Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The effect of pressure (up to 0.17 GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ↔ low-spin transition, centred at ca 180 K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140 K GPa−1. The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure–temperature (P–T) range studied. The main structural consequence of the high-spin to low-spin transition is the contraction of the distorted octahedral [FeN6] chromophores, being more marked in the axial positions (occupied by the pmd units), than in the equatorial positions (occupied by four [Ag(CN)2] bridging ligands).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520614003023/xk5013sup1.cif
Contains datablocks fepmd1, fepmd2, fepmd3, fepmd4, fepmd5, fepmd6, fepmd7, fepmd8, fepmd9, fepmd10, fepmd11, fepmd12, fepmd13

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd1sup2.hkl
Contains datablock fepmdb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd2sup3.hkl
Contains datablock fepmdj

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd3sup4.hkl
Contains datablock shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd4sup5.hkl
Contains datablock fepmdf

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd5sup6.hkl
Contains datablock fepmda

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd6sup7.hkl
Contains datablock fepmdk

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd7sup8.hkl
Contains datablock fepmdm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd8sup9.hkl
Contains datablock fepmdn

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd9sup10.hkl
Contains datablock fepmdi

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd10sup11.hkl
Contains datablock fepmdl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd11sup12.hkl
Contains datablock fepmdc

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd12sup13.hkl
Contains datablock fepmdo

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003023/xk5013fepmd13sup14.hkl
Contains datablock fepmde

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520614003023/xk5013sup15.pdf
Neutron Laue diffraction pattern obtained at 0.11 GPa and 187K, showing the coexistence of both LS and HS phases

CCDC references: 986124; 986125; 986126; 986127; 986128; 986129; 986130; 986131; 986132; 986133; 986134; 986135; 986136

Computing details top

For all compounds, cell refinement: NEWLAUEGEN (J. Campbell et al., 1998); data reduction: ARGONNE-BOXES(C. Wilkinson et al.,1988)& LAUENORM (J. W. Campbell et al.,1986; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(fepmd1) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.219 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 14.895 (3) ŵ = 0.08 mm1
b = 8.106 (3) ÅT = 150 K
c = 13.285 (3) ÅPrism, orange-yellow
V = 1604.0 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.197
Radiation source: ILL neutron sourceθmax = 36.5°, θmin = 4.0°
7581 measured reflectionsh = 1220
1543 independent reflectionsk = 1010
1236 reflections with I > 2σ(I)l = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: difference Fourier map
wR(F2) = 0.149All H-atom parameters refined
S = 1.24 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
1543 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6287 (2)0.5259 (4)0.9526 (2)0.0236 (7)
C20.58924 (18)0.4495 (4)0.87013 (19)0.0211 (6)
C30.58671 (16)0.3118 (4)1.05253 (18)0.0167 (6)
C40.54938 (17)0.2976 (4)0.88628 (18)0.0173 (6)
C50.32911 (16)0.0733 (4)0.87685 (18)0.0170 (6)
C60.38886 (16)0.0845 (3)1.18864 (18)0.0170 (6)
Ag10.29509 (17)0.0881 (4)1.3042 (2)0.0169 (7)
Fe10.50000.00001.00000.0093 (6)
N10.54892 (13)0.2265 (2)0.97754 (14)0.0140 (4)
N20.62570 (14)0.4583 (3)1.04394 (15)0.0213 (5)
N30.43592 (11)0.0670 (3)1.11982 (12)0.0153 (4)
N40.39526 (10)0.0526 (3)0.92123 (13)0.0147 (4)
H10.6612 (5)0.6447 (11)0.9459 (5)0.0508 (19)
H20.5904 (5)0.5047 (9)0.7960 (5)0.0442 (18)
H30.5857 (5)0.2556 (8)1.1264 (4)0.0356 (16)
H40.5169 (5)0.2308 (8)0.8255 (4)0.0350 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (14)0.0241 (19)0.0182 (14)0.0075 (13)0.0007 (11)0.0009 (12)
C20.0294 (13)0.0198 (17)0.0141 (13)0.0049 (12)0.0009 (9)0.0051 (12)
C30.0182 (11)0.0202 (17)0.0117 (11)0.0050 (11)0.0001 (8)0.0009 (10)
C40.0199 (11)0.0205 (16)0.0115 (11)0.0017 (11)0.0002 (9)0.0020 (10)
C50.0139 (11)0.0239 (17)0.0133 (11)0.0002 (11)0.0042 (8)0.0000 (10)
C60.0156 (11)0.0245 (17)0.0109 (11)0.0004 (11)0.0061 (8)0.0000 (10)
Ag10.0143 (12)0.0216 (19)0.0150 (12)0.0040 (11)0.0082 (9)0.0018 (11)
Fe10.0074 (12)0.0144 (18)0.0060 (13)0.0007 (8)0.0009 (7)0.0008 (8)
N10.0135 (8)0.0176 (11)0.0109 (7)0.0004 (7)0.0002 (7)0.0003 (7)
N20.0253 (9)0.0217 (12)0.0170 (10)0.0080 (9)0.0010 (7)0.0020 (8)
N30.0135 (8)0.0216 (12)0.0108 (8)0.0018 (8)0.0040 (6)0.0008 (7)
N40.0114 (7)0.0201 (11)0.0126 (8)0.0003 (8)0.0026 (6)0.0013 (8)
H10.064 (4)0.049 (5)0.039 (4)0.024 (4)0.002 (3)0.006 (3)
H20.065 (4)0.047 (5)0.021 (3)0.008 (3)0.001 (3)0.012 (3)
H30.054 (4)0.037 (4)0.016 (3)0.015 (3)0.002 (2)0.003 (2)
H40.045 (3)0.040 (4)0.020 (3)0.013 (3)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—N21.332 (4)C6—N31.161 (3)
C1—C21.389 (4)C6—Ag12.075 (3)
C1—H11.081 (9)Ag1—C5ii2.090 (3)
C2—C41.384 (4)Ag1—N2iii2.563 (3)
C2—H21.081 (7)Ag1—Ag1iv2.949 (6)
C3—N21.327 (4)Fe1—N4v1.9263 (16)
C3—N11.337 (3)Fe1—N41.9263 (16)
C3—H31.082 (6)Fe1—N3v1.9339 (17)
C4—N11.342 (3)Fe1—N31.9339 (17)
C4—H41.086 (6)Fe1—N11.998 (2)
C5—N41.161 (3)Fe1—N1v1.998 (2)
C5—Ag1i2.090 (3)N2—Ag1vi2.563 (4)
N2—C1—C2121.4 (3)N4—Fe1—N3v90.84 (7)
N2—C1—H1117.2 (5)N4v—Fe1—N390.84 (7)
C2—C1—H1121.4 (5)N4—Fe1—N389.16 (7)
C4—C2—C1117.1 (3)N3v—Fe1—N3180.0
C4—C2—H2121.1 (5)N4v—Fe1—N189.38 (8)
C1—C2—H2121.8 (5)N4—Fe1—N190.62 (8)
N2—C3—N1125.7 (2)N3v—Fe1—N187.43 (9)
N2—C3—H3117.4 (4)N3—Fe1—N192.57 (9)
N1—C3—H3116.9 (4)N4v—Fe1—N1v90.62 (8)
N1—C4—C2121.6 (2)N4—Fe1—N1v89.38 (8)
N1—C4—H4117.1 (4)N3v—Fe1—N1v92.57 (9)
C2—C4—H4121.3 (4)N3—Fe1—N1v87.43 (9)
N4—C5—Ag1i174.0 (3)N1—Fe1—N1v180.0
N3—C6—Ag1172.1 (2)C3—N1—C4116.7 (2)
C6—Ag1—C5ii159.47 (18)C3—N1—Fe1121.16 (17)
C6—Ag1—N2iii105.47 (13)C4—N1—Fe1122.08 (18)
C5ii—Ag1—N2iii91.16 (13)C3—N2—C1117.5 (2)
C6—Ag1—Ag1iv108.60 (15)C3—N2—Ag1vi120.06 (17)
C5ii—Ag1—Ag1iv69.38 (13)C1—N2—Ag1vi122.2 (2)
N2iii—Ag1—Ag1iv125.10 (10)C6—N3—Fe1168.7 (2)
N4v—Fe1—N4180.0C5—N4—Fe1174.7 (2)
N4v—Fe1—N3v89.16 (7)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd2) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.214 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 14.895 (3) ŵ = 0.08 mm1
b = 8.122 (3) ÅT = 187 K
c = 13.288 (3) ÅPrism, orange-yellow
V = 1607.5 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.321
Radiation source: ILL neutron sourceθmax = 33.4°, θmin = 4.0°
5504 measured reflectionsh = 1118
1210 independent reflectionsk = 99
943 reflections with I > 2σ(I)l = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.166Hydrogen site location: difference Fourier map
wR(F2) = 0.281All H-atom parameters refined
S = 1.35 w = 1/[σ2(Fo2) + (0.P)2 + 81.4399P]
where P = (Fo2 + 2Fc2)/3
1210 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.6051 (3)0.0535 (8)0.0788 (4)0.0191 (12)
N40.5645 (3)0.0687 (8)0.1195 (3)0.0206 (12)
N20.3744 (4)0.4577 (8)0.0440 (4)0.0257 (13)
N10.4508 (4)0.2253 (8)0.0221 (4)0.0199 (12)
C10.6111 (5)0.0859 (11)0.1884 (5)0.0236 (18)
Ag10.7051 (5)0.0867 (12)0.3038 (5)0.023 (2)
C20.6701 (4)0.0727 (11)0.1235 (5)0.0206 (17)
C50.4107 (5)0.4508 (11)0.1288 (5)0.0251 (18)
C30.4130 (4)0.3123 (10)0.0526 (5)0.0173 (16)
Fe10.50000.00000.00000.015 (2)
C60.4503 (5)0.2987 (11)0.1134 (5)0.0218 (17)
C40.3707 (7)0.5234 (12)0.0472 (6)0.031 (2)
H50.4082 (16)0.505 (3)0.2026 (12)0.058 (6)
H30.4147 (13)0.2541 (18)0.1261 (11)0.034 (4)
H60.4838 (13)0.234 (2)0.1740 (13)0.043 (5)
H40.3383 (15)0.645 (3)0.0523 (16)0.064 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.015 (2)0.027 (3)0.015 (2)0.004 (2)0.0018 (18)0.001 (2)
N40.019 (2)0.028 (4)0.015 (2)0.001 (2)0.0045 (19)0.003 (2)
N20.035 (3)0.021 (3)0.021 (3)0.006 (3)0.002 (2)0.002 (2)
N10.017 (3)0.029 (4)0.0138 (19)0.003 (2)0.0008 (19)0.001 (2)
C10.023 (3)0.033 (5)0.014 (3)0.000 (3)0.005 (3)0.005 (3)
Ag10.013 (3)0.037 (6)0.018 (3)0.004 (3)0.011 (3)0.004 (4)
C20.018 (3)0.024 (5)0.020 (3)0.000 (3)0.004 (3)0.003 (3)
C50.037 (4)0.018 (5)0.020 (4)0.007 (4)0.001 (3)0.003 (3)
C30.024 (3)0.013 (4)0.016 (3)0.007 (3)0.004 (2)0.001 (3)
Fe10.010 (4)0.026 (6)0.008 (3)0.002 (2)0.000 (2)0.000 (2)
C60.030 (4)0.022 (5)0.014 (3)0.003 (3)0.003 (3)0.003 (3)
C40.042 (5)0.029 (6)0.023 (4)0.010 (4)0.001 (4)0.001 (3)
H50.079 (14)0.078 (18)0.016 (8)0.017 (11)0.002 (8)0.004 (8)
H30.072 (12)0.015 (9)0.014 (7)0.011 (7)0.008 (6)0.001 (5)
H60.046 (9)0.052 (14)0.030 (9)0.007 (8)0.016 (7)0.006 (7)
H40.072 (13)0.056 (15)0.063 (12)0.055 (13)0.009 (10)0.005 (10)
Geometric parameters (Å, º) top
N3—C21.148 (8)Ag1—N2iii2.568 (9)
N3—Fe11.932 (5)Ag1—Ag1iv2.970 (18)
N4—C11.157 (8)C2—Ag1v2.097 (10)
N4—Fe11.939 (4)C5—C41.371 (12)
N2—C31.318 (10)C5—C61.384 (12)
N2—C41.325 (12)C5—H51.073 (19)
N2—Ag1i2.568 (9)C3—H31.085 (15)
N1—C31.344 (9)Fe1—N3vi1.932 (5)
N1—C61.351 (9)Fe1—N4vi1.939 (4)
N1—Fe11.992 (6)Fe1—N1vi1.992 (6)
C1—Ag12.077 (9)C6—H61.083 (19)
Ag1—C2ii2.097 (10)C4—H41.10 (2)
C2—N3—Fe1174.4 (6)N3vi—Fe1—N3180.0 (3)
C1—N4—Fe1168.6 (6)N3vi—Fe1—N4vi88.7 (2)
C3—N2—C4117.3 (7)N3—Fe1—N4vi91.3 (2)
C3—N2—Ag1i119.9 (5)N3vi—Fe1—N491.3 (2)
C4—N2—Ag1i122.4 (6)N3—Fe1—N488.7 (2)
C3—N1—C6115.4 (6)N4vi—Fe1—N4180.0 (4)
C3—N1—Fe1121.9 (5)N3vi—Fe1—N189.4 (2)
C6—N1—Fe1122.7 (5)N3—Fe1—N190.6 (2)
N4—C1—Ag1171.5 (7)N4vi—Fe1—N187.8 (2)
C1—Ag1—C2ii159.6 (5)N4—Fe1—N192.2 (2)
C1—Ag1—N2iii105.6 (4)N3vi—Fe1—N1vi90.6 (2)
C2ii—Ag1—N2iii91.4 (4)N3—Fe1—N1vi89.4 (2)
C1—Ag1—Ag1iv107.8 (4)N4vi—Fe1—N1vi92.2 (2)
C2ii—Ag1—Ag1iv69.5 (4)N4—Fe1—N1vi87.8 (2)
N2iii—Ag1—Ag1iv124.9 (3)N1—Fe1—N1vi180.0 (3)
N3—C2—Ag1v173.8 (7)N1—C6—C5122.0 (7)
C4—C5—C6116.8 (7)N1—C6—H6116.9 (12)
C4—C5—H5122.2 (14)C5—C6—H6121.1 (12)
C6—C5—H5120.9 (14)N2—C4—C5122.2 (9)
N2—C3—N1126.2 (6)N2—C4—H4115.9 (14)
N2—C3—H3118.7 (10)C5—C4—H4121.8 (14)
N1—C3—H3115.2 (10)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y1/2, z1/2; (iv) x+3/2, y+1/2, z; (v) x+3/2, y, z+1/2; (vi) x+1, y, z.
(fepmd3) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.010 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.95-2.50 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.424 (3) ÅT = 210 K
c = 13.320 (3) ÅPrism, orange-yellow
V = 1770.9 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.259
Radiation source: ILL neutron sourceθmax = 29.3°, θmin = 4.0°
2295 measured reflectionsh = 177
686 independent reflectionsk = 87
510 reflections with I > 2σ(I)l = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.158Hydrogen site location: difference Fourier map
wR(F2) = 0.261All H-atom parameters refined
S = 1.39 w = 1/[σ2(Fo2) + (0.0838P)2]
where P = (Fo2 + 2Fc2)/3
686 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Restrains used in the refinement EADP C4 H4 Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6281 (10)0.538 (2)0.9512 (11)0.046 (4)
C20.5878 (9)0.468 (2)0.8682 (10)0.040 (4)
C30.5949 (7)0.3249 (19)1.0486 (9)0.033 (3)
C40.5498 (11)0.321 (2)0.8856 (10)0.043 (3)
C50.3257 (8)0.0732 (17)0.8752 (8)0.036 (3)
C60.3852 (7)0.0778 (19)1.1965 (8)0.032 (3)
Ag10.2901 (7)0.0853 (18)1.3049 (8)0.029 (4)
Fe10.50000.00001.00000.031 (4)
N10.5521 (7)0.2460 (11)0.9760 (6)0.036 (3)
N20.6296 (6)0.4686 (14)1.0395 (7)0.040 (3)
N30.4350 (6)0.0713 (14)1.1341 (6)0.038 (3)
N40.3908 (6)0.0611 (16)0.9142 (6)0.041 (3)
H10.660 (3)0.658 (5)0.944 (3)0.090 (12)
H20.583 (2)0.530 (4)0.794 (3)0.079 (10)
H30.5944 (16)0.259 (4)1.123 (2)0.058 (9)
H40.515 (2)0.258 (3)0.830 (2)0.043 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (9)0.051 (12)0.038 (9)0.009 (9)0.006 (7)0.005 (9)
C20.040 (8)0.050 (12)0.029 (8)0.002 (7)0.012 (6)0.005 (7)
C30.039 (7)0.048 (11)0.012 (7)0.016 (8)0.010 (5)0.000 (8)
C40.057 (8)0.041 (10)0.032 (6)0.003 (7)0.003 (7)0.018 (7)
C50.016 (6)0.056 (11)0.036 (7)0.002 (7)0.013 (5)0.006 (7)
C60.028 (7)0.048 (11)0.019 (6)0.005 (6)0.013 (5)0.002 (6)
Ag10.017 (6)0.037 (12)0.033 (7)0.000 (7)0.011 (5)0.018 (6)
Fe10.041 (9)0.035 (13)0.015 (7)0.009 (6)0.005 (5)0.005 (4)
N10.039 (6)0.053 (8)0.017 (4)0.002 (5)0.001 (5)0.005 (4)
N20.031 (5)0.053 (8)0.036 (6)0.008 (5)0.007 (4)0.007 (5)
N30.030 (5)0.061 (8)0.023 (5)0.004 (6)0.007 (4)0.000 (4)
N40.037 (6)0.051 (8)0.036 (6)0.006 (6)0.001 (5)0.006 (6)
H10.12 (3)0.05 (3)0.10 (3)0.04 (3)0.01 (2)0.00 (2)
H20.10 (3)0.07 (3)0.07 (2)0.013 (19)0.000 (19)0.007 (18)
H30.033 (16)0.08 (3)0.06 (2)0.024 (14)0.007 (13)0.003 (16)
H40.057 (8)0.041 (10)0.032 (6)0.003 (7)0.003 (7)0.018 (7)
Geometric parameters (Å, º) top
C1—N21.31 (2)C6—N31.146 (12)
C1—C21.40 (2)C6—Ag12.083 (15)
C1—H11.14 (5)Ag1—C5ii2.056 (17)
C2—C41.40 (2)Ag1—N2iii2.621 (15)
C2—H21.12 (5)Ag1—Ag1iv3.05 (3)
C3—N21.334 (17)Fe1—N42.130 (10)
C3—N11.353 (17)Fe1—N4v2.130 (10)
C3—H31.13 (4)Fe1—N32.145 (9)
C4—N11.359 (16)Fe1—N3v2.145 (9)
C4—H41.06 (5)Fe1—N1v2.252 (10)
C5—N41.157 (14)Fe1—N12.252 (10)
C5—Ag1i2.056 (17)N2—Ag1vi2.621 (15)
N2—C1—C2122.1 (16)N4v—Fe1—N390.4 (3)
N2—C1—H1117 (2)N4—Fe1—N3v90.4 (3)
C2—C1—H1120 (2)N4v—Fe1—N3v89.6 (3)
C1—C2—C4115.6 (15)N3—Fe1—N3v180.000 (2)
C1—C2—H2122 (2)N4—Fe1—N1v90.2 (4)
C4—C2—H2122 (2)N4v—Fe1—N1v89.8 (4)
N2—C3—N1125.8 (12)N3—Fe1—N1v88.0 (4)
N2—C3—H3121.8 (17)N3v—Fe1—N1v92.0 (4)
N1—C3—H3112.3 (18)N4—Fe1—N189.8 (4)
N1—C4—C2123.1 (15)N4v—Fe1—N190.2 (4)
N1—C4—H4113.9 (18)N3—Fe1—N192.0 (4)
C2—C4—H4123.0 (16)N3v—Fe1—N188.0 (4)
N4—C5—Ag1i177.7 (14)N1v—Fe1—N1180.0000 (10)
N3—C6—Ag1177.0 (11)C3—N1—C4114.8 (13)
C5ii—Ag1—C6162.7 (8)C3—N1—Fe1122.2 (9)
C5ii—Ag1—N2iii92.9 (6)C4—N1—Fe1122.8 (10)
C6—Ag1—N2iii100.9 (6)C1—N2—C3118.4 (12)
C5ii—Ag1—Ag1iv71.1 (6)C1—N2—Ag1vi123.5 (11)
C6—Ag1—Ag1iv109.1 (7)C3—N2—Ag1vi117.8 (8)
N2iii—Ag1—Ag1iv122.8 (5)C6—N3—Fe1161.1 (11)
N4—Fe1—N4v180.000 (3)C5—N4—Fe1168.9 (12)
N4—Fe1—N389.6 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd4) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.056 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.235 (3) ÅT = 240 K
c = 13.319 (3) ÅPrism, orange-yellow
V = 1731.0 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.267
Radiation source: ILL neutron sourceθmax = 29.3°, θmin = 4.0°
3616 measured reflectionsh = 1711
788 independent reflectionsk = 88
641 reflections with I > 2σ(I)l = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.128Hydrogen site location: difference Fourier map
wR(F2) = 0.207All H-atom parameters refined
S = 1.28 w = 1/[σ2(Fo2) + (0.0724P)2 + 8.3726P]
where P = (Fo2 + 2Fc2)/3
788 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6297 (6)0.5398 (14)0.9508 (7)0.045 (2)
C20.5869 (6)0.4671 (12)0.8703 (7)0.041 (2)
C30.5932 (5)0.3246 (11)1.0485 (6)0.034 (2)
C40.5496 (5)0.3200 (12)0.8861 (7)0.041 (2)
C50.3268 (5)0.0757 (10)0.8742 (5)0.0335 (19)
C60.3858 (4)0.0805 (11)1.1973 (5)0.032 (2)
Ag10.2915 (4)0.0843 (11)1.3041 (6)0.034 (2)
Fe10.50000.00001.00000.022 (2)
N10.5530 (4)0.2461 (7)0.9759 (4)0.0312 (15)
N20.6307 (4)0.4688 (9)1.0403 (5)0.0429 (17)
N30.4359 (3)0.0709 (8)1.1342 (4)0.0364 (16)
N40.3907 (3)0.0604 (8)0.9147 (4)0.0352 (15)
H10.6609 (16)0.655 (3)0.9432 (16)0.084 (7)
H20.5845 (15)0.528 (3)0.793 (2)0.088 (7)
H30.5947 (13)0.265 (2)1.1221 (14)0.070 (6)
H40.5157 (14)0.258 (2)0.8279 (15)0.060 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (6)0.030 (6)0.047 (6)0.010 (5)0.000 (4)0.004 (5)
C20.064 (6)0.023 (5)0.035 (6)0.010 (4)0.004 (4)0.008 (4)
C30.042 (4)0.040 (6)0.020 (5)0.012 (4)0.010 (3)0.002 (5)
C40.053 (5)0.039 (6)0.032 (5)0.002 (5)0.002 (4)0.000 (5)
C50.030 (4)0.038 (6)0.033 (4)0.002 (4)0.010 (3)0.001 (4)
C60.030 (4)0.043 (6)0.024 (4)0.007 (3)0.010 (3)0.000 (3)
Ag10.025 (4)0.041 (7)0.036 (5)0.005 (4)0.008 (3)0.009 (4)
Fe10.021 (5)0.031 (7)0.015 (4)0.000 (3)0.002 (2)0.005 (3)
N10.036 (3)0.037 (4)0.021 (3)0.007 (3)0.003 (2)0.005 (2)
N20.050 (4)0.039 (4)0.039 (4)0.014 (3)0.003 (3)0.006 (3)
N30.031 (3)0.050 (5)0.027 (3)0.001 (3)0.009 (2)0.003 (3)
N40.034 (3)0.040 (4)0.032 (3)0.000 (3)0.004 (3)0.004 (3)
H10.131 (19)0.064 (17)0.058 (14)0.040 (16)0.015 (11)0.006 (11)
H20.108 (17)0.077 (16)0.079 (17)0.015 (12)0.005 (13)0.036 (14)
H30.105 (16)0.079 (16)0.025 (10)0.025 (11)0.016 (8)0.021 (9)
H40.113 (15)0.029 (12)0.038 (11)0.014 (9)0.029 (10)0.018 (8)
Geometric parameters (Å, º) top
C1—N21.328 (13)C6—N31.157 (8)
C1—C21.402 (13)C6—Ag12.059 (10)
C1—H11.07 (3)Ag1—C5ii2.088 (10)
C2—C41.364 (14)Ag1—N2iii2.590 (10)
C2—H21.15 (3)Ag1—Ag1iv3.026 (18)
C3—N11.325 (10)Fe1—N4v2.125 (6)
C3—N21.331 (10)Fe1—N42.125 (6)
C3—H31.10 (2)Fe1—N3v2.135 (5)
C4—N11.342 (11)Fe1—N32.135 (5)
C4—H41.07 (3)Fe1—N1v2.216 (5)
C5—N41.150 (9)Fe1—N12.216 (5)
C5—Ag1i2.088 (10)N2—Ag1vi2.590 (10)
N2—C1—C2120.3 (10)N4—Fe1—N3v90.07 (19)
N2—C1—H1117.9 (15)N4v—Fe1—N390.07 (19)
C2—C1—H1121.7 (15)N4—Fe1—N389.93 (19)
C4—C2—C1118.0 (9)N3v—Fe1—N3180.0000 (10)
C4—C2—H2120.9 (15)N4v—Fe1—N1v90.9 (2)
C1—C2—H2121.2 (15)N4—Fe1—N1v89.1 (2)
N1—C3—N2126.1 (7)N3v—Fe1—N1v92.9 (2)
N1—C3—H3116.4 (12)N3—Fe1—N1v87.1 (2)
N2—C3—H3117.6 (12)N4v—Fe1—N189.1 (2)
N1—C4—C2121.5 (9)N4—Fe1—N190.9 (2)
N1—C4—H4116.7 (12)N3v—Fe1—N187.1 (2)
C2—C4—H4121.7 (11)N3—Fe1—N192.9 (2)
N4—C5—Ag1i175.3 (8)N1v—Fe1—N1180.0000 (10)
N3—C6—Ag1175.7 (8)C3—N1—C4116.6 (7)
C6—Ag1—C5ii162.6 (5)C3—N1—Fe1121.4 (5)
C6—Ag1—N2iii101.8 (4)C4—N1—Fe1121.9 (6)
C5ii—Ag1—N2iii93.1 (4)C1—N2—C3117.4 (8)
C6—Ag1—Ag1iv109.1 (4)C1—N2—Ag1vi124.2 (7)
C5ii—Ag1—Ag1iv69.1 (3)C3—N2—Ag1vi118.3 (5)
N2iii—Ag1—Ag1iv122.5 (3)C6—N3—Fe1161.9 (6)
N4v—Fe1—N4180.0000 (10)C5—N4—Fe1171.2 (7)
N4v—Fe1—N3v89.93 (19)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd5) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.048 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.780 (3) ŵ = 0.08 mm1
b = 8.250 (3) ÅT = 260 K
c = 13.350 (3) ÅPrism, orange-yellow
V = 1738.0 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.185
Radiation source: ILL neutron sourceθmax = 30.0°, θmin = 3.1°
5945 measured reflectionsh = 1119
1291 independent reflectionsk = 108
978 reflections with I > 2σ(I)l = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: difference Fourier map
wR(F2) = 0.155All H-atom parameters refined
S = 1.16 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
1291 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6286 (3)0.5387 (5)0.9507 (3)0.0471 (9)
C20.5875 (2)0.4688 (5)0.8702 (3)0.0480 (10)
C30.59351 (19)0.3249 (4)1.0487 (2)0.0374 (8)
C40.5498 (2)0.3205 (4)0.8869 (3)0.0384 (8)
C50.32727 (16)0.0750 (4)0.8729 (2)0.0356 (8)
C60.38492 (18)0.0786 (4)1.1965 (2)0.0358 (8)
Ag10.29081 (19)0.0830 (4)1.3049 (3)0.0372 (9)
Fe10.50000.00001.00000.0231 (8)
N10.55374 (14)0.2462 (3)0.97579 (19)0.0322 (6)
N20.63144 (17)0.4672 (3)1.0406 (2)0.0452 (7)
N30.43561 (13)0.0713 (3)1.13422 (17)0.0375 (6)
N40.39103 (12)0.0615 (3)0.91522 (17)0.0353 (6)
H10.6603 (6)0.6569 (12)0.9466 (8)0.085 (3)
H20.5851 (7)0.5267 (12)0.7998 (9)0.085 (3)
H30.5952 (6)0.2641 (10)1.1219 (6)0.070 (3)
H40.5149 (6)0.2582 (9)0.8289 (7)0.067 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.042 (2)0.042 (2)0.0141 (18)0.0019 (16)0.0039 (19)
C20.058 (2)0.048 (2)0.038 (2)0.0088 (17)0.0010 (16)0.0085 (19)
C30.0419 (16)0.043 (2)0.028 (2)0.0089 (15)0.0037 (13)0.0024 (16)
C40.0452 (17)0.041 (2)0.0287 (18)0.0040 (15)0.0033 (14)0.0037 (16)
C50.0246 (14)0.051 (2)0.0317 (18)0.0005 (14)0.0081 (11)0.0043 (15)
C60.0302 (14)0.045 (2)0.0322 (19)0.0034 (14)0.0110 (12)0.0023 (14)
Ag10.0292 (15)0.044 (2)0.039 (2)0.0074 (15)0.0145 (14)0.0045 (17)
Fe10.0148 (13)0.035 (2)0.020 (2)0.0013 (10)0.0016 (8)0.0005 (11)
N10.0310 (11)0.0395 (16)0.0261 (11)0.0050 (8)0.0015 (10)0.0005 (10)
N20.0512 (15)0.0466 (16)0.0377 (17)0.0155 (12)0.0040 (11)0.0013 (12)
N30.0326 (11)0.0504 (17)0.0295 (13)0.0019 (11)0.0114 (9)0.0019 (11)
N40.0230 (10)0.0483 (15)0.0345 (13)0.0021 (10)0.0084 (9)0.0038 (11)
H10.102 (6)0.066 (6)0.086 (7)0.039 (6)0.001 (5)0.009 (5)
H20.115 (8)0.079 (7)0.062 (7)0.011 (5)0.001 (5)0.022 (5)
H30.109 (7)0.071 (6)0.030 (4)0.031 (5)0.014 (4)0.017 (4)
H40.088 (5)0.062 (6)0.050 (5)0.024 (4)0.026 (4)0.004 (4)
Geometric parameters (Å, º) top
C1—N21.338 (5)C6—N31.156 (4)
C1—C21.382 (6)C6—Ag12.073 (4)
C1—H11.097 (10)Ag1—C5ii2.074 (4)
C2—C41.378 (6)Ag1—N2iii2.583 (4)
C2—H21.055 (13)Ag1—Ag1iv3.042 (7)
C3—N21.323 (4)Fe1—N4v2.120 (2)
C3—N11.328 (4)Fe1—N42.120 (2)
C3—H31.098 (9)Fe1—N3v2.142 (2)
C4—N11.337 (4)Fe1—N32.142 (2)
C4—H41.080 (9)Fe1—N12.225 (2)
C5—N41.159 (3)Fe1—N1v2.225 (2)
C5—Ag1i2.074 (4)N2—Ag1vi2.583 (4)
N2—C1—C2121.9 (4)N4—Fe1—N3v90.22 (9)
N2—C1—H1115.0 (7)N4v—Fe1—N390.22 (9)
C2—C1—H1123.1 (7)N4—Fe1—N389.78 (9)
C4—C2—C1116.6 (4)N3v—Fe1—N3180.0000 (10)
C4—C2—H2122.0 (7)N4v—Fe1—N189.25 (9)
C1—C2—H2121.4 (7)N4—Fe1—N190.75 (9)
N2—C3—N1126.0 (3)N3v—Fe1—N187.04 (10)
N2—C3—H3117.9 (5)N3—Fe1—N192.96 (10)
N1—C3—H3116.1 (5)N4v—Fe1—N1v90.75 (9)
N1—C4—C2122.0 (3)N4—Fe1—N1v89.25 (9)
N1—C4—H4116.2 (5)N3v—Fe1—N1v92.96 (10)
C2—C4—H4121.8 (5)N3—Fe1—N1v87.04 (10)
N4—C5—Ag1i175.0 (3)N1—Fe1—N1v180.0
N3—C6—Ag1177.3 (3)C3—N1—C4116.7 (3)
C6—Ag1—C5ii161.5 (2)C3—N1—Fe1121.3 (2)
C6—Ag1—N2iii102.16 (15)C4—N1—Fe1122.0 (2)
C5ii—Ag1—N2iii93.74 (16)C3—N2—C1116.8 (3)
C6—Ag1—Ag1iv108.60 (17)C3—N2—Ag1vi118.5 (2)
C5ii—Ag1—Ag1iv69.41 (15)C1—N2—Ag1vi124.7 (3)
N2iii—Ag1—Ag1iv122.41 (12)C6—N3—Fe1160.9 (2)
N4v—Fe1—N4180.0C5—N4—Fe1170.8 (3)
N4v—Fe1—N3v89.78 (9)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd6) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.214 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 14.895 (3) ŵ = 0.09 mm1
b = 8.125 (3) ÅT = 200 K
c = 13.286 (3) ÅPrism, orange-yellow
V = 1607.9 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.366
Radiation source: ILL neutron sourceθmax = 30.9°, θmin = 4.0°
4785 measured reflectionsh = 1117
991 independent reflectionsk = 99
735 reflections with I > 2σ(I)l = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.172Hydrogen site location: difference Fourier map
wR(F2) = 0.337All H-atom parameters refined
S = 1.36 w = 1/[σ2(Fo2) + (0.1301P)2 + 25.1243P]
where P = (Fo2 + 2Fc2)/3
991 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.6048 (4)0.0531 (11)0.0781 (5)0.0229 (18)
N40.5640 (4)0.0670 (10)0.1198 (4)0.0234 (18)
N20.3751 (5)0.4576 (12)0.0434 (5)0.030 (2)
N10.4508 (5)0.2259 (10)0.0222 (5)0.0226 (19)
C10.6111 (6)0.0859 (13)0.1884 (7)0.024 (2)
Ag10.7059 (7)0.0869 (15)0.3036 (7)0.025 (3)
C20.6704 (6)0.0729 (14)0.1241 (6)0.024 (2)
C50.4107 (7)0.4509 (15)0.1293 (8)0.029 (3)
C30.4125 (6)0.3112 (14)0.0531 (6)0.021 (2)
Fe10.50000.00000.00000.016 (3)
C60.4513 (6)0.2986 (15)0.1133 (7)0.025 (3)
C40.3704 (9)0.5225 (18)0.0466 (8)0.037 (3)
H50.4070 (17)0.503 (3)0.2006 (16)0.049 (7)
H30.4167 (14)0.257 (2)0.1281 (14)0.035 (6)
H60.4848 (16)0.236 (2)0.1755 (16)0.040 (6)
H40.3363 (18)0.641 (4)0.0529 (16)0.067 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.017 (3)0.032 (5)0.020 (4)0.002 (3)0.003 (3)0.003 (3)
N40.024 (3)0.032 (5)0.014 (3)0.005 (3)0.006 (3)0.005 (3)
N20.040 (4)0.038 (5)0.013 (4)0.012 (4)0.002 (3)0.007 (3)
N10.026 (4)0.032 (5)0.010 (3)0.002 (3)0.000 (3)0.001 (3)
C10.028 (5)0.033 (7)0.012 (4)0.002 (4)0.008 (4)0.008 (4)
Ag10.022 (5)0.039 (9)0.014 (5)0.002 (5)0.006 (4)0.006 (5)
C20.025 (5)0.033 (7)0.013 (4)0.011 (4)0.001 (4)0.005 (4)
C50.045 (6)0.024 (7)0.018 (6)0.007 (5)0.000 (4)0.005 (5)
C30.030 (5)0.020 (7)0.015 (6)0.011 (5)0.001 (4)0.001 (4)
Fe10.015 (5)0.015 (8)0.017 (5)0.008 (4)0.005 (3)0.000 (3)
C60.030 (5)0.031 (7)0.014 (5)0.007 (5)0.001 (4)0.007 (5)
C40.051 (8)0.044 (9)0.016 (6)0.006 (6)0.007 (5)0.001 (5)
H50.068 (15)0.06 (2)0.019 (12)0.014 (12)0.010 (9)0.005 (10)
H30.061 (14)0.038 (15)0.007 (10)0.012 (10)0.004 (8)0.003 (7)
H60.071 (15)0.019 (15)0.031 (13)0.022 (10)0.013 (10)0.003 (8)
H40.080 (17)0.09 (2)0.035 (13)0.057 (18)0.002 (11)0.023 (12)
Geometric parameters (Å, º) top
N3—C21.165 (11)Ag1—N2iii2.587 (12)
N3—Fe11.923 (6)Ag1—Ag1iv2.96 (2)
N4—C11.160 (11)C2—Ag1v2.080 (13)
N4—Fe11.934 (6)C5—C41.381 (16)
N2—C41.309 (16)C5—C61.393 (16)
N2—C31.320 (14)C5—H51.04 (3)
N2—Ag1i2.587 (12)C3—H31.09 (2)
N1—C31.344 (12)Fe1—N3vi1.923 (6)
N1—C61.347 (12)Fe1—N4vi1.934 (6)
N1—Fe11.998 (8)Fe1—N1vi1.998 (8)
C1—Ag12.083 (12)C6—H61.09 (2)
Ag1—C2ii2.080 (13)C4—H41.09 (4)
C2—N3—Fe1174.7 (8)N3—Fe1—N3vi180.0 (4)
C1—N4—Fe1169.1 (8)N3—Fe1—N488.9 (3)
C4—N2—C3118.4 (9)N3vi—Fe1—N491.1 (3)
C4—N2—Ag1i121.9 (9)N3—Fe1—N4vi91.1 (3)
C3—N2—Ag1i119.1 (6)N3vi—Fe1—N4vi88.9 (3)
C3—N1—C6116.4 (9)N4—Fe1—N4vi180.0 (6)
C3—N1—Fe1121.3 (6)N3—Fe1—N190.7 (3)
C6—N1—Fe1122.3 (7)N3vi—Fe1—N189.3 (3)
N4—C1—Ag1171.0 (9)N4—Fe1—N192.5 (3)
C2ii—Ag1—C1160.0 (6)N4vi—Fe1—N187.5 (3)
C2ii—Ag1—N2iii91.6 (4)N3—Fe1—N1vi89.3 (3)
C1—Ag1—N2iii105.1 (5)N3vi—Fe1—N1vi90.7 (3)
C2ii—Ag1—Ag1iv69.9 (5)N4—Fe1—N1vi87.5 (3)
C1—Ag1—Ag1iv107.7 (5)N4vi—Fe1—N1vi92.5 (3)
N2iii—Ag1—Ag1iv124.8 (4)N1—Fe1—N1vi180.0 (5)
N3—C2—Ag1v173.5 (9)N1—C6—C5121.6 (9)
C4—C5—C6116.2 (10)N1—C6—H6118.5 (14)
C4—C5—H5121.9 (17)C5—C6—H6119.9 (13)
C6—C5—H5121.7 (16)N2—C4—C5122.2 (13)
N2—C3—N1124.9 (8)N2—C4—H4116.8 (16)
N2—C3—H3118.6 (13)C5—C4—H4120.8 (16)
N1—C3—H3116.5 (14)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y1/2, z1/2; (iv) x+3/2, y+1/2, z; (v) x+3/2, y, z+1/2; (vi) x+1, y, z.
(fepmd7) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.055 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.235 (3) ÅT = 250 K
c = 13.325 (3) ÅPrism, orange-yellow
V = 1731.8 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.378
Radiation source: ILL neutron sourceθmax = 31.1°, θmin = 4.3°
2764 measured reflectionsh = 1710
661 independent reflectionsk = 88
600 reflections with I > 2σ(I)l = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.192Hydrogen site location: difference Fourier map
wR(F2) = 0.346All H-atom parameters refined
S = 1.54 w = 1/[σ2(Fo2) + (0.0553P)2 + 130.1284P]
where P = (Fo2 + 2Fc2)/3
661 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6307 (15)0.545 (3)0.9491 (15)0.048 (5)
C20.5871 (11)0.470 (2)0.8693 (15)0.037 (5)
C30.5949 (10)0.325 (2)1.0500 (11)0.037 (5)
C40.5489 (12)0.320 (3)0.8849 (15)0.041 (5)
C50.3278 (10)0.077 (2)0.8743 (11)0.034 (4)
C60.3878 (10)0.083 (2)1.1957 (10)0.031 (4)
Ag10.2901 (11)0.087 (2)1.3045 (11)0.031 (5)
Fe10.50000.00001.00000.019 (5)
N10.5525 (8)0.2448 (13)0.9752 (9)0.026 (3)
N20.6311 (9)0.4681 (17)1.0401 (9)0.041 (4)
N30.4369 (7)0.0673 (17)1.1340 (8)0.035 (3)
N40.3907 (8)0.0590 (17)0.9138 (8)0.035 (3)
H10.660 (3)0.650 (8)0.946 (3)0.089 (18)
H20.593 (3)0.521 (6)0.794 (4)0.083 (14)
H30.592 (2)0.264 (5)1.123 (3)0.059 (11)
H40.518 (3)0.261 (4)0.828 (3)0.049 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (14)0.046 (13)0.037 (12)0.017 (12)0.001 (10)0.005 (12)
C20.041 (11)0.029 (11)0.040 (13)0.009 (9)0.002 (8)0.018 (8)
C30.042 (10)0.056 (13)0.013 (10)0.029 (10)0.015 (6)0.010 (8)
C40.033 (10)0.059 (15)0.030 (10)0.020 (10)0.005 (8)0.016 (11)
C50.021 (8)0.042 (12)0.037 (9)0.011 (8)0.018 (7)0.002 (8)
C60.037 (9)0.035 (11)0.020 (8)0.003 (8)0.002 (7)0.002 (7)
Ag10.030 (9)0.040 (14)0.024 (8)0.007 (8)0.004 (7)0.009 (8)
Fe10.032 (11)0.019 (13)0.006 (8)0.004 (6)0.006 (5)0.002 (5)
N10.025 (6)0.030 (7)0.024 (5)0.009 (5)0.000 (5)0.001 (5)
N20.048 (8)0.042 (9)0.032 (8)0.013 (7)0.005 (6)0.011 (6)
N30.025 (6)0.055 (9)0.024 (7)0.005 (7)0.021 (5)0.007 (5)
N40.030 (7)0.042 (8)0.032 (7)0.001 (7)0.008 (5)0.013 (6)
H10.12 (4)0.10 (4)0.04 (3)0.07 (4)0.02 (2)0.00 (3)
H20.09 (3)0.10 (4)0.06 (3)0.01 (3)0.01 (2)0.01 (3)
H30.06 (3)0.08 (3)0.03 (2)0.01 (2)0.020 (16)0.013 (19)
H40.09 (3)0.012 (19)0.04 (2)0.019 (18)0.02 (2)0.016 (15)
Geometric parameters (Å, º) top
C1—N21.37 (3)C6—N31.137 (18)
C1—C21.41 (3)C6—Ag12.12 (2)
C1—H10.98 (8)Ag1—C5ii2.08 (2)
C2—C41.39 (3)Ag1—N2iii2.61 (2)
C2—H21.09 (6)Ag1—Ag1iv2.97 (4)
C3—N21.32 (2)Fe1—N3v2.119 (10)
C3—N11.37 (2)Fe1—N32.119 (10)
C3—H31.10 (4)Fe1—N4v2.128 (11)
C4—N11.35 (2)Fe1—N42.128 (11)
C4—H41.02 (6)Fe1—N1v2.205 (11)
C5—N41.135 (18)Fe1—N12.205 (11)
C5—Ag1i2.08 (2)N2—Ag1vi2.61 (2)
N2—C1—C2118 (2)N3—Fe1—N4v89.2 (4)
N2—C1—H1116 (3)N3v—Fe1—N489.2 (4)
C2—C1—H1126 (3)N3—Fe1—N490.8 (4)
C4—C2—C1119.1 (18)N4v—Fe1—N4180.000 (2)
C4—C2—H2121 (3)N3v—Fe1—N1v93.6 (5)
C1—C2—H2119 (3)N3—Fe1—N1v86.4 (5)
N2—C3—N1124.7 (14)N4v—Fe1—N1v90.8 (5)
N2—C3—H3121 (2)N4—Fe1—N1v89.2 (5)
N1—C3—H3114 (2)N3v—Fe1—N186.4 (5)
N1—C4—C2121 (2)N3—Fe1—N193.6 (5)
N1—C4—H4118 (3)N4v—Fe1—N189.2 (5)
C2—C4—H4121 (2)N4—Fe1—N190.8 (5)
N4—C5—Ag1i174.4 (17)N1v—Fe1—N1180.0000 (10)
N3—C6—Ag1173.5 (16)C4—N1—C3116.6 (16)
C5ii—Ag1—C6163.1 (10)C4—N1—Fe1122.3 (14)
C5ii—Ag1—N2iii93.3 (8)C3—N1—Fe1121.0 (10)
C6—Ag1—N2iii101.0 (8)C3—N2—C1120.1 (17)
C5ii—Ag1—Ag1iv69.7 (8)C3—N2—Ag1vi117.6 (11)
C6—Ag1—Ag1iv109.0 (9)C1—N2—Ag1vi122.2 (15)
N2iii—Ag1—Ag1iv122.9 (6)C6—N3—Fe1163.5 (12)
N3v—Fe1—N3180.000 (3)C5—N4—Fe1172.1 (13)
N3v—Fe1—N4v90.8 (4)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd8) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.045 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.262 (3) ÅT = 280 K
c = 13.350 (3) ÅPrism, orange-yellow
V = 1740.7 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.300
Radiation source: ILL neutron sourceθmax = 28.6°, θmin = 3.9°
3564 measured reflectionsh = 1711
797 independent reflectionsk = 88
674 reflections with I > 2σ(I)l = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.169Hydrogen site location: difference Fourier map
wR(F2) = 0.259All H-atom parameters refined
S = 1.51 w = 1/[σ2(Fo2) + (0.0661P)2 + 21.984P]
where P = (Fo2 + 2Fc2)/3
797 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6308 (9)0.5371 (17)0.9510 (9)0.055 (3)
C20.5872 (7)0.4672 (15)0.8704 (9)0.049 (3)
C30.5940 (6)0.3236 (14)1.0490 (7)0.041 (3)
C40.5495 (7)0.3195 (15)0.8862 (8)0.045 (3)
C50.3278 (6)0.0762 (13)0.8728 (6)0.041 (3)
C60.3858 (6)0.0792 (13)1.1962 (6)0.036 (2)
Ag10.2906 (6)0.0842 (14)1.3043 (7)0.041 (3)
Fe10.50000.00001.00000.026 (3)
N10.5530 (5)0.2461 (8)0.9762 (5)0.0345 (18)
N20.6312 (5)0.4680 (10)1.0409 (6)0.049 (2)
N30.4353 (4)0.0700 (10)1.1338 (5)0.042 (2)
N40.3909 (4)0.0606 (10)0.9147 (5)0.0411 (19)
H10.661 (2)0.656 (4)0.944 (2)0.100 (10)
H20.589 (2)0.527 (4)0.796 (2)0.103 (10)
H30.5930 (16)0.265 (3)1.1205 (19)0.074 (8)
H40.5158 (18)0.259 (3)0.8274 (19)0.067 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.069 (8)0.042 (7)0.053 (8)0.021 (7)0.002 (6)0.008 (7)
C20.057 (7)0.050 (8)0.041 (7)0.013 (6)0.002 (5)0.011 (5)
C30.046 (6)0.051 (8)0.027 (6)0.021 (6)0.004 (4)0.000 (6)
C40.048 (6)0.052 (8)0.034 (6)0.002 (6)0.004 (5)0.007 (6)
C50.030 (5)0.053 (7)0.039 (5)0.004 (5)0.011 (4)0.003 (5)
C60.035 (5)0.043 (7)0.031 (5)0.004 (4)0.011 (4)0.004 (4)
Ag10.029 (5)0.053 (8)0.042 (6)0.005 (5)0.011 (4)0.009 (5)
Fe10.026 (6)0.040 (8)0.014 (5)0.003 (4)0.002 (3)0.003 (3)
N10.037 (4)0.041 (5)0.025 (3)0.008 (3)0.001 (3)0.003 (3)
N20.055 (5)0.049 (5)0.042 (5)0.014 (4)0.001 (4)0.004 (4)
N30.036 (4)0.057 (6)0.033 (4)0.005 (4)0.013 (3)0.004 (3)
N40.031 (4)0.051 (5)0.041 (4)0.000 (4)0.007 (3)0.004 (4)
H10.13 (3)0.11 (2)0.064 (17)0.07 (2)0.005 (14)0.016 (15)
H20.13 (3)0.11 (2)0.07 (2)0.027 (18)0.000 (17)0.033 (17)
H30.083 (19)0.09 (2)0.047 (14)0.031 (14)0.014 (11)0.020 (13)
H40.110 (19)0.043 (16)0.048 (14)0.007 (12)0.033 (13)0.017 (10)
Geometric parameters (Å, º) top
C1—N21.329 (16)C6—N31.145 (10)
C1—C21.401 (17)C6—Ag12.083 (13)
C1—H11.10 (4)Ag1—C5ii2.082 (13)
C2—C41.375 (17)Ag1—N2iii2.592 (12)
C2—H21.11 (3)Ag1—Ag1iv3.02 (2)
C3—N11.332 (12)Fe1—N42.124 (7)
C3—N21.333 (13)Fe1—N4v2.124 (7)
C3—H31.07 (3)Fe1—N32.138 (6)
C4—N11.346 (13)Fe1—N3v2.138 (6)
C4—H41.07 (3)Fe1—N1v2.222 (6)
C5—N41.150 (11)Fe1—N12.222 (7)
C5—Ag1i2.082 (13)N2—Ag1vi2.592 (12)
N2—C1—C2121.2 (12)N4v—Fe1—N390.2 (2)
N2—C1—H1117.3 (19)N4—Fe1—N3v90.2 (2)
C2—C1—H1121.3 (18)N4v—Fe1—N3v89.8 (2)
C4—C2—C1117.4 (11)N3—Fe1—N3v180.0000 (10)
C4—C2—H2122.8 (19)N4—Fe1—N1v89.3 (3)
C1—C2—H2119 (2)N4v—Fe1—N1v90.7 (3)
N1—C3—N2125.8 (9)N3—Fe1—N1v87.0 (3)
N1—C3—H3115.3 (16)N3v—Fe1—N1v93.0 (3)
N2—C3—H3118.8 (15)N4—Fe1—N190.7 (3)
N1—C4—C2121.3 (10)N4v—Fe1—N189.3 (3)
N1—C4—H4117.6 (15)N3—Fe1—N193.0 (3)
C2—C4—H4121.1 (14)N3v—Fe1—N187.0 (3)
N4—C5—Ag1i174.3 (9)N1v—Fe1—N1180.0000 (10)
N3—C6—Ag1176.0 (9)C3—N1—C4117.0 (9)
C5ii—Ag1—C6162.0 (7)C3—N1—Fe1121.2 (7)
C5ii—Ag1—N2iii93.7 (5)C4—N1—Fe1121.6 (7)
C6—Ag1—N2iii101.6 (5)C1—N2—C3117.1 (10)
C5ii—Ag1—Ag1iv69.4 (5)C1—N2—Ag1vi124.3 (8)
C6—Ag1—Ag1iv108.9 (5)C3—N2—Ag1vi118.4 (6)
N2iii—Ag1—Ag1iv122.5 (4)C6—N3—Fe1162.2 (7)
N4—Fe1—N4v180.000 (2)C5—N4—Fe1171.8 (8)
N4—Fe1—N389.8 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd9) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.060 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 1.10-2.50 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.229 (3) ÅT = 250 K
c = 13.304 (3) ÅPrism, orange-yellow
V = 1727.8 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.242
Radiation source: ILL neutron sourceθmax = 30.0°, θmin = 3.5°
2910 measured reflectionsh = 1710
772 independent reflectionsk = 88
618 reflections with I > 2σ(I)l = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.155Hydrogen site location: difference Fourier map
wR(F2) = 0.194All H-atom parameters refined
S = 1.45 w = 1/[σ2(Fo2) + (0.016P)2 + 13.6689P]
where P = (Fo2 + 2Fc2)/3
772 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6292 (9)0.5383 (17)0.9501 (9)0.055 (3)
C20.5870 (7)0.4697 (14)0.8692 (9)0.045 (3)
C30.5938 (6)0.3268 (13)1.0481 (7)0.039 (3)
C40.5497 (7)0.3208 (16)0.8862 (7)0.046 (3)
C50.3275 (6)0.0737 (13)0.8739 (6)0.042 (3)
C60.3859 (6)0.0801 (13)1.1955 (6)0.036 (2)
Ag10.2907 (6)0.0847 (14)1.3034 (7)0.038 (3)
Fe10.50000.00001.00000.029 (3)
N10.5529 (5)0.2465 (8)0.9760 (5)0.0340 (18)
N20.6304 (6)0.4701 (10)1.0393 (5)0.047 (2)
N30.4354 (4)0.0681 (10)1.1341 (5)0.044 (2)
N40.3906 (5)0.0606 (10)0.9141 (4)0.043 (2)
H10.6617 (19)0.657 (4)0.9412 (19)0.100 (10)
H20.5879 (17)0.522 (3)0.798 (2)0.087 (8)
H30.5932 (14)0.263 (3)1.1249 (15)0.065 (7)
H40.5128 (17)0.257 (2)0.8273 (18)0.063 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.076 (9)0.045 (8)0.043 (7)0.005 (7)0.001 (6)0.001 (7)
C20.050 (7)0.030 (8)0.054 (8)0.010 (6)0.008 (6)0.005 (6)
C30.052 (6)0.044 (8)0.021 (6)0.018 (6)0.003 (4)0.011 (5)
C40.048 (7)0.060 (9)0.029 (6)0.007 (7)0.006 (5)0.007 (6)
C50.040 (5)0.046 (7)0.040 (5)0.011 (6)0.017 (4)0.008 (5)
C60.038 (5)0.045 (7)0.025 (5)0.007 (5)0.014 (4)0.008 (4)
Ag10.034 (6)0.045 (8)0.036 (6)0.003 (6)0.007 (4)0.009 (5)
Fe10.034 (6)0.034 (9)0.019 (5)0.001 (4)0.001 (3)0.000 (3)
N10.038 (4)0.042 (5)0.022 (3)0.008 (3)0.002 (3)0.002 (3)
N20.057 (5)0.047 (6)0.037 (5)0.016 (4)0.006 (4)0.005 (4)
N30.036 (4)0.063 (6)0.032 (4)0.007 (4)0.011 (3)0.006 (3)
N40.039 (4)0.057 (6)0.033 (4)0.002 (4)0.006 (3)0.008 (4)
H10.14 (3)0.10 (2)0.061 (17)0.06 (2)0.013 (14)0.015 (15)
H20.091 (19)0.10 (2)0.065 (17)0.011 (15)0.001 (14)0.001 (16)
H30.077 (17)0.084 (19)0.034 (12)0.035 (12)0.019 (10)0.014 (11)
H40.11 (2)0.033 (17)0.044 (13)0.010 (12)0.021 (12)0.001 (10)
Geometric parameters (Å, º) top
C1—N21.313 (15)C6—N31.136 (9)
C1—C21.385 (15)C6—Ag12.078 (12)
C1—H11.11 (4)Ag1—C5ii2.089 (13)
C2—C41.379 (15)Ag1—N2iii2.611 (12)
C2—H21.04 (4)Ag1—Ag1iv3.01 (2)
C3—N21.318 (12)Fe1—N3v2.129 (6)
C3—N11.331 (12)Fe1—N32.129 (6)
C3—H31.15 (2)Fe1—N4v2.130 (7)
C4—N11.343 (11)Fe1—N42.130 (7)
C4—H41.11 (3)Fe1—N12.217 (7)
C5—N41.136 (10)Fe1—N1v2.217 (7)
C5—Ag1i2.089 (13)N2—Ag1vi2.611 (12)
N2—C1—C2122.4 (12)N3—Fe1—N4v90.0 (2)
N2—C1—H1117.7 (17)N3v—Fe1—N490.0 (2)
C2—C1—H1119.9 (16)N3—Fe1—N490.0 (2)
C4—C2—C1116.0 (11)N4v—Fe1—N4180.0000 (10)
C4—C2—H2121.7 (18)N3v—Fe1—N186.6 (3)
C1—C2—H2122.1 (18)N3—Fe1—N193.4 (3)
N2—C3—N1126.3 (8)N4v—Fe1—N189.2 (3)
N2—C3—H3119.5 (13)N4—Fe1—N190.8 (3)
N1—C3—H3114.1 (14)N3v—Fe1—N1v93.4 (3)
N1—C4—C2122.3 (11)N3—Fe1—N1v86.6 (3)
N1—C4—H4115.6 (15)N4v—Fe1—N1v90.8 (3)
C2—C4—H4122.1 (13)N4—Fe1—N1v89.2 (3)
N4—C5—Ag1i176.7 (10)N1—Fe1—N1v180.0000 (10)
N3—C6—Ag1175.3 (9)C3—N1—C4115.7 (9)
C6—Ag1—C5ii162.6 (6)C3—N1—Fe1122.2 (6)
C6—Ag1—N2iii101.7 (5)C4—N1—Fe1122.0 (7)
C5ii—Ag1—N2iii92.9 (4)C1—N2—C3117.1 (9)
C6—Ag1—Ag1iv109.0 (5)C1—N2—Ag1vi125.2 (8)
C5ii—Ag1—Ag1iv70.0 (5)C3—N2—Ag1vi117.5 (6)
N2iii—Ag1—Ag1iv122.0 (4)C6—N3—Fe1162.8 (8)
N3v—Fe1—N3180.000 (2)C5—N4—Fe1170.4 (9)
N3v—Fe1—N4v90.0 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd10) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.077 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.780 (3) ŵ = 0.08 mm1
b = 8.200 (3) ÅT = 220 K
c = 13.240 (3) ÅPrism, orange-yellow
V = 1713.2 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.357
Radiation source: ILL neutron sourceθmax = 24.5°, θmin = 3.2°
3553 measured reflectionsh = 718
973 independent reflectionsk = 89
743 reflections with I > 2σ(I)l = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.167Hydrogen site location: difference Fourier map
wR(F2) = 0.307All H-atom parameters refined
S = 1.40 w = 1/[σ2(Fo2) + (0.0516P)2 + 58.4407P]
where P = (Fo2 + 2Fc2)/3
973 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6289 (8)0.5408 (17)0.9490 (9)0.044 (3)
C20.5862 (7)0.4690 (16)0.8683 (8)0.040 (3)
C30.5952 (6)0.3251 (15)1.0484 (7)0.033 (3)
C40.5486 (7)0.3201 (17)0.8839 (8)0.039 (3)
C50.3272 (6)0.0750 (13)0.8738 (7)0.032 (2)
C60.3866 (6)0.0818 (14)1.1971 (6)0.031 (2)
Ag10.2919 (6)0.0837 (16)1.3055 (7)0.034 (3)
Fe10.50000.00001.00000.024 (3)
N10.5520 (5)0.2464 (9)0.9761 (5)0.0309 (18)
N20.6309 (5)0.4692 (11)1.0406 (6)0.039 (2)
N30.4365 (4)0.0707 (11)1.1344 (5)0.0347 (19)
N40.3906 (4)0.0607 (11)0.9153 (5)0.0344 (19)
H10.6606 (18)0.655 (4)0.9430 (19)0.075 (9)
H20.584 (2)0.527 (4)0.794 (2)0.085 (9)
H30.5943 (15)0.264 (3)1.1198 (18)0.050 (6)
H40.5158 (18)0.258 (3)0.8284 (19)0.053 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (7)0.037 (7)0.044 (7)0.009 (7)0.003 (5)0.006 (6)
C20.045 (6)0.045 (8)0.030 (6)0.006 (5)0.003 (4)0.007 (5)
C30.027 (5)0.043 (8)0.027 (6)0.017 (5)0.007 (4)0.002 (5)
C40.040 (6)0.055 (8)0.023 (5)0.008 (6)0.000 (4)0.010 (6)
C50.027 (5)0.040 (7)0.031 (5)0.013 (5)0.011 (4)0.001 (5)
C60.032 (5)0.040 (7)0.022 (4)0.010 (4)0.006 (4)0.001 (4)
Ag10.026 (5)0.045 (8)0.030 (5)0.012 (5)0.012 (4)0.010 (5)
Fe10.020 (5)0.041 (9)0.010 (5)0.002 (4)0.001 (3)0.001 (3)
N10.025 (4)0.046 (5)0.022 (3)0.006 (3)0.004 (3)0.003 (3)
N20.043 (5)0.043 (5)0.029 (4)0.007 (4)0.001 (3)0.001 (3)
N30.030 (4)0.049 (5)0.025 (4)0.002 (4)0.009 (3)0.006 (3)
N40.029 (4)0.045 (5)0.030 (4)0.009 (4)0.005 (3)0.001 (4)
H10.089 (19)0.08 (2)0.060 (15)0.057 (18)0.017 (13)0.004 (13)
H20.11 (2)0.08 (2)0.07 (2)0.026 (17)0.006 (16)0.027 (16)
H30.068 (15)0.043 (14)0.039 (12)0.009 (10)0.000 (10)0.002 (10)
H40.084 (17)0.028 (15)0.046 (14)0.020 (11)0.009 (12)0.009 (10)
Geometric parameters (Å, º) top
C1—N21.348 (16)C6—N31.148 (11)
C1—C21.394 (17)C6—Ag12.073 (12)
C1—H11.07 (3)Ag1—C5ii2.086 (13)
C2—C41.373 (18)Ag1—N2iii2.553 (12)
C2—H21.10 (3)Ag1—Ag1iv3.03 (2)
C3—N21.313 (14)Fe1—N4v2.118 (7)
C3—N11.340 (12)Fe1—N42.118 (7)
C3—H31.07 (3)Fe1—N32.123 (6)
C4—N11.363 (13)Fe1—N3v2.123 (6)
C4—H41.03 (3)Fe1—N12.204 (7)
C5—N41.148 (11)Fe1—N1v2.204 (7)
C5—Ag1i2.086 (13)N2—Ag1vi2.553 (12)
N2—C1—C2121.1 (12)N4—Fe1—N389.7 (3)
N2—C1—H1116.1 (19)N4v—Fe1—N3v89.7 (3)
C2—C1—H1122.8 (19)N4—Fe1—N3v90.3 (3)
C4—C2—C1118.0 (11)N3—Fe1—N3v180.0000 (10)
C4—C2—H2120 (2)N4v—Fe1—N189.3 (3)
C1—C2—H2122 (2)N4—Fe1—N190.7 (3)
N2—C3—N1126.6 (9)N3—Fe1—N192.6 (3)
N2—C3—H3119.7 (14)N3v—Fe1—N187.4 (3)
N1—C3—H3113.5 (15)N4v—Fe1—N1v90.7 (3)
N1—C4—C2120.8 (11)N4—Fe1—N1v89.3 (3)
N1—C4—H4116.0 (16)N3—Fe1—N1v87.4 (3)
C2—C4—H4123.2 (15)N3v—Fe1—N1v92.6 (3)
N4—C5—Ag1i175.1 (10)N1—Fe1—N1v180.0000 (10)
N3—C6—Ag1175.1 (10)C3—N1—C4116.5 (10)
C6—Ag1—C5ii161.7 (7)C3—N1—Fe1121.9 (7)
C6—Ag1—N2iii101.9 (5)C4—N1—Fe1121.4 (7)
C5ii—Ag1—N2iii94.1 (5)C3—N2—C1116.9 (10)
C6—Ag1—Ag1iv108.8 (6)C3—N2—Ag1vi118.3 (7)
C5ii—Ag1—Ag1iv68.8 (5)C1—N2—Ag1vi124.7 (8)
N2iii—Ag1—Ag1iv122.6 (4)C6—N3—Fe1162.1 (8)
N4v—Fe1—N4180.000 (2)C5—N4—Fe1171.2 (9)
N4v—Fe1—N390.3 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd11) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.062 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.7820 (15) ŵ = 0.08 mm1
b = 8.2250 (15) ÅT = 260 K
c = 13.2980 (15) ÅPrism, orange-yellow
V = 1726.2 (4) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.221
Radiation source: ILL neutron sourceθmax = 27.7°, θmin = 3.6°
5638 measured reflectionsh = 1118
1069 independent reflectionsk = 99
885 reflections with I > 2σ(I)l = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.100Hydrogen site location: difference Fourier map
wR(F2) = 0.161All H-atom parameters refined
S = 1.29 w = 1/[σ2(Fo2) + (0.0558P)2 + 4.1743P]
where P = (Fo2 + 2Fc2)/3
1069 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6287 (3)0.5402 (7)0.9506 (4)0.0488 (12)
C20.5870 (3)0.4695 (7)0.8701 (4)0.0464 (13)
C30.5938 (3)0.3241 (6)1.0486 (3)0.0373 (11)
C40.5493 (3)0.3207 (6)0.8867 (3)0.0389 (11)
C50.3273 (2)0.0757 (6)0.8735 (3)0.0351 (10)
C60.3856 (2)0.0790 (6)1.1968 (3)0.0338 (10)
Ag10.2911 (2)0.0851 (6)1.3053 (3)0.0371 (12)
Fe10.50000.00001.00000.0236 (11)
N10.55311 (19)0.2470 (3)0.9755 (2)0.0312 (8)
N20.6316 (2)0.4678 (5)1.0403 (3)0.0448 (9)
N30.43573 (17)0.0711 (4)1.1348 (2)0.0371 (8)
N40.39087 (16)0.0608 (4)0.9150 (2)0.0361 (8)
H10.6601 (9)0.6579 (16)0.9446 (9)0.084 (4)
H20.5852 (9)0.5243 (16)0.7971 (10)0.084 (4)
H30.5949 (7)0.2650 (14)1.1198 (8)0.069 (3)
H40.5152 (8)0.2584 (13)0.8278 (9)0.070 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (3)0.038 (3)0.045 (3)0.015 (3)0.005 (2)0.005 (3)
C20.063 (3)0.039 (3)0.038 (3)0.008 (2)0.001 (2)0.008 (2)
C30.046 (2)0.036 (3)0.030 (3)0.011 (2)0.0039 (16)0.001 (2)
C40.048 (2)0.040 (3)0.029 (2)0.005 (2)0.0021 (18)0.006 (2)
C50.0248 (19)0.046 (3)0.034 (2)0.0003 (18)0.0078 (15)0.0035 (19)
C60.0341 (19)0.037 (3)0.030 (2)0.0044 (18)0.0092 (16)0.0002 (18)
Ag10.031 (2)0.041 (3)0.040 (3)0.005 (2)0.0146 (18)0.008 (2)
Fe10.021 (2)0.030 (3)0.019 (2)0.0012 (13)0.0007 (11)0.0000 (13)
N10.0352 (15)0.031 (2)0.0271 (14)0.0049 (11)0.0023 (13)0.0012 (12)
N20.055 (2)0.041 (2)0.038 (2)0.0115 (16)0.0017 (15)0.0018 (16)
N30.0369 (15)0.045 (2)0.0297 (16)0.0026 (15)0.0115 (12)0.0018 (14)
N40.0275 (14)0.046 (2)0.0352 (17)0.0017 (14)0.0055 (12)0.0034 (15)
H10.122 (9)0.058 (8)0.073 (8)0.041 (8)0.008 (6)0.016 (6)
H20.133 (11)0.073 (9)0.047 (7)0.019 (7)0.004 (6)0.021 (6)
H30.108 (8)0.071 (8)0.028 (5)0.032 (6)0.012 (5)0.008 (5)
H40.091 (7)0.068 (8)0.051 (7)0.011 (5)0.024 (5)0.003 (5)
Geometric parameters (Å, º) top
C1—N21.335 (7)C6—N31.145 (5)
C1—C21.384 (7)C6—Ag12.075 (5)
C1—H11.091 (15)Ag1—C5ii2.079 (5)
C2—C41.379 (7)Ag1—N2iii2.576 (5)
C2—H21.071 (14)Ag1—Ag1iv3.006 (9)
C3—N11.326 (5)Fe1—N4v2.120 (3)
C3—N21.328 (6)Fe1—N42.120 (3)
C3—H31.065 (12)Fe1—N3v2.141 (3)
C4—N11.328 (5)Fe1—N32.141 (3)
C4—H41.080 (13)Fe1—N12.221 (3)
C5—N41.152 (4)Fe1—N1v2.221 (3)
C5—Ag1i2.079 (5)N2—Ag1vi2.576 (5)
N2—C1—C2121.3 (5)N4—Fe1—N3v90.16 (11)
N2—C1—H1116.4 (8)N4v—Fe1—N390.16 (11)
C2—C1—H1122.2 (8)N4—Fe1—N389.84 (11)
C4—C2—C1117.0 (5)N3v—Fe1—N3180.0000 (10)
C4—C2—H2120.4 (8)N4v—Fe1—N189.28 (12)
C1—C2—H2122.5 (8)N4—Fe1—N190.72 (12)
N1—C3—N2125.6 (4)N3v—Fe1—N187.02 (12)
N1—C3—H3116.2 (7)N3—Fe1—N192.98 (12)
N2—C3—H3118.2 (7)N4v—Fe1—N1v90.72 (12)
N1—C4—C2121.8 (4)N4—Fe1—N1v89.28 (12)
N1—C4—H4116.8 (7)N3v—Fe1—N1v92.98 (12)
C2—C4—H4121.4 (7)N3—Fe1—N1v87.02 (12)
N4—C5—Ag1i175.1 (4)N1—Fe1—N1v180.0
N3—C6—Ag1177.2 (4)C3—N1—C4117.0 (4)
C6—Ag1—C5ii161.5 (3)C3—N1—Fe1120.8 (3)
C6—Ag1—N2iii101.8 (2)C4—N1—Fe1122.0 (3)
C5ii—Ag1—N2iii93.7 (2)C3—N2—C1117.1 (4)
C6—Ag1—Ag1iv109.4 (2)C3—N2—Ag1vi118.7 (3)
C5ii—Ag1—Ag1iv69.24 (19)C1—N2—Ag1vi124.2 (3)
N2iii—Ag1—Ag1iv122.86 (16)C6—N3—Fe1161.1 (3)
N4v—Fe1—N4180.0000 (10)C5—N4—Fe1171.3 (3)
N4v—Fe1—N3v89.84 (11)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+5/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+2; (vi) x+1, y+1/2, z+5/2.
(fepmd12) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.054 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.95-2.50 Å
a = 15.782 (3) ŵ = 0.09 mm1
b = 8.242 (3) ÅT = 280 K
c = 13.320 (3) ÅPrism, orange-yellow
V = 1732.6 (8) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.352
Radiation source: ILL neutron sourceθmax = 29.3°, θmin = 4.0°
3459 measured reflectionsh = 1711
782 independent reflectionsk = 88
641 reflections with I > 2σ(I)l = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.172Hydrogen site location: difference Fourier map
wR(F2) = 0.293All H-atom parameters refined
S = 1.42 w = 1/[σ2(Fo2) + (0.0311P)2 + 71.9321P]
where P = (Fo2 + 2Fc2)/3
782 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6283 (10)0.537 (2)0.9494 (11)0.052 (4)
C20.5866 (9)0.4672 (18)0.8697 (10)0.045 (3)
C30.5949 (7)0.3248 (16)1.0484 (8)0.037 (3)
C40.5492 (8)0.3209 (19)0.8862 (10)0.045 (3)
C50.3269 (8)0.0766 (17)0.8740 (8)0.043 (3)
C60.3858 (7)0.0805 (16)1.1963 (8)0.037 (3)
Fe10.50000.00001.00000.029 (3)
N10.5523 (6)0.2463 (10)0.9759 (7)0.036 (2)
N20.6307 (6)0.4686 (12)1.0403 (7)0.045 (3)
N30.4362 (5)0.0694 (13)1.1344 (6)0.041 (2)
N40.3902 (6)0.0605 (13)0.9146 (6)0.042 (2)
Ag10.2901 (8)0.0861 (18)1.3047 (9)0.039 (4)
H10.661 (3)0.655 (5)0.944 (2)0.104 (14)
H30.5933 (19)0.263 (4)1.122 (2)0.071 (9)
H20.589 (2)0.525 (5)0.794 (3)0.085 (10)
H40.514 (2)0.255 (3)0.829 (2)0.066 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (9)0.046 (9)0.047 (9)0.003 (8)0.003 (7)0.005 (8)
C20.058 (8)0.041 (8)0.036 (8)0.014 (7)0.003 (6)0.005 (6)
C30.044 (7)0.050 (9)0.016 (6)0.021 (7)0.009 (5)0.007 (6)
C40.044 (7)0.054 (10)0.038 (8)0.002 (7)0.008 (6)0.010 (7)
C50.031 (6)0.055 (9)0.044 (6)0.004 (6)0.020 (6)0.002 (6)
C60.039 (6)0.045 (8)0.027 (6)0.002 (6)0.009 (5)0.002 (5)
Fe10.039 (8)0.035 (9)0.014 (6)0.001 (5)0.005 (4)0.005 (4)
N10.035 (5)0.043 (6)0.028 (4)0.005 (4)0.004 (4)0.001 (3)
N20.047 (6)0.045 (6)0.043 (6)0.018 (5)0.002 (4)0.009 (5)
N30.033 (5)0.065 (7)0.026 (5)0.001 (5)0.011 (4)0.005 (4)
N40.039 (5)0.050 (6)0.038 (5)0.005 (5)0.006 (4)0.000 (5)
Ag10.029 (6)0.055 (11)0.032 (7)0.006 (6)0.011 (5)0.017 (6)
H10.17 (4)0.09 (3)0.06 (2)0.07 (3)0.03 (2)0.005 (17)
H30.09 (2)0.08 (2)0.046 (18)0.041 (17)0.015 (13)0.022 (14)
H20.08 (2)0.10 (3)0.08 (2)0.008 (17)0.001 (18)0.03 (2)
H40.13 (3)0.04 (2)0.033 (16)0.003 (15)0.029 (15)0.004 (11)
Geometric parameters (Å, º) top
C1—N21.34 (2)C6—N31.150 (13)
C1—C21.37 (2)C6—Ag12.088 (15)
C1—H11.11 (5)Fe1—N32.132 (8)
C2—C41.36 (2)Fe1—N3ii2.132 (8)
C2—H21.12 (4)Fe1—N42.132 (9)
C3—N21.318 (16)Fe1—N4ii2.132 (9)
C3—N11.343 (15)Fe1—N1ii2.214 (9)
C3—H31.10 (3)Fe1—N12.214 (9)
C4—N11.346 (16)N2—Ag1iii2.601 (15)
C4—H41.09 (4)Ag1—C5iv2.067 (16)
C5—N41.144 (14)Ag1—N2v2.601 (14)
C5—Ag1i2.067 (16)Ag1—Ag1vi2.98 (3)
N2—C1—C2122.6 (15)N4—Fe1—N1ii89.4 (4)
N2—C1—H1114 (2)N4ii—Fe1—N1ii90.6 (4)
C2—C1—H1123 (2)N3—Fe1—N192.9 (4)
C4—C2—C1116.9 (13)N3ii—Fe1—N187.1 (4)
C4—C2—H2123 (2)N4—Fe1—N190.6 (4)
C1—C2—H2120 (2)N4ii—Fe1—N189.4 (4)
N2—C3—N1126.2 (10)N1ii—Fe1—N1180.0000 (10)
N2—C3—H3119.7 (17)C3—N1—C4115.8 (11)
N1—C3—H3113.9 (18)C3—N1—Fe1121.7 (8)
N1—C4—C2122.3 (13)C4—N1—Fe1122.3 (9)
N1—C4—H4114 (2)C3—N2—C1116.1 (12)
C2—C4—H4123.2 (18)C3—N2—Ag1iii118.4 (8)
N4—C5—Ag1i175.1 (13)C1—N2—Ag1iii125.3 (10)
N3—C6—Ag1176.0 (12)C6—N3—Fe1161.9 (9)
N3—Fe1—N3ii180.000 (2)C5—N4—Fe1171.6 (11)
N3—Fe1—N490.1 (3)C5iv—Ag1—C6162.5 (8)
N3ii—Fe1—N489.9 (3)C5iv—Ag1—N2v93.4 (6)
N3—Fe1—N4ii89.9 (3)C6—Ag1—N2v101.1 (6)
N3ii—Fe1—N4ii90.1 (3)C5iv—Ag1—Ag1vi69.8 (6)
N4—Fe1—N4ii180.000 (2)C6—Ag1—Ag1vi109.1 (7)
N3—Fe1—N1ii87.1 (4)N2v—Ag1—Ag1vi122.8 (5)
N3ii—Fe1—N1ii92.9 (4)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y, z+2; (iii) x+1, y+1/2, z+5/2; (iv) x+1/2, y, z+1/2; (v) x+1, y1/2, z+5/2; (vi) x+1/2, y+1/2, z.
(fepmd13) top
Crystal data top
C12H8Ag2FeN8Z = 4
Mr = 535.83F(000) = 584
Orthorhombic, PccnDx = 2.055 Mg m3
Hall symbol: -P 2ab 2acNeutron radiation, λ = 0.90-3.00 Å
a = 15.7820 (15) ŵ = 0.08 mm1
b = 8.2430 (15) ÅT = 290 K
c = 13.3100 (15) ÅPrism, orange-yellow
V = 1731.5 (4) Å31.0 × 0.6 × 0.5 mm
Data collection top
ILL-VIVALDI Laue single xtal
diffractometer
Rint = 0.227
Radiation source: ILL neutron sourceθmax = 31.5°, θmin = 4.0°
5485 measured reflectionsh = 1118
1068 independent reflectionsk = 99
860 reflections with I > 2σ(I)l = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.114Hydrogen site location: difference Fourier map
wR(F2) = 0.168All H-atom parameters refined
S = 1.30 w = 1/[σ2(Fo2) + (0.0625P)2 + 3.3037P]
where P = (Fo2 + 2Fc2)/3
1068 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3857 (2)0.0795 (6)0.1965 (3)0.0371 (11)
C20.5935 (3)0.3244 (6)0.0485 (3)0.0400 (12)
C30.5496 (3)0.3203 (7)0.1137 (3)0.0426 (12)
C40.5869 (3)0.4685 (7)0.1296 (4)0.0515 (14)
C50.3274 (2)0.0760 (6)0.1265 (3)0.0390 (11)
C60.6289 (4)0.5389 (8)0.0496 (4)0.0512 (13)
Ag10.2915 (3)0.0844 (6)0.3051 (3)0.0395 (13)
Fe10.50000.00000.00000.0241 (12)
N10.39086 (17)0.0610 (5)0.0850 (2)0.0385 (9)
N20.43564 (18)0.0710 (5)0.1347 (2)0.0402 (9)
N30.6314 (2)0.4675 (5)0.0405 (3)0.0483 (10)
N40.5532 (2)0.2458 (4)0.0243 (2)0.0342 (8)
H20.5953 (8)0.2643 (15)0.1200 (8)0.078 (4)
H30.5138 (8)0.2582 (14)0.1714 (9)0.071 (3)
H40.5851 (10)0.5259 (18)0.2041 (11)0.096 (4)
H60.6611 (10)0.6551 (18)0.0562 (10)0.096 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.042 (3)0.031 (2)0.004 (2)0.0100 (17)0.0007 (19)
C20.048 (2)0.044 (3)0.028 (3)0.014 (2)0.0028 (17)0.001 (2)
C30.054 (3)0.044 (3)0.030 (2)0.004 (2)0.0025 (19)0.005 (2)
C40.070 (3)0.047 (4)0.038 (3)0.013 (2)0.003 (2)0.011 (3)
C50.030 (2)0.053 (3)0.035 (2)0.001 (2)0.0090 (16)0.005 (2)
C60.067 (3)0.037 (3)0.050 (3)0.014 (3)0.002 (2)0.008 (3)
Ag10.035 (2)0.044 (4)0.040 (3)0.008 (2)0.0155 (18)0.008 (2)
Fe10.021 (2)0.031 (4)0.020 (2)0.0012 (14)0.0003 (12)0.0017 (14)
N10.0286 (15)0.050 (2)0.0374 (19)0.0018 (15)0.0084 (13)0.0016 (16)
N20.0390 (15)0.051 (3)0.0307 (17)0.0029 (16)0.0131 (13)0.0024 (15)
N30.062 (2)0.042 (2)0.041 (2)0.0142 (18)0.0026 (16)0.0008 (17)
N40.0389 (16)0.035 (2)0.0288 (15)0.0049 (13)0.0002 (14)0.0024 (13)
H20.130 (10)0.071 (9)0.034 (6)0.035 (7)0.022 (5)0.015 (5)
H30.104 (8)0.062 (9)0.048 (7)0.018 (6)0.021 (6)0.007 (5)
H40.147 (12)0.077 (10)0.065 (9)0.027 (8)0.008 (7)0.028 (7)
H60.132 (11)0.074 (10)0.082 (9)0.049 (9)0.001 (7)0.012 (7)
Geometric parameters (Å, º) top
C1—N21.142 (5)C6—N31.336 (8)
C1—Ag12.074 (5)C6—H61.088 (17)
C2—N31.327 (6)Ag1—C5ii2.088 (5)
C2—N41.329 (6)Ag1—N3iii2.576 (6)
C2—H21.073 (13)Ag1—Ag1iv3.028 (10)
C3—N41.339 (6)Fe1—N1v2.121 (3)
C3—C41.372 (8)Fe1—N12.121 (3)
C3—H31.082 (14)Fe1—N2v2.142 (3)
C4—C61.381 (8)Fe1—N22.142 (3)
C4—H41.100 (16)Fe1—N42.217 (3)
C5—N11.150 (5)Fe1—N4v2.217 (3)
C5—Ag1i2.088 (5)N3—Ag1vi2.576 (6)
N2—C1—Ag1176.8 (4)N1—Fe1—N2v90.21 (12)
N3—C2—N4126.2 (4)N1v—Fe1—N290.21 (12)
N3—C2—H2118.1 (7)N1—Fe1—N289.79 (12)
N4—C2—H2115.8 (7)N2v—Fe1—N2180.00 (15)
N4—C3—C4121.8 (4)N1v—Fe1—N489.27 (13)
N4—C3—H3115.8 (7)N1—Fe1—N490.73 (13)
C4—C3—H3122.4 (7)N2v—Fe1—N487.01 (13)
C3—C4—C6117.4 (5)N2—Fe1—N492.99 (13)
C3—C4—H4120.7 (9)N1v—Fe1—N4v90.73 (13)
C6—C4—H4121.8 (9)N1—Fe1—N4v89.27 (13)
N1—C5—Ag1i174.8 (4)N2v—Fe1—N4v92.99 (13)
N3—C6—C4121.4 (6)N2—Fe1—N4v87.01 (13)
N3—C6—H6116.4 (9)N4—Fe1—N4v180.0 (2)
C4—C6—H6122.2 (9)C5—N1—Fe1171.3 (4)
C1—Ag1—C5ii161.5 (3)C1—N2—Fe1161.4 (4)
C1—Ag1—N3iii102.1 (2)C2—N3—C6116.8 (4)
C5ii—Ag1—N3iii93.7 (2)C2—N3—Ag1vi118.7 (3)
C1—Ag1—Ag1iv109.1 (2)C6—N3—Ag1vi124.5 (4)
C5ii—Ag1—Ag1iv69.0 (2)C2—N4—C3116.4 (4)
N3iii—Ag1—Ag1iv122.78 (17)C2—N4—Fe1121.3 (3)
N1v—Fe1—N1180.0 (3)C3—N4—Fe1122.2 (3)
N1v—Fe1—N2v89.79 (12)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds