Download citation
Download citation
link to html
The 1:1 complex of 8-hy­droxy­quinoline with squaric acid has been characterized using single-crystal X-ray diffraction, UV–vis spectroscopy, density functional theory (DFT) calculations, and photoluminescence, dielectric, piezoelectric and second-harmonic generation (SHG) studies. The title compound (8-hy­droxy­quinolinium hydrogen squarate; HQS) contains one protonated 8-hy­droxy­quinoline cation (C9H8NO+) and one hydrogen squarate mono-anion (C4HO4). All the intermolecular hydrogen-bonding interactions present in the HQS crystal structure are analyzed by three-dimensional molecular Hirshfeld surface analysis and their relative contributions are determined from two-dimensional fingerprint plots. The structure of C9H8NO+·C4HO4 molecular complex has been optimized at the DFT/B3LYP/6-31G(d,p) level. The UV–vis spectroscopic data calculated by time-dependent density functional theory are compared with the experimental data. The LUMO+1, LUMO, HOMO and HOMO−1 energy values, their shapes and energy gaps are calculated using the B3LYP/6-31G(d,p) level of theory. The HQS material exhibits high SHG output (2.6 times of that of potassium dihydrogen phosphate), high photoluminescence emission centred at 474 nm and a piezoelectric charge coefficient of 3 pC N−1. Henceforth, HQS can serve as an alternative potential candidate for multifunctional nonlinear optically active and piezoelectric crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617013038/xk5042sup1.cif
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617013038/xk5042sup2.pdf
Supplementary material

CCDC reference: 1531632

Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58); cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58); data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C9H8NO·C4HO4Dx = 1.566 Mg m3
Mr = 259.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2142 reflections
a = 5.6052 (3) Åθ = 3.6–22.1°
b = 8.5753 (4) ŵ = 0.12 mm1
c = 22.881 (1) ÅT = 293 K
V = 1099.81 (9) Å3Block, yellow
Z = 41.0 × 0.2 × 0.2 mm
F(000) = 536
Data collection top
Xcalibur, Sapphire3
diffractometer
2784 independent reflections
Radiation source: Enhance (Mo) X-ray Source1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 15.9853 pixels mm-1θmax = 29.3°, θmin = 3.0°
ω scansh = 77
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.816, Tmax = 1.000l = 3131
15943 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.033P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
2784 reflectionsΔρmin = 0.24 e Å3
174 parametersAbsolute structure: Flack x determined using 529 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.9 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All N(H) groups At 1.5 times of: All O(H) groups 2.a Aromatic/amide H refined with riding coordinates: N1(H1), C7(H7), C2(H2), C4(H4), C5(H5), C3(H3), C6(H6) 2.b Idealised tetrahedral OH refined as rotating group: O4(H4A), O1(H1A)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.8725 (4)0.9579 (3)0.05794 (10)0.0419 (7)
O51.2637 (4)1.1581 (3)0.01750 (10)0.0412 (7)
O41.5004 (5)1.2779 (4)0.10281 (10)0.0476 (8)
H4A1.5790421.2971450.0734700.071*
O31.0964 (5)1.1035 (3)0.17681 (10)0.0455 (7)
N10.5613 (5)0.8385 (3)0.14388 (12)0.0344 (7)
H10.6403630.8621980.1129150.041*
C90.3675 (6)0.7418 (4)0.13843 (14)0.0305 (8)
O10.4491 (5)0.7200 (4)0.03865 (11)0.0530 (8)
H1A0.4163210.6669600.0099470.079*
C80.3083 (7)0.6774 (4)0.08400 (15)0.0352 (9)
C141.2149 (6)1.1375 (4)0.03536 (15)0.0319 (8)
C100.2332 (6)0.7066 (4)0.18893 (14)0.0310 (8)
C70.1167 (7)0.5790 (5)0.08069 (16)0.0430 (10)
H70.0749820.5350640.0449740.052*
C20.6321 (7)0.8968 (5)0.19418 (16)0.0401 (9)
H20.7656130.9609750.1956770.048*
C121.1411 (6)1.1142 (4)0.12425 (15)0.0327 (8)
C40.3094 (7)0.7709 (4)0.24232 (15)0.0398 (9)
H40.2231670.7506310.2762040.048*
C111.0364 (6)1.0510 (4)0.06933 (14)0.0316 (8)
C131.3175 (6)1.1911 (4)0.08866 (15)0.0329 (8)
C50.0366 (7)0.6060 (4)0.18359 (16)0.0403 (9)
H50.0561030.5819470.2160710.048*
C30.5073 (8)0.8624 (4)0.24510 (17)0.0424 (10)
H30.5588440.9016510.2808150.051*
C60.0167 (7)0.5441 (5)0.13051 (16)0.0433 (10)
H60.1458290.4765900.1272690.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0471 (15)0.0487 (16)0.0298 (13)0.0107 (14)0.0024 (13)0.0065 (12)
O50.0366 (14)0.0658 (19)0.0212 (13)0.0024 (13)0.0019 (12)0.0040 (11)
O40.0437 (15)0.072 (2)0.0270 (13)0.0186 (15)0.0040 (12)0.0055 (14)
O30.0498 (16)0.0642 (19)0.0223 (13)0.0108 (15)0.0058 (12)0.0006 (13)
N10.0361 (17)0.0385 (18)0.0286 (16)0.0025 (15)0.0019 (14)0.0009 (13)
C90.0336 (18)0.0302 (19)0.0278 (18)0.0008 (16)0.0030 (16)0.0000 (15)
O10.0634 (19)0.067 (2)0.0285 (14)0.0166 (16)0.0080 (14)0.0085 (14)
C80.042 (2)0.036 (2)0.0273 (19)0.0014 (17)0.0026 (17)0.0005 (16)
C140.0296 (19)0.039 (2)0.0271 (18)0.0050 (16)0.0018 (16)0.0000 (16)
C100.0353 (19)0.0297 (19)0.0279 (18)0.0010 (16)0.0013 (17)0.0021 (15)
C70.049 (2)0.048 (2)0.031 (2)0.004 (2)0.0074 (19)0.0059 (18)
C20.042 (2)0.041 (2)0.038 (2)0.0067 (18)0.0037 (19)0.0032 (18)
C120.035 (2)0.037 (2)0.0260 (18)0.0028 (17)0.0009 (17)0.0004 (16)
C40.049 (2)0.040 (2)0.0301 (19)0.0049 (19)0.0054 (18)0.0025 (17)
C110.035 (2)0.035 (2)0.0255 (18)0.0047 (18)0.0003 (16)0.0010 (16)
C130.0299 (19)0.042 (2)0.0271 (19)0.0017 (17)0.0007 (16)0.0020 (16)
C50.041 (2)0.044 (2)0.036 (2)0.0077 (19)0.0027 (19)0.0021 (19)
C30.052 (2)0.045 (2)0.030 (2)0.008 (2)0.0025 (19)0.0043 (17)
C60.040 (2)0.046 (2)0.044 (2)0.009 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
O2—C111.244 (4)C14—C131.425 (5)
O5—C141.252 (4)C10—C41.407 (4)
O4—C131.308 (4)C10—C51.405 (5)
O3—C121.232 (4)C7—C61.396 (5)
N1—C91.372 (4)C2—C31.390 (5)
N1—C21.316 (4)C12—C111.489 (5)
C9—C81.402 (4)C12—C131.441 (5)
C9—C101.412 (4)C4—C31.360 (5)
O1—C81.354 (4)C11—C132.030 (5)
C8—C71.368 (5)C5—C61.359 (5)
C14—C111.469 (5)
C2—N1—C9123.2 (3)C13—C12—C1187.7 (3)
N1—C9—C8120.4 (3)C3—C4—C10120.9 (3)
N1—C9—C10118.5 (3)O2—C11—C14135.7 (3)
C8—C9—C10121.1 (3)O2—C11—C12134.5 (3)
O1—C8—C9115.9 (3)O2—C11—C13176.4 (3)
O1—C8—C7125.6 (3)C14—C11—C1289.7 (3)
C7—C8—C9118.6 (3)C14—C11—C1344.55 (19)
O5—C14—C11137.0 (3)C12—C11—C1345.15 (19)
O5—C14—C13133.9 (3)O4—C13—C14135.4 (3)
C13—C14—C1189.1 (3)O4—C13—C12131.2 (3)
C4—C10—C9117.7 (3)O4—C13—C11177.8 (3)
C5—C10—C9118.6 (3)C14—C13—C1293.4 (3)
C5—C10—C4123.7 (3)C14—C13—C1146.32 (19)
C8—C7—C6120.5 (4)C12—C13—C1147.12 (19)
N1—C2—C3120.1 (4)C6—C5—C10119.3 (3)
O3—C12—C11135.8 (3)C4—C3—C2119.6 (4)
O3—C12—C13136.5 (3)C5—C6—C7121.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.992.821 (4)163
N1—H1···O10.862.352.688 (4)104
C2—H2···O30.932.263.174 (5)167
C7—H7···O2i0.932.893.495124
C7—H7···O1i0.932.933.363110
C7—H7···O5ii0.932.493.185132 (5)
C6—H6···O5ii0.932.813.348118
C5—H5···O3iii0.932.473.280 (4)146
C4—H4···O3iii0.932.443.265 (5)148
C3—H3···O4iv0.932.893.555130
C6—H6···O4v0.932.673.597172
O4—H4A···O50.822.983.224100
O4—H4A···O5vi0.821.692.508 (5)174
O1—H1A···O2i0.821.902.720 (4)174
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x+3/2, y3/2, z; (iii) x1, y+1/2, z1/2; (iv) x2, y+1/2, z1/2; (v) x+2, y+1, z; (vi) x1/2, y5/2, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds