Download citation
Download citation
link to html
Two new polymorphic forms of 5-nitrofurazone (5-nitro-2-furaldehyde semicarbazone) have been synthesized and structurally characterized by single-crystal and powder X-ray diffraction methods, vibrational spectroscopy (FT–IR and temperature Raman), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Hirshfeld surface analysis. The compound crystallizes in three different polymorphic forms P21/a (polymorph α), P21 (polymorph β) and P21/c (polymorph γ), the crystal structures of two of which (polymorphs β and γ) represent new structure determinations. The solid-state molecular organization in the three crystal forms is analyzed and discussed in terms of molecular conformation, crystal packing and hydrogen-bonded networks. All three crystals are formed from trans geometrical isomers, but the molecular conformation of the α-polymorph is syn–anti–anti–anti, while that of β- and γ-polymorphs is syn–anti–syn–syn. As a consequence of this the hydrogen-bond donor and acceptor sites of the molecules are oriented differently, which in turn results in different hydrogen-bond connectivity and packing patterns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520615024956/xk5025sup1.cif
Contains datablocks 1066p, 1061

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615024956/xk50251066psup2.hkl
Contains datablock 1066p

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615024956/xk50251061sup3.hkl
Contains datablock 1061

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520615024956/xk5025sup4.pdf
Supporting figures and tables

CCDC references: 1444950; 1444951

Computing details top

For both compounds, data collection: Oxford Diffraction (2010). CrysAlis CCD, Version 1.171.33.42; cell refinement: Oxford Diffraction (2010). CrysAlis RED, Version 1.171.33.42; data reduction: Oxford Diffraction (2010). CrysAlis RED, Version 1.171.33.42; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Brandenburg & Putz (2006). Diamond 3.0. Crystal and Molecular Structure Visualisation, University of Bonn, Germany; software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

(1066p) top
Crystal data top
C6H6N4O4F(000) = 204
Mr = 198.15Dx = 1.547 Mg m3
Dm = 1.54 Mg m3
Dm measured by floatation
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.1964 (3) ÅCell parameters from 1345 reflections
b = 7.0129 (5) Åθ = 3.0–29.4°
c = 14.4528 (10) ŵ = 0.13 mm1
β = 90.924 (7)°T = 295 K
V = 425.28 (5) Å3Parallelepiped, yellow
Z = 20.24 × 0.22 × 0.16 mm
Data collection top
KUMA KM-4 CCD
diffractometer
1893 independent reflections
Radiation source: fine-focus sealed tube1386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.4°, θmin = 2.8°
ω–scanh = 55
Absorption correction: numerical
Oxford Diffraction (2010). CrysAlis Red, Version 1.171.33.42
k = 79
Tmin = 0.974, Tmax = 0.984l = 1919
5895 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.027P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.10 e Å3
1893 reflectionsΔρmin = 0.10 e Å3
136 parametersAbsolute structure: Flack x determined using 449 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.1 (1)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4383 (3)0.3386 (2)0.22542 (8)0.0459 (3)
C10.6066 (5)0.3173 (4)0.14708 (13)0.0459 (5)
C20.5733 (5)0.1441 (4)0.10957 (14)0.0566 (6)
H20.66710.09920.05590.068*
C30.3674 (5)0.0438 (4)0.16786 (14)0.0542 (6)
H30.29760.08120.16050.065*
C40.2904 (4)0.1661 (3)0.23720 (12)0.0412 (5)
N10.7921 (5)0.4765 (3)0.12053 (13)0.0609 (5)
O20.9453 (4)0.4585 (3)0.04943 (11)0.0849 (6)
O30.7958 (5)0.6193 (3)0.16871 (13)0.0914 (6)
C50.0920 (4)0.1536 (3)0.31757 (12)0.0411 (5)
H50.05620.25990.35440.049*
N20.0334 (3)0.0075 (2)0.33688 (10)0.0415 (4)
N30.2195 (4)0.0118 (2)0.41303 (11)0.0432 (4)
H10.276 (5)0.095 (3)0.4419 (14)0.052*
C60.3527 (5)0.1777 (3)0.44125 (12)0.0433 (5)
O40.5107 (4)0.17866 (19)0.51261 (9)0.0526 (4)
N40.3018 (6)0.3317 (3)0.39040 (16)0.0697 (6)
H410.207 (6)0.327 (4)0.3380 (17)0.084*
H420.387 (6)0.439 (4)0.4090 (17)0.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (7)0.0500 (9)0.0415 (7)0.0037 (7)0.0135 (6)0.0046 (7)
C10.0392 (10)0.0605 (13)0.0384 (10)0.0064 (12)0.0114 (9)0.0094 (12)
C20.0458 (11)0.0825 (18)0.0419 (11)0.0076 (13)0.0105 (10)0.0077 (14)
C30.0510 (12)0.0594 (14)0.0525 (12)0.0008 (11)0.0090 (11)0.0110 (11)
C40.0364 (9)0.0448 (12)0.0423 (11)0.0035 (10)0.0014 (9)0.0011 (11)
N10.0581 (11)0.0729 (14)0.0521 (11)0.0063 (11)0.0154 (10)0.0172 (11)
O20.0801 (11)0.1127 (16)0.0629 (10)0.0028 (11)0.0343 (9)0.0236 (10)
O30.1134 (14)0.0678 (13)0.0942 (13)0.0168 (11)0.0420 (12)0.0029 (12)
C50.0405 (9)0.0437 (13)0.0394 (10)0.0038 (11)0.0062 (9)0.0016 (11)
N20.0402 (9)0.0436 (11)0.0408 (9)0.0056 (8)0.0088 (8)0.0027 (8)
N30.0507 (9)0.0359 (11)0.0435 (9)0.0037 (9)0.0149 (8)0.0014 (8)
C60.0542 (11)0.0338 (10)0.0422 (11)0.0051 (11)0.0080 (9)0.0031 (11)
O40.0757 (9)0.0357 (8)0.0471 (7)0.0004 (9)0.0224 (7)0.0025 (7)
N40.1099 (17)0.0356 (11)0.0650 (12)0.0034 (11)0.0421 (12)0.0020 (10)
Geometric parameters (Å, º) top
O1—C11.352 (2)N1—O21.228 (2)
O1—C41.372 (3)C5—N21.278 (3)
C1—C21.336 (3)C5—H50.9300
C1—N11.418 (3)N2—N31.360 (2)
C2—C31.405 (3)N3—C61.357 (3)
C2—H20.9300N3—H10.89 (2)
C3—C41.362 (3)C6—O41.235 (2)
C3—H30.9300C6—N41.326 (3)
C4—C51.443 (2)N4—H410.86 (2)
N1—O31.220 (3)N4—H420.88 (3)
C1—O1—C4104.45 (18)O2—N1—C1116.3 (2)
C2—C1—O1112.82 (19)N2—C5—C4118.33 (18)
C2—C1—N1131.31 (19)N2—C5—H5120.8
O1—C1—N1115.8 (2)C4—C5—H5120.8
C1—C2—C3105.82 (19)C5—N2—N3116.11 (16)
C1—C2—H2127.1C6—N3—N2120.47 (17)
C3—C2—H2127.1C6—N3—H1117.7 (14)
C4—C3—C2106.4 (2)N2—N3—H1121.5 (14)
C4—C3—H3126.8O4—C6—N4123.5 (2)
C2—C3—H3126.8O4—C6—N3119.02 (19)
C3—C4—O1110.54 (17)N4—C6—N3117.47 (16)
C3—C4—C5134.5 (2)C6—N4—H41123 (2)
O1—C4—C5114.95 (16)C6—N4—H42117.5 (17)
O3—N1—O2124.1 (2)H41—N4—H42120 (3)
O3—N1—C1119.61 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O4i0.89 (2)1.94 (2)2.817 (2)166.6 (19)
N4—H41···O3ii0.86 (2)2.48 (2)3.255 (3)151 (2)
N4—H42···O4iii0.88 (3)2.07 (3)2.922 (2)162 (2)
Symmetry codes: (i) x1, y+1/2, z+1; (ii) x1, y1, z; (iii) x1, y1/2, z+1.
(1061) top
Crystal data top
C6H6N4O4F(000) = 408
Mr = 198.15Dx = 1.592 Mg m3
Dm = 1.59 Mg m3
Dm measured by floatation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5703 (6) ÅCell parameters from 1345 reflections
b = 7.8254 (3) Åθ = 3.0–29.4°
c = 7.9677 (4) ŵ = 0.14 mm1
β = 102.260 (4)°T = 295 K
V = 826.82 (6) Å3Parallelepiped, orange
Z = 40.31 × 0.27 × 0.22 mm
Data collection top
KUMA KM-4 with CCD detector
diffractometer
2127 independent reflections
Radiation source: fine-focus sealed tube1614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 29.4°, θmin = 3.0°
ω–scanh = 1817
Absorption correction: numerical
Oxford Diffraction (2010). CrysAlis Red, Version 1.171.33.42
k = 1010
Tmin = 0.961, Tmax = 0.976l = 1010
11142 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0108P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2127 reflectionsΔρmax = 0.13 e Å3
136 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23439 (4)0.16292 (7)0.51987 (7)0.03382 (16)
C10.15329 (6)0.13258 (11)0.58773 (11)0.0340 (2)
C20.10884 (7)0.27700 (12)0.62574 (12)0.0413 (2)
H20.05190.28630.67270.050*
C30.16699 (7)0.41115 (12)0.57904 (12)0.0405 (2)
H30.15610.52760.58990.049*
C40.24227 (6)0.33758 (11)0.51490 (10)0.03248 (19)
N10.12908 (6)0.04135 (10)0.60652 (10)0.0428 (2)
O20.05919 (6)0.07059 (11)0.67792 (10)0.0605 (2)
O30.17783 (7)0.15180 (9)0.55223 (12)0.0687 (3)
C50.32308 (6)0.39903 (10)0.44028 (11)0.0338 (2)
H50.36570.32230.40180.041*
N20.33598 (5)0.56055 (9)0.42712 (9)0.03357 (18)
N30.41281 (6)0.60742 (9)0.35253 (9)0.03636 (19)
H3N0.4528 (8)0.5333 (14)0.3129 (13)0.044*
C60.43657 (7)0.77623 (11)0.34068 (11)0.0361 (2)
O40.51014 (6)0.81353 (9)0.28090 (10)0.0538 (2)
N40.37769 (7)0.88891 (11)0.39663 (13)0.0512 (2)
H410.3235 (10)0.8565 (15)0.4398 (15)0.061*
H420.3926 (9)0.9933 (17)0.3896 (15)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (3)0.0241 (3)0.0465 (3)0.0035 (2)0.0178 (3)0.0008 (2)
C10.0336 (4)0.0312 (4)0.0402 (4)0.0067 (3)0.0145 (4)0.0015 (3)
C20.0396 (5)0.0407 (5)0.0493 (5)0.0024 (4)0.0224 (4)0.0020 (4)
C30.0452 (5)0.0290 (4)0.0518 (5)0.0019 (4)0.0206 (4)0.0026 (4)
C40.0365 (4)0.0244 (4)0.0379 (4)0.0041 (3)0.0110 (3)0.0006 (3)
N10.0426 (4)0.0357 (4)0.0527 (5)0.0115 (3)0.0160 (4)0.0039 (3)
O20.0564 (5)0.0596 (5)0.0735 (5)0.0212 (4)0.0314 (4)0.0094 (4)
O30.0774 (6)0.0284 (4)0.1119 (7)0.0068 (3)0.0466 (5)0.0026 (4)
C50.0361 (4)0.0262 (4)0.0429 (5)0.0022 (3)0.0165 (4)0.0003 (3)
N20.0354 (4)0.0277 (3)0.0418 (4)0.0034 (3)0.0176 (3)0.0006 (3)
N30.0420 (4)0.0228 (3)0.0524 (4)0.0014 (3)0.0284 (4)0.0009 (3)
C60.0378 (5)0.0258 (4)0.0470 (5)0.0018 (3)0.0145 (4)0.0058 (3)
O40.0472 (4)0.0351 (4)0.0885 (5)0.0040 (3)0.0356 (4)0.0141 (3)
N40.0582 (6)0.0235 (4)0.0803 (6)0.0016 (4)0.0335 (5)0.0002 (4)
Geometric parameters (Å, º) top
O1—C11.3464 (10)N1—O21.2266 (11)
O1—C41.3722 (10)C5—N21.2834 (11)
C1—C21.3455 (13)C5—H50.9300
C1—N11.4155 (11)N2—N31.3557 (10)
C2—C31.4099 (13)N3—C61.3678 (11)
C2—H20.9300N3—H3N0.896 (12)
C3—C41.3631 (13)C6—O41.2291 (11)
C3—H30.9300C6—N41.3289 (12)
C4—C51.4367 (12)N4—H410.911 (13)
N1—O31.2221 (11)N4—H420.846 (13)
C1—O1—C4105.22 (6)O2—N1—C1116.62 (9)
C2—C1—O1112.71 (7)N2—C5—C4119.52 (8)
C2—C1—N1131.20 (8)N2—C5—H5120.2
O1—C1—N1116.10 (8)C4—C5—H5120.2
C1—C2—C3105.26 (8)C5—N2—N3115.67 (7)
C1—C2—H2127.4N2—N3—C6120.41 (7)
C3—C2—H2127.4N2—N3—H3N124.0 (7)
C4—C3—C2106.89 (8)C6—N3—H3N115.6 (7)
C4—C3—H3126.6O4—C6—N4124.62 (8)
C2—C3—H3126.6O4—C6—N3118.62 (8)
C3—C4—O1109.92 (7)N4—C6—N3116.76 (8)
C3—C4—C5135.44 (9)C6—N4—H41122.2 (8)
O1—C4—C5114.60 (7)C6—N4—H42116.7 (9)
O3—N1—O2124.21 (8)H41—N4—H42121.2 (12)
O3—N1—C1119.17 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4i0.896 (12)1.982 (12)2.8258 (10)156.3 (10)
N4—H41···O3ii0.911 (13)2.338 (13)3.2283 (13)165.4 (11)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds