*
C40.477 (2)0.5242 (5)0.6303 (13)0.075 (13)
N10.3791 (15)0.6499 (4)0.6041 (11)0.094 (11)
N20.1335 (13)0.6631 (4)0.5471 (9)0.082 (9)
N30.3377 (16)0.4250 (4)0.5900 (11)0.094 (10)
H3A0.3990870.3462280.5986270.112*
H3B0.1844650.4382500.5546790.112*
N40.7086 (15)0.5112 (5)0.6842 (9)0.072 (9)
H4A0.7778810.4342910.6948810.086*
H4B0.7933050.5795400.7093700.086*
N50.2445 (16)0.6470 (5)0.8270 (10)0.082 (11)
O10.4865 (11)0.6736 (3)0.8560 (8)0.074 (7)
O20.1650 (13)0.5327 (4)0.8259 (9)0.085 (10)
O30.0857 (12)0.7376 (4)0.7932 (8)0.085 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (9)0.044 (4)0.11 (3)0.002 (3)0.022 (14)0.007 (5)
C20.052 (8)0.043 (4)0.07 (2)0.005 (3)0.008 (13)0.006 (5)
C30.063 (7)0.040 (4)0.12 (2)0.008 (4)0.032 (12)0.007 (5)
C40.052 (9)0.034 (4)0.13 (3)0.013 (3)0.026 (17)0.013 (5)
N10.058 (8)0.032 (3)0.17 (3)0.001 (3)0.051 (13)0.002 (4)
N20.056 (6)0.039 (3)0.14 (2)0.004 (3)0.039 (11)0.001 (4)
N30.072 (7)0.033 (3)0.16 (2)0.003 (3)0.054 (12)0.001 (4)
N40.058 (7)0.054 (3)0.09 (2)0.001 (3)0.030 (11)0.005 (4)
N50.049 (7)0.044 (4)0.14 (3)0.003 (3)0.026 (13)0.009 (5)
O10.044 (5)0.044 (3)0.126 (18)0.004 (2)0.019 (9)0.001 (3)
O20.056 (7)0.042 (3)0.15 (2)0.013 (2)0.013 (12)0.003 (3)
O30.060 (6)0.055 (3)0.13 (2)0.006 (2)0.026 (11)0.019 (4)
Geometric parameters (Å, º) top
C1—C21.404 (9)C4—N41.295 (7)
C1—N21.319 (7)N1—N21.370 (7)
C2—C31.342 (9)N5—O11.257 (7)
C3—N11.376 (7)N5—O21.228 (7)
C4—N11.397 (8)N5—O31.263 (6)
C4—N31.304 (8)
N2—C1—C2112.6 (5)N2—N1—C3111.9 (4)
C3—C2—C1105.7 (5)N2—N1—C4119.4 (4)
C2—C3—N1106.4 (5)C1—N2—N1103.4 (4)
N3—C4—N1116.8 (6)O1—N5—O3119.7 (5)
N4—C4—N1119.6 (5)O2—N5—O1120.5 (5)
N4—C4—N3123.2 (5)O2—N5—O3119.7 (5)
C3—N1—C4128.7 (5)
(1.11GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.693 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.024 (5) ÅCell parameters from 239 reflections
b = 10.158 (4) Åθ = 4.0–19.5°
c = 13.43 (4) ŵ = 0.14 mm1
β = 97.88 (18)°T = 293 K
V = 679 (2) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
413 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 8.2214 pixels mm-1θmax = 25.0°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.066, Tmax = 1.000l = 98
3583 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.7055P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.14 e Å3
413 reflectionsΔρmin = 0.13 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.027 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.104 (2)0.7921 (8)0.5385 (15)0.095 (15)
H10.0455670.8317510.5018510.114*
C20.321 (2)0.8624 (7)0.5878 (15)0.064 (13)
H20.3426630.9532980.5903220.076*
C30.493 (2)0.7714 (6)0.6309 (14)0.095 (13)
H30.6598060.7869390.6686950.114*
C40.473 (3)0.5242 (6)0.6336 (17)0.104 (17)
N10.3751 (19)0.6498 (5)0.6083 (14)0.116 (15)
N20.1317 (17)0.6633 (5)0.5494 (11)0.088 (11)
N30.3397 (19)0.4247 (5)0.5882 (13)0.098 (13)
H3A0.4099860.3473460.5914660.117*
H3B0.1824380.4369070.5552690.117*
N40.7097 (19)0.5114 (6)0.6842 (11)0.090 (12)
H4A0.7863170.4355680.6890490.108*
H4B0.7906870.5788240.7128800.108*
N50.245 (2)0.6483 (6)0.8285 (13)0.091 (14)
O10.4873 (14)0.6738 (4)0.8566 (9)0.082 (9)
O20.1637 (17)0.5315 (5)0.8273 (11)0.099 (12)
O30.0838 (16)0.7380 (5)0.7945 (10)0.103 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.074 (11)0.054 (6)0.14 (3)0.008 (4)0.044 (18)0.005 (7)
C20.066 (11)0.048 (5)0.07 (3)0.010 (4)0.004 (17)0.002 (6)
C30.069 (10)0.037 (4)0.16 (3)0.001 (4)0.041 (16)0.016 (6)
C40.076 (12)0.032 (5)0.18 (4)0.011 (4)0.05 (2)0.014 (7)
N10.060 (9)0.032 (4)0.23 (3)0.005 (3)0.062 (17)0.004 (6)
N20.062 (8)0.040 (4)0.15 (3)0.001 (3)0.038 (13)0.001 (5)
N30.072 (10)0.037 (4)0.17 (3)0.000 (3)0.043 (16)0.013 (5)
N40.077 (10)0.061 (5)0.11 (3)0.006 (4)0.049 (16)0.003 (5)
N50.083 (11)0.047 (5)0.13 (3)0.003 (4)0.044 (17)0.013 (6)
O10.050 (6)0.046 (3)0.14 (2)0.005 (3)0.022 (11)0.004 (4)
O20.075 (9)0.044 (4)0.16 (3)0.014 (3)0.027 (16)0.006 (4)
O30.064 (8)0.055 (4)0.17 (3)0.006 (3)0.033 (14)0.021 (5)
Geometric parameters (Å, º) top
C1—C21.395 (11)C4—N41.294 (9)
C1—N21.322 (9)N1—N21.369 (9)
C2—C31.341 (10)N5—O11.253 (10)
C3—N11.386 (9)N5—O21.254 (8)
C4—N11.392 (9)N5—O31.262 (7)
C4—N31.315 (10)
N2—C1—C2112.9 (7)N2—N1—C3111.1 (6)
C3—C2—C1105.7 (6)N2—N1—C4119.3 (6)
C2—C3—N1106.7 (7)C1—N2—N1103.7 (5)
N3—C4—N1116.9 (8)O1—N5—O2120.0 (6)
N4—C4—N1119.2 (6)O1—N5—O3120.6 (7)
N4—C4—N3122.6 (8)O2—N5—O3119.2 (7)
C3—N1—C4129.6 (6)
(1.15GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.702 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.028 (6) ÅCell parameters from 163 reflections
b = 10.152 (6) Åθ = 4.0–18.9°
c = 13.36 (5) ŵ = 0.15 mm1
β = 97.9 (2)°T = 293 K
V = 676 (3) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
403 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.128
Detector resolution: 8.2214 pixels mm-1θmax = 24.8°, θmin = 4.0°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.073, Tmax = 1.000l = 88
3550 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0966P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.14 e Å3
403 reflectionsΔρmin = 0.12 e Å3
110 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.03 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.104 (3)0.7926 (7)0.5354 (16)0.087 (14)
H10.0408280.8322190.4959820.104*
C20.320 (3)0.8628 (8)0.5892 (18)0.076 (15)
H20.3385850.9537650.5938890.091*
C30.492 (3)0.7714 (7)0.6323 (17)0.116 (15)
H30.6576040.7866590.6711800.139*
C40.479 (3)0.5252 (7)0.6297 (19)0.080 (18)
N10.376 (2)0.6504 (5)0.6075 (16)0.120 (16)
N20.1322 (19)0.6642 (5)0.5475 (13)0.093 (12)
N30.334 (2)0.4248 (6)0.5915 (16)0.127 (16)
H3A0.3936020.3457410.6016750.152*
H3B0.1802800.4381270.5562990.152*
N40.711 (2)0.5115 (6)0.6828 (12)0.092 (13)
H4A0.7769370.4340710.6947500.110*
H4B0.7991510.5797250.7065180.110*
N50.246 (2)0.6470 (7)0.8289 (14)0.076 (15)
O10.4900 (15)0.6739 (4)0.8551 (10)0.096 (11)
O20.1661 (19)0.5325 (5)0.8283 (13)0.125 (15)
O30.0833 (19)0.7380 (5)0.7953 (12)0.127 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.090 (12)0.049 (5)0.11 (3)0.008 (5)0.017 (19)0.005 (7)
C20.072 (12)0.051 (5)0.11 (4)0.007 (5)0.026 (19)0.009 (7)
C30.085 (12)0.047 (5)0.20 (4)0.000 (5)0.035 (19)0.018 (8)
C40.061 (12)0.039 (5)0.14 (4)0.006 (5)0.01 (2)0.003 (8)
N10.071 (11)0.038 (5)0.23 (4)0.001 (4)0.038 (19)0.003 (6)
N20.070 (8)0.049 (4)0.15 (3)0.004 (3)0.021 (14)0.011 (5)
N30.086 (12)0.042 (4)0.24 (4)0.001 (4)0.034 (19)0.010 (6)
N40.072 (10)0.062 (5)0.13 (3)0.001 (4)0.027 (16)0.004 (6)
N50.086 (12)0.052 (5)0.08 (4)0.003 (4)0.012 (18)0.008 (6)
O10.059 (7)0.058 (4)0.16 (3)0.005 (3)0.016 (13)0.012 (5)
O20.097 (11)0.050 (4)0.21 (3)0.014 (4)0.034 (19)0.002 (5)
O30.084 (9)0.063 (4)0.22 (3)0.007 (3)0.031 (17)0.016 (5)
Geometric parameters (Å, º) top
C1—C21.408 (12)C4—N41.283 (10)
C1—N21.319 (9)N1—N21.377 (10)
C2—C31.346 (12)N5—O11.258 (11)
C3—N11.381 (9)N5—O21.229 (9)
C4—N11.390 (10)N5—O31.274 (8)
C4—N31.315 (10)
N2—C1—C2112.1 (7)N2—N1—C3111.3 (7)
C3—C2—C1106.0 (7)N2—N1—C4119.6 (6)
C2—C3—N1106.5 (8)C1—N2—N1104.1 (6)
N3—C4—N1117.1 (8)O1—N5—O3119.6 (7)
N4—C4—N1120.0 (7)O2—N5—O1120.8 (7)
N4—C4—N3122.9 (7)O2—N5—O3119.3 (8)
C3—N1—C4129.0 (8)
(1.27GPa) top
Crystal data top
C4H7N4·NO3F(000) = 360
Mr = 173.15Dx = 1.712 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.984 (12) ÅCell parameters from 110 reflections
b = 10.093 (11) Åθ = 4.0–18.8°
c = 13.53 (12) ŵ = 0.15 mm1
β = 99.3 (4)°T = 293 K
V = 672 (6) Å3Prism, colourless
Z = 4
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
405 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.171
Detector resolution: 8.2214 pixels mm-1θmax = 24.9°, θmin = 4.1°
ω scansh = 55
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.681, Tmax = 1.000l = 87
3512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0726P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
405 reflectionsΔρmax = 0.12 e Å3
109 parametersΔρmin = 0.15 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.096 (3)0.7943 (9)0.5408 (19)0.11 (2)
H10.0624000.8340150.5084300.130*
C20.319 (3)0.8632 (9)0.586 (2)0.077 (6)
H20.3415190.9546670.5874910.092*
C30.498 (3)0.7714 (8)0.6281 (19)0.112 (18)
H30.6682130.7869190.6656140.134*
C40.475 (3)0.5246 (8)0.630 (2)0.08 (2)
N10.379 (2)0.6502 (6)0.6047 (18)0.06 (2)
N20.1322 (19)0.6644 (6)0.5484 (14)0.109 (15)
N30.333 (2)0.4250 (6)0.5907 (18)0.093 (17)
H3A0.3953460.3457980.6002190.111*
H3B0.1754620.4378040.5551220.111*
N40.714 (2)0.5119 (6)0.6843 (14)0.130 (16)
H4A0.7846640.4344800.6957060.156*
H4B0.8020150.5809290.7088200.156*
N50.245 (3)0.6454 (9)0.8281 (19)0.10 (3)
O10.4861 (17)0.6737 (5)0.8568 (13)0.114 (13)
O20.1636 (19)0.5297 (6)0.8283 (14)0.139 (17)
O30.0816 (16)0.7362 (6)0.7981 (12)0.089 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.106 (14)0.057 (7)0.15 (5)0.008 (6)0.01 (2)0.002 (10)
C20.086 (8)0.071 (5)0.078 (13)0.016 (6)0.026 (9)0.002 (7)
C30.075 (10)0.056 (6)0.20 (5)0.009 (6)0.002 (19)0.016 (9)
C40.062 (11)0.038 (6)0.16 (6)0.003 (5)0.03 (3)0.013 (9)
N10.051 (11)0.057 (6)0.07 (5)0.008 (4)0.04 (2)0.007 (7)
N20.069 (9)0.054 (5)0.19 (4)0.011 (4)0.021 (16)0.006 (6)
N30.075 (10)0.041 (5)0.16 (4)0.000 (4)0.016 (19)0.016 (7)
N40.087 (10)0.060 (5)0.22 (4)0.000 (4)0.036 (17)0.000 (7)
N50.067 (12)0.076 (7)0.16 (7)0.001 (6)0.01 (3)0.006 (10)
O10.063 (7)0.052 (4)0.22 (3)0.001 (3)0.005 (14)0.011 (6)
O20.100 (10)0.047 (4)0.25 (4)0.030 (4)0.03 (2)0.014 (6)
O30.055 (8)0.086 (5)0.13 (4)0.005 (4)0.032 (17)0.014 (7)
Geometric parameters (Å, º) top
C1—C21.366 (14)C4—N41.305 (12)
C1—N21.325 (11)N1—N21.343 (12)
C2—C31.347 (12)N5—O11.236 (11)
C3—N11.374 (10)N5—O21.235 (11)
C4—N11.378 (11)N5—O31.249 (9)
C4—N31.292 (11)
N2—C1—C2112.3 (9)N2—N1—C3110.9 (8)
C3—C2—C1105.8 (9)N2—N1—C4119.1 (7)
C2—C3—N1106.4 (10)C1—N2—N1104.4 (7)
N3—C4—N1118.1 (10)O1—N5—O3118.8 (9)
N3—C4—N4123.0 (8)O2—N5—O1121.4 (8)
N4—C4—N1118.6 (8)O2—N5—O3119.8 (9)
C3—N1—C4130.0 (10)
(100K) top
Crystal data top
C4H7N4·NO3Z = 4
Mr = 173.15F(000) = 360
Triclinic, P1Dx = 1.635 Mg m3
a = 5.0927 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2465 (3) ÅCell parameters from 2734 reflections
c = 13.6617 (4) Åθ = 5.8–29.0°
α = 88.714 (3)°µ = 0.14 mm1
β = 98.962 (3)°T = 100 K
γ = 92.480 (3)°Prism, colourless
V = 703.45 (4) Å30.49 × 0.38 × 0.33 mm
Data collection top
Xcalibur, Atlas
diffractometer
2716 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.6249 pixels mm-1θmax = 29.2°, θmin = 2.5°
ω scansh = 66
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1413
Tmin = 0.922, Tmax = 1.000l = 1818
6317 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2716 reflectionsΔρmax = 0.21 e Å3
217 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.3861 (3)0.21428 (12)0.03993 (11)0.0186 (3)
H110.5348650.1718000.0044440.022*
C120.1637 (3)0.14934 (12)0.08833 (11)0.0188 (3)
H120.1389430.0598620.0906500.023*
C130.0081 (3)0.24472 (12)0.13113 (11)0.0176 (3)
H130.1749930.2339380.1683940.021*
C140.0191 (3)0.48732 (12)0.12935 (10)0.0162 (3)
C211.3897 (3)0.28961 (12)0.46444 (11)0.0193 (3)
H211.5377350.3268350.5012670.023*
C221.1723 (3)0.36299 (12)0.41352 (11)0.0198 (3)
H221.1506630.4534830.4106120.024*
C231.0004 (3)0.27290 (12)0.36938 (11)0.0185 (3)
H230.8363620.2893730.3302150.022*
C241.0205 (3)0.02909 (12)0.37019 (10)0.0153 (3)
N20.7517 (3)0.34022 (10)0.32221 (9)0.0183 (3)
N110.1172 (3)0.36093 (10)0.10771 (9)0.0159 (3)
N120.3608 (2)0.34228 (10)0.05037 (9)0.0173 (3)
N130.1637 (3)0.58361 (10)0.08997 (9)0.0198 (3)
H13A0.1078430.6631930.1007370.024*
H13B0.3142460.5671690.0533760.024*
N140.2094 (2)0.50762 (10)0.18505 (9)0.0195 (3)
H14A0.2703610.5861630.1971190.023*
H14B0.2998330.4425130.2098530.023*
N211.1198 (3)0.15233 (10)0.39479 (9)0.0170 (3)
N221.3609 (2)0.16279 (10)0.45428 (9)0.0177 (3)
N231.1631 (3)0.07258 (10)0.40890 (9)0.0195 (3)
H23A1.1072930.1501020.3962430.023*
H23B1.3120390.0614970.4468610.023*
N240.7947 (2)0.01891 (10)0.31254 (9)0.0193 (3)
H24A0.7317910.0568530.2980040.023*
H24B0.7077970.0879070.2887930.023*
O210.99244 (19)0.32225 (8)0.35522 (7)0.0202 (2)
O220.5960 (2)0.24491 (9)0.29448 (8)0.0232 (3)
O230.6680 (2)0.45255 (9)0.31662 (9)0.0290 (3)
N10.2524 (3)0.86582 (10)0.17230 (9)0.0176 (3)
O110.4124 (2)0.77799 (8)0.20569 (8)0.0212 (2)
O120.01163 (19)0.83490 (8)0.14291 (8)0.0209 (2)
O130.3334 (2)0.98037 (9)0.16892 (10)0.0328 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0195 (8)0.0168 (6)0.0191 (8)0.0030 (5)0.0022 (6)0.0013 (5)
C120.0208 (8)0.0170 (6)0.0187 (8)0.0016 (5)0.0033 (6)0.0013 (5)
C130.0158 (8)0.0193 (6)0.0177 (8)0.0044 (5)0.0018 (6)0.0044 (5)
C140.0162 (8)0.0166 (6)0.0160 (8)0.0011 (5)0.0032 (6)0.0008 (5)
C210.0201 (8)0.0185 (6)0.0184 (8)0.0005 (5)0.0008 (6)0.0019 (5)
C220.0232 (9)0.0172 (6)0.0188 (8)0.0020 (5)0.0028 (7)0.0004 (5)
C230.0175 (8)0.0193 (6)0.0176 (8)0.0063 (5)0.0013 (6)0.0027 (5)
C240.0140 (8)0.0180 (6)0.0136 (7)0.0006 (5)0.0023 (6)0.0011 (5)
N20.0176 (7)0.0212 (6)0.0154 (7)0.0000 (4)0.0009 (5)0.0029 (4)
N110.0134 (7)0.0165 (5)0.0165 (7)0.0002 (4)0.0010 (5)0.0010 (4)
N120.0140 (7)0.0190 (5)0.0174 (7)0.0010 (4)0.0015 (5)0.0004 (4)
N130.0167 (7)0.0150 (5)0.0245 (7)0.0031 (4)0.0059 (5)0.0003 (4)
N140.0160 (7)0.0194 (6)0.0213 (7)0.0013 (4)0.0023 (5)0.0001 (4)
N210.0162 (7)0.0159 (6)0.0183 (7)0.0018 (4)0.0011 (5)0.0003 (4)
N220.0139 (7)0.0194 (5)0.0180 (7)0.0006 (4)0.0024 (5)0.0008 (4)
N230.0165 (7)0.0145 (5)0.0243 (7)0.0012 (4)0.0058 (5)0.0009 (4)
N240.0164 (7)0.0177 (6)0.0220 (7)0.0003 (4)0.0026 (5)0.0002 (4)
O210.0131 (5)0.0201 (5)0.0255 (6)0.0014 (4)0.0028 (4)0.0016 (4)
O220.0175 (6)0.0262 (5)0.0242 (6)0.0067 (4)0.0004 (5)0.0041 (4)
O230.0232 (7)0.0213 (5)0.0398 (7)0.0066 (4)0.0046 (5)0.0039 (4)
N10.0170 (7)0.0187 (5)0.0158 (6)0.0021 (4)0.0007 (5)0.0010 (4)
O110.0174 (6)0.0199 (5)0.0251 (6)0.0019 (4)0.0006 (5)0.0033 (4)
O120.0123 (6)0.0210 (5)0.0281 (6)0.0027 (4)0.0007 (4)0.0017 (4)
O130.0245 (7)0.0176 (5)0.0499 (8)0.0067 (4)0.0113 (6)0.0051 (4)
Geometric parameters (Å, º) top
C11—C121.405 (2)C24—N211.3953 (17)
C11—N121.3211 (16)C24—N231.3161 (18)
C12—C131.362 (2)C24—N241.2951 (18)
C13—N111.3828 (17)N2—O211.2587 (16)
C14—N111.3889 (17)N2—O221.2576 (16)
C14—N131.3118 (18)N2—O231.2412 (13)
C14—N141.2988 (18)N11—N121.3683 (17)
C21—C221.409 (2)N21—N221.3696 (17)
C21—N221.3159 (16)N1—O111.2693 (15)
C22—C231.365 (2)N1—O121.2586 (16)
C23—N211.3803 (17)N1—O131.2294 (14)
N12—C11—C12112.61 (13)O23—N2—O21119.82 (12)
C13—C12—C11105.67 (11)O23—N2—O22119.92 (13)
C12—C13—N11105.75 (14)C13—N11—C14128.35 (15)
N13—C14—N11117.36 (15)N12—N11—C13112.16 (11)
N14—C14—N11120.54 (12)N12—N11—C14119.33 (11)
N14—C14—N13122.08 (12)C11—N12—N11103.81 (10)
N22—C21—C22112.78 (12)C23—N21—C24128.13 (15)
C23—C22—C21105.30 (12)N22—N21—C23112.12 (11)
C22—C23—N21105.89 (14)N22—N21—C24119.70 (11)
N23—C24—N21117.23 (14)C21—N22—N21103.91 (10)
N24—C24—N21119.79 (12)O12—N1—O11119.68 (11)
N24—C24—N23122.97 (12)O13—N1—O11119.87 (13)
O22—N2—O21120.26 (11)O13—N1—O12120.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O120.861.912.7628 (14)172
N13—H13B···N12i0.862.232.9607 (17)143
N14—H14A···O110.862.062.9188 (15)172
N14—H14B···O220.862.713.5663 (15)177
N14—H14B···O230.862.192.7864 (16)126
N23—H23A···O210.861.932.7834 (13)174
N23—H23B···N22ii0.862.212.9493 (18)144
N24—H24A···O220.862.072.9191 (13)168
N24—H24B···O11iii0.862.193.0253 (15)164
Symmetry codes: (i) x1, y+1, z; (ii) x+3, y, z+1; (iii) x, y1, z.
(300K) top
Crystal data top
NO3·C4H7N4F(000) = 360
Mr = 173.15Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1532 (2) ÅCell parameters from 2944 reflections
b = 10.2613 (4) Åθ = 3.5–28.7°
c = 14.0623 (7) ŵ = 0.13 mm1
β = 100.401 (5)°T = 300 K
V = 731.38 (6) Å3Prism, colourless
Z = 40.49 × 0.36 × 0.32 mm
Data collection top
Xcalibur, Atlas
diffractometer
1792 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.6249 pixels mm-1θmax = 29.2°, θmin = 3.6°
ω scansh = 76
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1413
Tmin = 0.820, Tmax = 1.000l = 1919
7849 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1792 reflectionsΔρmax = 0.12 e Å3
114 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5158 (2)0.67349 (10)0.14231 (9)0.0618 (3)
O20.8291 (3)0.53593 (12)0.17855 (13)0.0947 (5)
O30.9086 (2)0.73790 (12)0.20697 (9)0.0674 (4)
C10.8875 (3)0.78677 (15)0.46172 (11)0.0555 (4)
H11.0356980.8264860.4975970.068 (5)*
C20.6694 (3)0.85583 (15)0.41203 (12)0.0576 (4)
H20.6467250.9457450.4090580.062 (5)*
C30.5006 (3)0.76454 (15)0.36971 (11)0.0530 (4)
H30.3362540.7789450.3313750.074 (5)*
C40.5214 (3)0.52205 (13)0.37096 (9)0.0442 (3)
N10.6169 (2)0.64581 (11)0.39384 (8)0.0446 (3)
N20.8595 (2)0.66018 (11)0.45209 (9)0.0508 (3)
N30.6608 (2)0.42348 (13)0.40872 (9)0.0575 (4)
H3A0.6032810.3454360.3966870.073 (6)*
H3B0.8106060.4361800.4457810.087*
N40.2933 (2)0.50738 (14)0.31439 (9)0.0582 (4)
H4A0.2307620.4304920.3010660.072 (6)*
H4B0.2053430.5745880.2904100.086*
N50.7515 (2)0.64833 (12)0.17554 (9)0.0524 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0412 (6)0.0555 (6)0.0815 (8)0.0055 (4)0.0079 (5)0.0062 (5)
O20.0662 (9)0.0587 (8)0.1421 (13)0.0186 (6)0.0270 (8)0.0041 (8)
O30.0500 (6)0.0748 (8)0.0723 (7)0.0079 (5)0.0026 (5)0.0112 (6)
C10.0565 (8)0.0478 (8)0.0591 (9)0.0013 (7)0.0020 (7)0.0030 (7)
C20.0658 (10)0.0456 (8)0.0605 (9)0.0082 (7)0.0087 (8)0.0032 (6)
C30.0507 (8)0.0550 (8)0.0518 (8)0.0142 (7)0.0053 (6)0.0090 (6)
C40.0374 (7)0.0516 (8)0.0415 (6)0.0005 (6)0.0016 (5)0.0006 (6)
N10.0383 (6)0.0479 (7)0.0446 (6)0.0035 (5)0.0003 (5)0.0035 (5)
N20.0429 (6)0.0485 (7)0.0554 (7)0.0013 (5)0.0064 (5)0.0010 (5)
N30.0482 (7)0.0454 (7)0.0698 (8)0.0023 (5)0.0142 (6)0.0001 (6)
N40.0438 (7)0.0656 (8)0.0585 (7)0.0012 (6)0.0090 (6)0.0013 (6)
N50.0433 (7)0.0603 (8)0.0497 (7)0.0036 (6)0.0017 (5)0.0039 (5)
Geometric parameters (Å, º) top
O1—N51.2469 (16)C3—N11.3730 (18)
O2—N51.2190 (16)C4—N11.3789 (18)
O3—N51.2514 (17)C4—N31.2972 (19)
C1—C21.403 (2)C4—N41.3037 (17)
C1—N21.3113 (19)N1—N21.3733 (15)
C2—C31.342 (2)
N2—C1—C2112.68 (14)C3—N1—N2111.22 (11)
C3—C2—C1105.36 (14)N2—N1—C4119.09 (10)
C2—C3—N1106.90 (13)C1—N2—N1103.84 (11)
N3—C4—N1118.34 (12)O1—N5—O3120.29 (13)
N3—C4—N4122.09 (14)O2—N5—O1120.01 (13)
N4—C4—N1119.55 (13)O2—N5—O3119.70 (13)
C3—N1—C4129.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.861.922.7726 (17)174
N3—H3B···N2ii0.862.252.9887 (17)145
N4—H4A···O3i0.862.102.9506 (19)171
N4—H4B···O3iii0.862.423.2752 (18)170
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds