organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tetra­methyl­guanidinium) hexa­chlorido­tellurate(IV)

CROSSMARK_Color_square_no_text.svg

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by C. Massera, Università di Parma, Italy (Received 20 September 2018; accepted 20 October 2018; online 31 October 2018)

The title compound, 2C5H14N3+·TeCl62−, is an easily accessible salt with a relatively low melting point. The asymmetric unit consists of a Te0.25Cl1.5 fragment and half a cation. Weak hydrogen bonds of the type C—H⋯Cl and N—H⋯Cl are present in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title salt consists of a Te0.25Cl1.5 unit (with the tellurium atom located on the 8a Wyckoff site of the space group Fddd with 222 symmetry) and of one half of the TMG cation (the C1 and N1 atoms are located on a twofold rotation axis, site 16g). The mol­ecular structure is shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + [{7\over 4}], y, −z + [{3\over 4}]; (ii) −x + [{7\over 4}], −y + [{3\over 4}], z; (iii) −x + [{3\over 4}], −y + [{3\over 4}], z; (iv) x, −y + [{3\over 4}], −z + [{3\over 4}].

The distances between the tellurium atom and the surrounding chlorine atoms of the [TeCl6]2− anion are 2.5363 (4) and 2.5394 (3) Å, in agreement with published Te—Cl bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.]). The angle between the carbon atom C1 and the two nitro­gen atoms N2 in the cation is 120.14 (6)°. The distance between N1 and C1 is 1.323 (2) Å, while that between C1 and N2 is 1.342 (1) Å, indicating that C1 is involved in a double bond. The bond lengths between N2 and atoms C2 and C3 are longer, 1.464 (2) and 1.459 (1) Å, respectively, as expected for N—C single bonds. Consistent with the d glide planes of the space group Fddd, the tetra­methyl­guanidinium cations and the hexa­chlorido­tellurate(IV) anions are arranged in chains with an alternating orientation of the cations in the three unit-cell directions (see Fig. 2[link]).

[Figure 2]
Figure 2
View along the a axis of the unit cell showing the arrangement of the ions of the title compound.

Weak hydrogen bonds (Table 1[link]) are found between the NH2 groups of the cation and the chlorine atoms of the anion with a shortest Cl⋯N distance of 3.3875 (8) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2ii 0.83 (2) 2.57 (2) 3.3875 (8) 167 (1)
C2—H2B⋯Cl2v 0.98 2.84 3.712 (1) 149
C3—H3B⋯Cl1v 0.98 2.82 3.644 (1) 142
Symmetry codes: (ii) [x, -y+{\script{3\over 4}}, -z+{\script{3\over 4}}]; (v) -x+1, -y+1, -z+1.

The number of published X-ray structures of tetra­methyl­guanidinium (TMG) metal salts is limited. The first publication is from the 1960s (Longhi & Drago, 1965[Longhi, R. & Drago, R. S. (1965). Inorg. Chem. 4, 11-14.]). Different metal salts with the TMG cation have been published since then (Snaith et al., 1970[Snaith, R., Wade, K. & Wyatt, B. K. (1970). J. Chem. Soc. A, pp. 380.]; Bujak et al., 1999[Bujak, M., Osadczuk, P. & Zaleski, J. (1999). Acta Cryst. C55, 1443-1447.]; Jones & Thonnessen, 2006[Jones, P. G. & Thonnessen, H. (2006). Private communication (refcode CEPXIF). CCDC, Cambridge, England.]; Bujak & Zaleski, 2007[Bujak, M. & Zaleski, J. (2007). Acta Cryst. E63, m102-m104.]; Due-Hansen et al., 2011[Due-Hansen, J., Ståhl, K., Boghosian, S., Riisager, A. & Fehrmann, R. (2011). Polyhedron, 30, 785-789.]; Ndiaye et al., 2016a[Ndiaye, M., Samb, A., Diop, L. & Maris, T. (2016a). Acta Cryst. E72, 1-3.],b[Ndiaye, M., Samb, A., Diop, L. & Maris, T. (2016b). Acta Cryst. E72, 1047-1049.]; Şendıl et al., 2016[Şendıl, K., Özgün, H. B. & Üstün, E. (2016). J. Chem. pp. 1-7.]). Tetra­methyl­guanidinium salts find applications in the capture of SO2 or the removal of sulfur-carrying organic materials (Berg et al., 2013[Berg, R. W., Harris, P., Riisager, A. & Fehrmann, R. (2013). J. Phys. Chem. A, 117, 11364-11373.]; Meng et al., 2017[Meng, X., Wang, J., Jiang, H., Zhang, X., Liu, S. & Hu, Y. (2017). J. Chem. Technol. Biotechnol. 92, 767-774.]). An example of the properties of ionic liquids with the [TeCl6]2− anion was published recently (Shen et al., 2018[Shen, N.-N., Cai, M.-L., Song, Y., Wang, Z.-P., Huang, F.-Q., Li, J.-R. & Huang, X.-Y. (2018). Inorg. Chem. 57, 5282-5291.]).

Synthesis and crystallization

N,N,N′,N′-tetra­methyl­guanidinium chloride (0.5156 g, 0.0034 mol) and tellurium tetra­chloride (0.458 g, 0.0017 mol) were dissolved in ethanol (10 ml). The yellow liquid was stirred at ambient temperature for one day. The reaction mixture was filtered and the solvent was removed with a rotary evaporator. A yellow solid was obtained in nearly stoichiometrical yields. The melting point was determined using DSC to be 134°C. A stoichiometric amount of the compound was dissolved in ethanol (approx. 10 mg per ml of ethanol) and crystals were grown through slow diffusion of diethyl ether into the solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection 022 was omitted from the refinement because its intensity was affected by the beam stop.

Table 2
Experimental details

Crystal data
Chemical formula 2C5H14N3+·Cl6Te2−
Mr 572.68
Crystal system, space group Orthorhombic, Fddd
Temperature (K) 123
a, b, c (Å) 7.3899 (5), 22.447 (2), 28.512 (2)
V3) 4729.6 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.92
Crystal size (mm) 0.45 × 0.35 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 47585, 2158, 2057
Rint 0.027
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.26
No. of reflections 2158
No. of parameters 62
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2014[Brandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(tetramethylguanidinium) hexachloridotellurate(IV) top
Crystal data top
2C5H14N3+·Cl6Te2Dx = 1.609 Mg m3
Mr = 572.68Melting point: 407 K
Orthorhombic, FdddMo Kα radiation, λ = 0.71073 Å
a = 7.3899 (5) ÅCell parameters from 9942 reflections
b = 22.447 (2) Åθ = 2.3–32.5°
c = 28.512 (2) ŵ = 1.92 mm1
V = 4729.6 (6) Å3T = 123 K
Z = 8Stick, yellow
F(000) = 22720.45 × 0.35 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2057 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.027
φ and ω scansθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1111
k = 3433
47585 measured reflectionsl = 4242
2158 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.013H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0103P)2 + 6.2116P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max = 0.001
2158 reflectionsΔρmax = 0.39 e Å3
62 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000156 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. The methyl H atoms were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.5 Ueq(C) using a riding model. The positions of the hydrogen atoms of the NH2 group of the guanidinium cation were taken from the electron density map and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.87500.37500.37500.01545 (4)
Cl10.87500.37500.46396 (2)0.02182 (6)
Cl20.63226 (3)0.45506 (2)0.37388 (2)0.02254 (5)
N10.37500.37500.45159 (4)0.0222 (2)
H10.447 (2)0.3533 (6)0.4372 (5)0.030 (4)*
C10.37500.37500.49798 (5)0.0184 (2)
N20.3004 (1)0.42051 (4)0.52161 (3)0.0241 (2)
C20.1980 (2)0.41017 (6)0.56481 (4)0.0381 (3)
H2A0.07210.42260.56020.057*
H2B0.25170.43330.59040.057*
H2C0.20170.36770.57270.057*
C30.2619 (2)0.47675 (5)0.49795 (4)0.0307 (2)
H3A0.35430.48420.47400.046*
H3B0.26290.50920.52090.046*
H3C0.14260.47460.48310.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01545 (5)0.01243 (5)0.01847 (6)00.000.00
Cl10.0257 (1)0.0190 (1)0.0207 (1)0.0020 (1)0.000.00
Cl20.0214 (1)0.01873 (9)0.0274 (1)0.00211 (7)0.00547 (8)0.00431 (7)
N10.0221 (5)0.0269 (5)0.0178 (5)0.0099 (4)0.000.00
C10.0161 (5)0.0192 (5)0.0200 (5)0.0008 (4)0.000.00
N20.0272 (4)0.0224 (4)0.0226 (4)0.0008 (3)0.0022 (3)0.0052 (3)
C20.0439 (7)0.0409 (6)0.0296 (5)0.0080 (5)0.0141 (5)0.0145 (5)
C30.0316 (5)0.0213 (4)0.0391 (6)0.0060 (4)0.0049 (4)0.0062 (4)
Geometric parameters (Å, º) top
Te1—Cl12.5363 (4)C1—N21.342 (1)
Te1—Cl1i2.5364 (4)N2—C31.459 (1)
Te1—Cl2ii2.5394 (3)N2—C21.464 (2)
Te1—Cl22.5394 (3)C2—H2A0.9800
Te1—Cl2i2.5394 (3)C2—H2B0.9800
Te1—Cl2iii2.5394 (3)C2—H2C0.9800
N1—C11.323 (2)C3—H3A0.9800
N1—H10.83 (2)C3—H3B0.9800
C1—N2iv1.342 (1)C3—H3C0.9800
Cl1—Te1—Cl1i180.0N1—C1—N2120.14 (6)
Cl1—Te1—Cl2ii89.282 (5)N2iv—C1—N2119.7 (1)
Cl1i—Te1—Cl2ii90.718 (5)C1—N2—C3120.43 (9)
Cl1—Te1—Cl290.718 (5)C1—N2—C2120.93 (9)
Cl1i—Te1—Cl289.282 (5)C3—N2—C2115.15 (9)
Cl2ii—Te1—Cl290.12 (1)N2—C2—H2A109.5
Cl1—Te1—Cl2i89.283 (5)N2—C2—H2B109.5
Cl1i—Te1—Cl2i90.717 (5)H2A—C2—H2B109.5
Cl2ii—Te1—Cl2i178.57 (1)N2—C2—H2C109.5
Cl2—Te1—Cl2i89.90 (1)H2A—C2—H2C109.5
Cl1—Te1—Cl2iii90.717 (5)H2B—C2—H2C109.5
Cl1i—Te1—Cl2iii89.283 (5)N2—C3—H3A109.5
Cl2ii—Te1—Cl2iii89.90 (1)N2—C3—H3B109.5
Cl2—Te1—Cl2iii178.57 (1)H3A—C3—H3B109.5
Cl2i—Te1—Cl2iii90.12 (1)N2—C3—H3C109.5
C1—N1—H1120 (1)H3A—C3—H3C109.5
N1—C1—N2iv120.14 (6)H3B—C3—H3C109.5
Symmetry codes: (i) x+7/4, y, z+3/4; (ii) x, y+3/4, z+3/4; (iii) x+7/4, y+3/4, z; (iv) x+3/4, y+3/4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.83 (2)2.57 (2)3.3875 (8)167 (1)
C2—H2B···Cl2v0.982.843.712 (1)149
C3—H3B···Cl1v0.982.823.644 (1)142
Symmetry codes: (ii) x, y+3/4, z+3/4; (v) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

We gratefully acknowledge the financial support of the DFG-SPP 1708, Material Synthesis Near Room Temperature.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBerg, R. W., Harris, P., Riisager, A. & Fehrmann, R. (2013). J. Phys. Chem. A, 117, 11364–11373.  CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBujak, M., Osadczuk, P. & Zaleski, J. (1999). Acta Cryst. C55, 1443–1447.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBujak, M. & Zaleski, J. (2007). Acta Cryst. E63, m102–m104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDue-Hansen, J., Ståhl, K., Boghosian, S., Riisager, A. & Fehrmann, R. (2011). Polyhedron, 30, 785–789.  Google Scholar
First citationJones, P. G. & Thonnessen, H. (2006). Private communication (refcode CEPXIF). CCDC, Cambridge, England.  Google Scholar
First citationLonghi, R. & Drago, R. S. (1965). Inorg. Chem. 4, 11–14.  CrossRef Google Scholar
First citationMeng, X., Wang, J., Jiang, H., Zhang, X., Liu, S. & Hu, Y. (2017). J. Chem. Technol. Biotechnol. 92, 767–774.  CrossRef Google Scholar
First citationNdiaye, M., Samb, A., Diop, L. & Maris, T. (2016a). Acta Cryst. E72, 1–3.  CrossRef IUCr Journals Google Scholar
First citationNdiaye, M., Samb, A., Diop, L. & Maris, T. (2016b). Acta Cryst. E72, 1047–1049.  CrossRef IUCr Journals Google Scholar
First citationŞendıl, K., Özgün, H. B. & Üstün, E. (2016). J. Chem. pp. 1–7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, N.-N., Cai, M.-L., Song, Y., Wang, Z.-P., Huang, F.-Q., Li, J.-R. & Huang, X.-Y. (2018). Inorg. Chem. 57, 5282–5291.  CrossRef PubMed Google Scholar
First citationSnaith, R., Wade, K. & Wyatt, B. K. (1970). J. Chem. Soc. A, pp. 380.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds