Download citation
Download citation
link to html
The single crystal growth and sequence of reversible phase transition are described for C3H5N2Al(SO4)2·6H2O. Thermal and structural analyses combined with dielectric studies and optical observations revealed the structural phase transition at T1 = 339/340 K (I↔II) and T2 = 347/348 K (II↔III) on heating and cooling, respectively. Both phase transitions are of the first-order type. The symmetry changes from monoclinic to trigonal phase. At 293 K, the large crystals are usually divided into numerous domains of the ferroelastic type that disappear above T1 on heating and reappear below T1 on cooling. The domain structure pattern is characteristic for the transition between trigonal and monoclinic phases. The changes of entropy and clear increase of permittivity at T1 provide evidence for the order–disorder character of this phase transition. The transition at T2 seems to be displacive.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621001256/xk5078sup1.cif
Contains datablocks global, I_non-standard_setting, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621001256/xk5078I-NSSsup2.hkl
I with non-standard setting (NSS)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621001256/xk5078IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621001256/xk5078IIIsup4.hkl
Contains datablock III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621001256/xk5078sup5.pdf
Supplementary material

CCDC references: 2047334; 2047335; 2047336

Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007). Program(s) used to solve structure: SHELXS2014 (Sheldrick, 2014) for I_non-standard_setting; SHELXS2013 (Sheldrick, 2013) for (II), (III). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014) for I_non-standard_setting; SHELXL2013 (Sheldrick, 2013) for (II), (III). Molecular graphics: Mercury (Macrae, 2020) for I_non-standard_setting; SHELXTL (Sheldrick, 2008) for (II), (III).

(I_non-standard_setting) top
Crystal data top
C3H17AlN2O14S2F(000) = 412
Mr = 396.29Dx = 1.776 Mg m3
Monoclinic, P2/aMo Kα radiation, λ = 0.71073 Å
a = 12.0026 (10) ÅCell parameters from 4395 reflections
b = 6.7859 (6) Åθ = 3.0–26.0°
c = 9.1005 (11) ŵ = 0.50 mm1
β = 88.835 (9)°T = 290 K
V = 741.07 (13) Å3Irregular, colorless
Z = 20.25 × 0.20 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
1082 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.062
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
Detector resolution: 10.4508 pixels mm-1h = 1414
ω–scank = 87
4395 measured reflectionsl = 811
1431 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1431 reflectionsΔρmax = 0.52 e Å3
125 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.25000.26554 (15)0.00000.0198 (3)
O10.31352 (19)0.4649 (3)0.1142 (2)0.0280 (5)
H1A0.275 (3)0.568 (6)0.155 (4)0.050 (11)*
H1B0.365 (3)0.460 (6)0.145 (4)0.049 (13)*
O1A0.1197 (2)0.2657 (3)0.1153 (3)0.0289 (6)
H1AA0.093 (3)0.348 (5)0.147 (4)0.032 (11)*
H1AB0.091 (3)0.169 (5)0.139 (4)0.034 (10)*
O1B0.18848 (19)0.0682 (3)0.1164 (2)0.0289 (5)
H1BA0.130 (3)0.061 (5)0.139 (4)0.040 (11)*
H1BB0.228 (3)0.044 (6)0.153 (4)0.053 (11)*
S10.57521 (6)0.23069 (9)0.26261 (8)0.0227 (3)
O20.52020 (15)0.4138 (3)0.2171 (2)0.0304 (5)
O2A0.52129 (16)0.0634 (3)0.1882 (2)0.0365 (6)
O2B0.69411 (17)0.2363 (2)0.2168 (3)0.0297 (5)
O30.56481 (19)0.2052 (3)0.4211 (3)0.0390 (6)
N10.6636 (2)0.7997 (5)0.5045 (3)0.0448 (8)
H10.59570.84020.50780.054*
C20.75000.9107 (7)0.50000.0416 (12)
H20.75001.04780.50000.050*
C2A0.6956 (3)0.6120 (6)0.5030 (4)0.0533 (10)
H2A0.64940.50190.50580.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0158 (6)0.0190 (6)0.0246 (6)0.0000.0012 (5)0.000
O10.0205 (13)0.0278 (12)0.0359 (13)0.0031 (9)0.0044 (10)0.0080 (9)
O1A0.0240 (12)0.0197 (11)0.0423 (14)0.0003 (9)0.0150 (10)0.0006 (10)
O1B0.0192 (12)0.0276 (12)0.0401 (13)0.0007 (9)0.0042 (10)0.0087 (9)
S10.0153 (4)0.0198 (4)0.0330 (4)0.0010 (3)0.0009 (3)0.0003 (3)
O20.0218 (10)0.0204 (10)0.0489 (13)0.0017 (9)0.0008 (9)0.0038 (9)
O2A0.0205 (11)0.0233 (11)0.0658 (16)0.0011 (9)0.0057 (10)0.0085 (10)
O2B0.0170 (11)0.0262 (11)0.0456 (13)0.0003 (8)0.0051 (9)0.0006 (8)
O30.0320 (13)0.0514 (14)0.0335 (13)0.0023 (11)0.0022 (10)0.0070 (10)
N10.0236 (14)0.074 (2)0.0366 (16)0.0073 (15)0.0009 (12)0.0106 (16)
C20.049 (3)0.038 (3)0.038 (3)0.0000.006 (2)0.000
C2A0.078 (3)0.049 (2)0.0320 (18)0.032 (2)0.005 (2)0.0028 (18)
Geometric parameters (Å, º) top
Al1—O1Ai1.866 (2)S1—O31.455 (2)
Al1—O1A1.866 (2)S1—O21.4706 (19)
Al1—O1B1.869 (2)S1—O2A1.478 (2)
Al1—O1Bi1.869 (2)S1—O2B1.479 (2)
Al1—O11.877 (2)N1—C21.282 (4)
Al1—O1i1.877 (2)N1—C2A1.331 (5)
O1—H1A0.91 (4)N1—H10.8600
O1—H1B0.69 (4)C2—N1ii1.282 (4)
O1A—H1AA0.70 (3)C2—H20.9300
O1A—H1AB0.77 (3)C2A—C2Aii1.307 (7)
O1B—H1BA0.74 (4)C2A—H2A0.9300
O1B—H1BB0.95 (4)
O1Ai—Al1—O1A179.92 (14)H1AA—O1A—H1AB111 (4)
O1Ai—Al1—O1B91.03 (10)Al1—O1B—H1BA126 (3)
O1A—Al1—O1B89.03 (10)Al1—O1B—H1BB125 (2)
O1Ai—Al1—O1Bi89.03 (10)H1BA—O1B—H1BB109 (4)
O1A—Al1—O1Bi91.03 (10)O3—S1—O2110.46 (12)
O1B—Al1—O1Bi88.46 (14)O3—S1—O2A109.45 (13)
O1Ai—Al1—O188.03 (10)O2—S1—O2A108.48 (13)
O1A—Al1—O191.91 (11)O3—S1—O2B110.19 (14)
O1B—Al1—O1178.99 (9)O2—S1—O2B109.58 (11)
O1Bi—Al1—O191.90 (11)O2A—S1—O2B108.64 (12)
O1Ai—Al1—O1i91.91 (11)C2—N1—C2A109.2 (3)
O1A—Al1—O1i88.02 (10)C2—N1—H1125.4
O1B—Al1—O1i91.90 (11)C2A—N1—H1125.4
O1Bi—Al1—O1i178.99 (9)N1ii—C2—N1108.0 (4)
O1—Al1—O1i87.77 (15)N1ii—C2—H2126.0
Al1—O1—H1A125 (2)N1—C2—H2126.0
Al1—O1—H1B125 (3)C2Aii—C2A—N1106.77 (19)
H1A—O1—H1B109 (4)C2Aii—C2A—H2A126.6
Al1—O1A—H1AA127 (3)N1—C2A—H2A126.6
Al1—O1A—H1AB121 (2)
C2A—N1—C2—N1ii0.09 (17)C2—N1—C2A—C2Aii0.2 (5)
Symmetry codes: (i) x+1/2, y, z; (ii) x+3/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1iii0.91 (4)2.91 (4)3.757 (2)155 (3)
O1—H1A···O2Biii0.91 (4)1.73 (4)2.643 (3)174 (3)
O1—H1B···O20.69 (4)2.01 (4)2.692 (3)172 (4)
O1A—H1AA···O2iii0.70 (3)1.94 (3)2.640 (3)175 (4)
O1A—H1AB···S1iv0.77 (3)2.94 (3)3.661 (2)157 (3)
O1A—H1AB···O2Aiv0.77 (3)1.84 (3)2.606 (3)178 (4)
O1B—H1BA···S1i0.74 (4)2.96 (4)3.630 (2)152 (4)
O1B—H1BA···O2Ai0.74 (4)1.87 (4)2.614 (3)175 (4)
O1B—H1BB···S1v0.95 (4)2.84 (4)3.711 (2)152 (3)
O1B—H1BB···O2Bv0.95 (4)1.70 (4)2.653 (3)177 (3)
N1—H1···S1vi0.862.943.536 (3)128
N1—H1···O3vi0.862.042.811 (4)148
C2—H2···O3vii0.932.583.084 (4)114
C2—H2···O3viii0.932.583.084 (4)114
C2A—H2A···O30.932.393.269 (4)158
Symmetry codes: (i) x+1/2, y, z; (iii) x1/2, y+1, z; (iv) x1/2, y, z; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x+3/2, y+1, z+1.
(II) top
Crystal data top
C3H17AlN2O14S2Dx = 1.756 Mg m3
Mr = 396.29Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 2491 reflections
a = 6.8748 (5) Åθ = 3.4–5.9°
c = 9.1550 (12) ŵ = 0.49 mm1
V = 374.72 (7) Å3T = 345 K
Z = 1Irregular, colorless
F(000) = 2060.25 × 0.20 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
274 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.034
Graphite monochromatorθmax = 25.9°, θmin = 3.4°
Detector resolution: 10.4508 pixels mm-1h = 88
ω–scank = 78
2491 measured reflectionsl = 811
311 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.3072P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
311 reflectionsΔρmax = 0.25 e Å3
32 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al11.00001.00001.00000.0312 (5)
O10.86995 (17)0.7399 (3)0.8850 (2)0.0418 (6)
H1A0.93490.65870.85450.050*
S10.33330.66670.73910 (15)0.0374 (4)
O20.44987 (18)0.55013 (18)0.7935 (3)0.0485 (6)
O30.33330.66670.5807 (5)0.0757 (15)
N10.085 (3)0.170 (6)0.506 (3)0.056 (7)0.3333
H10.15210.30420.50200.067*0.3333
C20.176 (4)0.176 (4)0.50000.056 (7)0.5
H20.30070.30070.50000.068*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0271 (7)0.0271 (7)0.0396 (11)0.0135 (3)0.0000.000
O10.0315 (8)0.0366 (12)0.0590 (12)0.0183 (6)0.0069 (5)0.0138 (10)
S10.0305 (5)0.0305 (5)0.0510 (8)0.0153 (2)0.0000.000
O20.0328 (9)0.0328 (9)0.0831 (15)0.0189 (10)0.0020 (5)0.0020 (5)
O30.090 (2)0.090 (2)0.047 (2)0.0449 (12)0.0000.000
N10.065 (15)0.030 (9)0.062 (9)0.015 (5)0.008 (4)0.015 (8)
C20.045 (7)0.045 (7)0.052 (7)0.002 (9)0.008 (4)0.008 (4)
Geometric parameters (Å, º) top
Al1—O11.8728 (19)N1—N1viii1.02 (4)
Al1—O1i1.8728 (19)N1—C2ix1.575 (11)
Al1—O1ii1.8728 (19)N1—C2x1.575 (11)
Al1—O1iii1.8728 (19)N1—N1xi1.75 (7)
Al1—O1iv1.873 (2)N1—N1x1.75 (7)
Al1—O1v1.8728 (19)N1—H10.8023
O1—H1A0.9154N1—H21.2967
S1—O31.450 (5)C2—N1ix0.607 (15)
S1—O2vi1.474 (2)C2—C2viii1.21 (3)
S1—O2vii1.474 (2)C2—C2ix1.21 (3)
S1—O21.474 (2)C2—N1viii1.575 (11)
N1—C20.607 (15)C2—N1xi1.575 (11)
N1—C2viii0.607 (15)C2—H10.9749
N1—N1ix1.02 (4)C2—H20.8600
O1—Al1—O1i180.0C2x—N1—N1x20.2 (15)
O1—Al1—O1ii88.53 (9)N1xi—N1—N1x60.000 (6)
O1i—Al1—O1ii91.47 (9)C2—N1—H186.3
O1—Al1—O1iii91.47 (9)C2viii—N1—H186.3
O1i—Al1—O1iii88.53 (9)N1ix—N1—H1119.4
O1ii—Al1—O1iii180.0N1viii—N1—H1119.4
O1—Al1—O1iv91.47 (9)C2ix—N1—H1129.7
O1i—Al1—O1iv88.53 (9)C2x—N1—H1129.7
O1ii—Al1—O1iv88.53 (9)N1xi—N1—H1149.9
O1iii—Al1—O1iv91.47 (9)N1x—N1—H1149.9
O1—Al1—O1v88.53 (9)C2—N1—H233.7
O1i—Al1—O1v91.47 (9)C2viii—N1—H2138.8
O1ii—Al1—O1v91.47 (9)N1ix—N1—H266.9
O1iii—Al1—O1v88.53 (9)N1viii—N1—H2168.6
O1iv—Al1—O1v180.0C2ix—N1—H276.9
Al1—O1—H1A127.5C2x—N1—H2174.6
O3—S1—O2vi109.73 (10)N1xi—N1—H297.1
O3—S1—O2vii109.73 (10)N1x—N1—H2156.9
O2vi—S1—O2vii109.21 (10)H1—N1—H252.9
O3—S1—O2109.73 (10)N1—C2—N1ix113 (10)
O2vi—S1—O2109.21 (11)N1—C2—C2viii6 (3)
O2vii—S1—O2109.21 (10)N1ix—C2—C2viii116 (5)
C2—N1—C2viii167 (5)N1—C2—C2ix116 (5)
C2—N1—N1ix33 (5)N1ix—C2—C2ix6 (3)
C2viii—N1—N1ix151 (6)C2viii—C2—C2ix120.001 (14)
C2—N1—N1viii151 (6)N1—C2—N1viii18 (4)
C2viii—N1—N1viii33 (6)N1ix—C2—N1viii96 (7)
N1ix—N1—N1viii118.8 (11)C2viii—C2—N1viii20.2 (16)
C2—N1—C2ix43 (4)C2ix—C2—N1viii99.9 (16)
C2viii—N1—C2ix143 (7)N1—C2—N1xi96 (7)
N1ix—N1—C2ix10.8 (19)N1ix—C2—N1xi18 (4)
N1viii—N1—C2ix109.7 (18)C2viii—C2—N1xi99.9 (16)
C2—N1—C2x143 (7)C2ix—C2—N1xi20.2 (16)
C2viii—N1—C2x43 (4)N1viii—C2—N1xi80 (3)
N1ix—N1—C2x109.7 (18)N1—C2—H155.2
N1viii—N1—C2x10.8 (19)N1ix—C2—H1167.6
C2ix—N1—C2x100 (3)C2viii—C2—H151.7
C2—N1—N1xi64 (5)C2ix—C2—H1171.7
C2viii—N1—N1xi123 (5)N1viii—C2—H171.9
N1ix—N1—N1xi30.6 (6)N1xi—C2—H1151.5
N1viii—N1—N1xi89.999 (5)N1—C2—H2123.3
C2ix—N1—N1xi20.2 (15)N1ix—C2—H2123.3
C2x—N1—N1xi80.1 (16)C2viii—C2—H2120.0
C2—N1—N1x123 (5)C2ix—C2—H2120.0
C2viii—N1—N1x64 (5)N1viii—C2—H2140.1
N1ix—N1—N1x89.999 (18)N1xi—C2—H2140.1
N1viii—N1—N1x30.6 (5)H1—C2—H268.3
C2ix—N1—N1x80.1 (16)
C2viii—N1—C2—N1ix119 (50)C2x—N1—C2—C2ix13 (5)
N1viii—N1—C2—N1ix20 (7)N1xi—N1—C2—C2ix0.000 (1)
C2ix—N1—C2—N1ix6 (3)N1x—N1—C2—C2ix6 (3)
C2x—N1—C2—N1ix7 (3)C2viii—N1—C2—N1viii99 (53)
N1xi—N1—C2—N1ix6 (3)N1ix—N1—C2—N1viii20 (7)
N1x—N1—C2—N1ix0.001 (2)C2ix—N1—C2—N1viii26 (10)
N1ix—N1—C2—C2viii119 (50)C2x—N1—C2—N1viii13 (4)
N1viii—N1—C2—C2viii99 (52)N1xi—N1—C2—N1viii26 (10)
C2ix—N1—C2—C2viii125 (48)N1x—N1—C2—N1viii20 (7)
C2x—N1—C2—C2viii112 (51)C2viii—N1—C2—N1xi125 (48)
N1xi—N1—C2—C2viii125 (48)N1ix—N1—C2—N1xi6 (3)
N1x—N1—C2—C2viii119 (50)N1viii—N1—C2—N1xi26 (10)
C2viii—N1—C2—C2ix125 (48)C2ix—N1—C2—N1xi0.000 (1)
N1ix—N1—C2—C2ix6 (3)C2x—N1—C2—N1xi13 (5)
N1viii—N1—C2—C2ix26 (10)N1x—N1—C2—N1xi6 (3)
Symmetry codes: (i) x+2, y+2, z+2; (ii) xy+1, x, z+2; (iii) x+y+1, x+2, z; (iv) y+2, xy+1, z; (v) y, x+y+1, z+2; (vi) y+1, xy+1, z; (vii) x+y, x+1, z; (viii) xy, x, z+1; (ix) y, x+y, z+1; (x) y, xy, z; (xi) x+y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1xii0.922.913.7134 (9)147
O1—H1A···O2xiii0.921.742.6413 (17)170
N1—H1···S10.803.063.65 (4)132
N1—H1···O30.802.283.04 (4)159
C2—H1···S10.973.063.702 (15)125
C2—H1···O30.972.283.075 (18)139
N1—H2···O3xiv1.302.523.661 (9)145
C2—H1···O30.972.283.075 (18)139
C2—H2···O3xiv0.862.523.075 (18)123
Symmetry codes: (xii) x+1, y, z; (xiii) x+y+1, x+1, z; (xiv) x+1, y+1, z+1.
(III) top
Crystal data top
C3H17AlN2O14S2Dx = 1.758 Mg m3
Mr = 396.29Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 2563 reflections
a = 6.8680 (4) Åθ = 3.4–26.0°
c = 9.1617 (10) ŵ = 0.49 mm1
V = 374.25 (6) Å3T = 350 K
Z = 1Irregular, colorless
F(000) = 2060.4 × 0.36 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
279 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 3.4°
Detector resolution: 10.4508 pixels mm-1h = 88
ω–scank = 88
2563 measured reflectionsl = 711
317 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.2265P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
317 reflectionsΔρmax = 0.32 e Å3
32 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al11.00001.00001.00000.0299 (5)
O10.86970 (15)0.7394 (3)0.88502 (18)0.0404 (5)
H1A0.93460.65870.85450.048*
S10.33330.66670.73902 (13)0.0352 (3)
O20.44965 (15)0.55035 (15)0.7932 (2)0.0470 (5)
O30.33330.66670.5813 (4)0.0726 (13)
N10.171 (6)0.085 (3)0.493 (2)0.052 (5)0.3333
H10.32890.16440.50550.062*0.3333
C20.176 (3)0.176 (3)0.50000.054 (6)0.5
H20.30060.28010.50000.065*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0257 (6)0.0257 (6)0.0383 (10)0.0128 (3)0.0000.000
O10.0306 (7)0.0357 (11)0.0565 (11)0.0179 (5)0.0067 (4)0.0134 (9)
S10.0281 (4)0.0281 (4)0.0492 (7)0.0141 (2)0.0000.000
O20.0314 (7)0.0314 (7)0.0813 (13)0.0180 (8)0.0021 (5)0.0021 (5)
O30.086 (2)0.086 (2)0.047 (2)0.0428 (10)0.0000.000
N10.030 (9)0.058 (12)0.057 (8)0.015 (4)0.011 (7)0.006 (3)
C20.041 (6)0.041 (6)0.053 (6)0.001 (9)0.009 (4)0.009 (4)
Geometric parameters (Å, º) top
Al1—O11.8741 (17)N1—N1viii1.02 (4)
Al1—O1i1.8741 (17)N1—C2ix1.577 (10)
Al1—O1ii1.8741 (17)N1—C2x1.577 (10)
Al1—O1iii1.8741 (17)N1—N1x1.76 (6)
Al1—O1iv1.8741 (17)N1—N1xi1.76 (6)
Al1—O1v1.8741 (17)N1—H10.9480
O1—H1A0.9117N1—H21.1819
S1—O31.445 (4)C2—N1ix0.607 (12)
S1—O2vi1.4702 (19)C2—C2ix1.21 (2)
S1—O2vii1.4702 (19)C2—C2viii1.21 (2)
S1—O21.4702 (19)C2—N1xi1.577 (11)
N1—C20.607 (12)C2—N1viii1.577 (11)
N1—C2viii0.607 (12)C2—H11.0944
N1—N1ix1.02 (4)C2—H20.7982
O1—Al1—O1i180.0C2x—N1—N1xi79.9 (14)
O1—Al1—O1ii88.51 (7)N1x—N1—N1xi59.999 (4)
O1i—Al1—O1ii91.49 (7)C2—N1—H186.6
O1—Al1—O1iii91.49 (7)C2viii—N1—H186.6
O1i—Al1—O1iii88.51 (7)N1ix—N1—H1118.5
O1ii—Al1—O1iii180.0N1viii—N1—H1118.5
O1—Al1—O1iv91.49 (7)C2ix—N1—H1129.3
O1i—Al1—O1iv88.51 (7)C2x—N1—H1129.3
O1ii—Al1—O1iv88.51 (8)N1x—N1—H1149.3
O1iii—Al1—O1iv91.49 (7)N1xi—N1—H1149.3
O1—Al1—O1v88.51 (7)C2—N1—H238.2
O1i—Al1—O1v91.49 (7)C2viii—N1—H2135.4
O1ii—Al1—O1v91.49 (7)N1ix—N1—H270.7
O1iii—Al1—O1v88.51 (8)N1viii—N1—H2165.0
O1iv—Al1—O1v180.0C2ix—N1—H280.9
Al1—O1—H1A127.4C2x—N1—H2174.5
O3—S1—O2vi109.75 (9)N1x—N1—H2160.7
O3—S1—O2vii109.75 (9)N1xi—N1—H2100.9
O2vi—S1—O2vii109.19 (9)H1—N1—H249.0
O3—S1—O2109.75 (9)N1ix—C2—N1115 (10)
O2vi—S1—O2109.19 (9)N1ix—C2—C2ix7 (2)
O2vii—S1—O2109.19 (9)N1—C2—C2ix117 (5)
C2—N1—C2viii167 (4)N1ix—C2—C2viii117 (5)
C2—N1—N1ix33 (5)N1—C2—C2viii7 (2)
C2viii—N1—N1ix150 (5)C2ix—C2—C2viii120.000 (11)
C2—N1—N1viii150 (5)N1ix—C2—N1xi19 (4)
C2viii—N1—N1viii33 (5)N1—C2—N1xi97 (6)
N1ix—N1—N1viii118.5 (10)C2ix—C2—N1xi20.0 (14)
C2—N1—C2ix43 (3)C2viii—C2—N1xi100.1 (14)
C2viii—N1—C2ix142 (6)N1ix—C2—N1viii97 (6)
N1ix—N1—C2ix11.2 (16)N1—C2—N1viii19 (4)
N1viii—N1—C2ix109.4 (16)C2ix—C2—N1viii100.1 (14)
C2—N1—C2x142 (6)C2viii—C2—N1viii20.0 (14)
C2viii—N1—C2x43 (3)N1xi—C2—N1viii80 (3)
N1ix—N1—C2x109.4 (16)N1ix—C2—H1169.3
N1viii—N1—C2x11.2 (16)N1—C2—H159.8
C2ix—N1—C2x100 (3)C2ix—C2—H1175.6
C2—N1—N1x123 (5)C2viii—C2—H156.6
C2viii—N1—N1x63 (5)N1xi—C2—H1156.7
N1ix—N1—N1x90.00 (2)N1viii—C2—H176.4
N1viii—N1—N1x30.8 (5)N1ix—C2—H2131.2
C2ix—N1—N1x79.9 (14)N1—C2—H2113.8
C2x—N1—N1x20.0 (14)C2ix—C2—H2128.8
C2—N1—N1xi63 (5)C2viii—C2—H2111.2
C2viii—N1—N1xi123 (5)N1xi—C2—H2148.6
N1ix—N1—N1xi30.8 (5)N1viii—C2—H2131.1
N1viii—N1—N1xi90.002 (8)H1—C2—H254.7
C2ix—N1—N1xi20.0 (14)
C2viii—N1—C2—N1ix111 (43)C2x—N1—C2—C2viii103 (43)
N1viii—N1—C2—N1ix22 (6)N1x—N1—C2—C2viii111 (43)
C2ix—N1—C2—N1ix7 (2)N1xi—N1—C2—C2viii118 (41)
C2x—N1—C2—N1ix8 (2)C2viii—N1—C2—N1xi118 (42)
N1x—N1—C2—N1ix0.001 (2)N1ix—N1—C2—N1xi7 (2)
N1xi—N1—C2—N1ix7 (2)N1viii—N1—C2—N1xi29 (8)
C2viii—N1—C2—C2ix118 (42)C2ix—N1—C2—N1xi0.000 (1)
N1ix—N1—C2—C2ix7 (2)C2x—N1—C2—N1xi15 (5)
N1viii—N1—C2—C2ix29 (8)N1x—N1—C2—N1xi7 (2)
C2x—N1—C2—C2ix15 (5)C2viii—N1—C2—N1viii89 (44)
N1x—N1—C2—C2ix7 (2)N1ix—N1—C2—N1viii22 (6)
N1xi—N1—C2—C2ix0.000 (2)C2ix—N1—C2—N1viii29 (8)
N1ix—N1—C2—C2viii111 (43)C2x—N1—C2—N1viii14 (3)
N1viii—N1—C2—C2viii89 (44)N1x—N1—C2—N1viii22 (6)
C2ix—N1—C2—C2viii118 (41)N1xi—N1—C2—N1viii29 (8)
Symmetry codes: (i) x+2, y+2, z+2; (ii) xy+1, x, z+2; (iii) x+y+1, x+2, z; (iv) y+2, xy+1, z; (v) y, x+y+1, z+2; (vi) y+1, xy+1, z; (vii) x+y, x+1, z; (viii) y, x+y, z+1; (ix) xy, x, z+1; (x) x+y, x, z; (xi) y, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1xii0.912.913.7106 (8)147
O1—H1A···O2xiii0.911.742.6400 (15)170
N1—H1···S1xiv0.953.013.64 (4)125
N1—H1···O3xiv0.952.163.03 (4)152
C2—H2···S1xiv0.803.213.700 (13)122
C2—H2···O3xiv0.802.473.074 (15)134
N1—H2···O31.182.663.658 (8)142
C2—H2···O30.802.663.074 (15)115
C2—H2···O3xiv0.802.473.074 (15)134
Symmetry codes: (xii) x+1, y, z; (xiii) x+y+1, x+1, z; (xiv) x+1, y+1, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds