research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2

CROSSMARK_Color_square_no_text.svg

aDepartment of Natural Sciences, University of Puerto Rico, Carolina Campus, 2100 Avenida Sur, Carolina, PR 00987, Puerto Rico, and bDepartment of Chemistry, University of Puerto Rico, Rio Piedras Campus, Ponce de Leon Avenue, San Juan, PR 00931, Puerto Rico
*Correspondence e-mail: karilys.gonzalez@upr.edu

Edited by C. Massera, Università di Parma, Italy (Received 24 May 2019; accepted 30 January 2020; online 6 February 2020)

The title compound, di­aqua­[tris­(2-amino­eth­yl)amine]­nickel(II) hexa­aqua­nickel(II) bis­(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octa­hedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris­(2-amino­eth­yl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water mol­ecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water mol­ecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure.

1. Chemical context

Tris(2-amino­eth­yl)amine (tren) has been used extensively as an ancillary tripodal ligand for capping transition metals to form mononuclear and polynuclear complexes. The tren ligand has the capacity to chelate metal ions through its central tertiary amine and through its three terminal amine groups in a spider-like conformation, leaving one or two positions available for additional ligand coordination (Marzotto et al., 1993[Marzotto, A., Clemente, D. A., Ciccarese, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 119-131.]; Albertin et al., 1975[Albertin, G., Bordignon, E. & Orio, A. A. (1975). Inorg. Chem. 14, 1411-1413.]; Blackman, 2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]; Brines et al., 2007[Brines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267-9277.]). Metal complexes with a variety of ligands in which also tren is coordinating to the metal center have been proposed for applications in catalysis (Ruffin et al., 2017[Ruffin, H., Boussambe, G. N. M., Roisnel, T., Dorcet, V., Boitrel, B. & Le Gac, S. (2017). J. Am. Chem. Soc. 139, 13847-13857.]), sensors, and as precursors of bioinorganic reactions (Sakai et al., 1996[Sakai, K., Yamada, Y. & Tsubomura, T. (1996). Inorg. Chem. 35, 3163-3172.]). For instance, Ni(tren) complexes have been proposed for applications in biological systems (Salam & Aoki, 2001[Salam, A. Md. & Aoki, K. (2001). Inorg. Chim. Acta, 314, 71-82.]) or as a model to study enanti­oselective synthesis or asymmetric catalysis (Rao et al., 2009[Rao, S. A., Pal, A., Ghosh, R. & Das, S. K. (2009). Inorg. Chem. 48, 10476.]), and as coordination polymers in magnetism, electrical conductivity and ion exchange (Park et al., 2001[Park, H. W., Sung, S. M., Min, K. S., Bang, H. & Suh, M. P. (2001). Eur. J. Inorg. Chem. pp. 2857-2863.]; Tanase et al., 1996[Tanase, T., Doi, M., Nouchi, R., Kato, M., Sato, Y., Ishida, K., Kobayashi, K., Sakurai, T., Yamamoto, Y. & Yano, S. (1996). Inorg. Chem. 35, 4848-4857.]). [Ni(tren)(H2O)2] was reported previously (Chen et al., 2001[Chen, C., Cai, J., Feng, X. & Chen, X. (2001). J. Chem. Crystallogr. 31, 271-280.]; Pedersen et al., 2014[Pedersen, K. S., Bendix, J. & Clérac, R. (2014). Chem. Commun. 50, 4396-4415.]); however, to our knowledge, this is the first report of it co-crystallizing with the hexa­aquo nickel complex [Ni(H2O)6](SO4).

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the molecular structure of the title compound, which crystallizes in the space group Pnma. Its asymmetric unit comprises two half NiII complexes and a sulfate counter-anion. Each Ni complex shows a different ligand environment: (i) the mononuclear cationic complex [Ni(tren)(H2O)2]2+ includes Ni1, the tren ligand and two water mol­ecules; (ii) the mononuclear complex [Ni(H2O)6]2+ consists of Ni2 surrounded by six coordinated water mol­ecules.

[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 20% probability level and labeling scheme for the symmetry-independent atoms. The CH2 hydrogen atoms have been omitted for clarity. The symmetry operations generating the equivalent atoms are 1 − x, 1 − y, 2 − z and x, [{1\over 2}] − y, z for [Ni(H2O)6]2+ and [Ni(tren)(H2O)2]2+, respectively.

Ni1 exhibits an octa­hedral geometry of the type N4O2, with the central N1 atom of the tren ligand occupying one of the axial positions and atoms N2, N3 and N2i occupying three of the equatorial positions [symmetry code: (i) x, −y + [{1\over 2}], z]. The remaining two positions, one axial (O2) and one equatorial (O1), are occupied by two oxygen atoms from the two water mol­ecules. The bond lengths are similar for the Ni1—N bonds that are trans to oxygen atoms; for instance, Ni1—N1ax is 2.064 (2) Å and Ni1—N3eq is 2.069 (2) Å; a longer bond distance is observed between Ni1—N2eq, 2.122 (2), which is trans by symmetry to another nitro­gen atom, N2i. The nickel–oxygen bond length is shorter for Ni1—O2ax at 2.094 (2) Å, in comparison to Ni1—O1eq, which is 2.140 (2) Å. The N3 and C3 atoms of the tren ligand lie on a mirror plane perpendicular to [010]. This results in a symmetry-induced disorder of the N3/C4/C3 fragment. The octa­hedral geometry around the Ni1 ion is reflected by the angles N1—Ni1—O2 = 178.42 (8)°, N2—Ni1—N2i = 164.74 (9)°, and N3—Ni1—O1 = 177.27 (8)°.

The Ni2 ion of the mononuclear complex [Ni(H2O)6]2+ also shows an octa­hedral geometry. In the asymmetric unit, the atom Ni2 sits on an inversion center on a screw axis along the b-axis direction. The Ni2—Owater bond lengths with O3, O4 and O5 range between 2.051 (1) and 2.074 (1) Å, respectively, with angles of 180° due to symmetry.

3. Supra­molecular features

The crystal structure of the title compound is consolidated through inter­molecular hydrogen bonding between the water mol­ecules from the [Ni(tren)(H2O)2] complex, the sulfate oxygen atoms and the water mol­ecules from the [Ni(H2O)6] complex (Fig. 2[link] and Table 1[link]). In particular, the two water mol­ecules of [Ni(tren)(H2O)2] form O1—H1⋯O8i and O2—H2⋯O6 hydrogen bonds of 2.05 (2) and 1.96 (2) Å respectively, involving two neighboring SO42− anions [symmetry code: (i) x + [{1\over 2}], y, −z + [{3\over 2}]). The [Ni(H2O)6] complex is hydrogen bonded to adjacent SO42− anions through O3—H3E⋯O9ii, O3—H3F⋯O7i, O4—H4C⋯O6, O4—H4D⋯O8i, O5—H5B⋯O7, O5—H5A⋯O7iii contacts [symmetry codes: (ii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]]. These hydrogen-bond distances range from 1.905 (15) to 2.047 (18) Å. Additional weak hydrogen bonds are formed between the hydrogen atoms from the primary amine groups of the tren ligand and the sulfate oxygen atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8i 0.78 (2) 2.05 (2) 2.8212 (16) 172 (2)
O2—H2⋯O6 0.81 (2) 1.96 (2) 2.7342 (15) 162 (3)
O3—H3E⋯O9ii 0.81 (2) 1.94 (2) 2.731 (2) 167 (2)
O3—H3F⋯O7i 0.85 (2) 2.05 (2) 2.8403 (18) 155 (2)
O4—H4C⋯O6 0.83 (2) 1.91 (2) 2.7249 (18) 171 (2)
O4—H4D⋯O8i 0.83 (2) 1.95 (2) 2.7810 (18) 179 (2)
O5—H5A⋯O7iii 0.88 2.02 2.8125 (19) 150
O5—H5B⋯O7 0.88 1.95 2.7826 (17) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen-bonding network (cyan dotted lines) in the title compound. Symmetry codes: (i) x + [{1\over 2}], y, −z + [{3\over 2}]; (ii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}].

4. Database survey

A search for tris­(2-amino­eth­yl)aminenickel complexes in the Cambridge Structural Database (CSD version 5.38, updated February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 222 hits. Among these results, 124 hits contained the ligand tris­(2-amino­eth­yl)amine capping the nickel ion, along with other types of ligands on the remaining coordination sites. Only two hits contain the di­aqua[tris­(2-amino­eth­yl)amine]nickel(II) complex, [Ni(tren)(H2O)2] (LUMVIY; Chen et al., 2001[Chen, C., Cai, J., Feng, X. & Chen, X. (2001). J. Chem. Crystallogr. 31, 271-280.]; TIYQAT; Tanase et al., 1996[Tanase, T., Doi, M., Nouchi, R., Kato, M., Sato, Y., Ishida, K., Kobayashi, K., Sakurai, T., Yamamoto, Y. & Yano, S. (1996). Inorg. Chem. 35, 4848-4857.]). More precisely, the asymmetric unit in LUMVIY comprises the [Ni(tren)(H2O)2]2+ cation with two independent halves of a 1,5-naphthalene­disulfonate (1,5nds) ligand as counter-anion. A common feature of this structure with the title compound is the hydrogen bond network formed between the water mol­ecules on the Ni(tren) motif with the counter anions. However, in the title compound, also the hydrogen atoms on the primary amine groups form hydrogen bonds with the sulfate anions, albeit quite weak. In TIYQAT, sulfate anions act as counter-ions for the [Ni(tren)(H2O)2]2+ complex, and uncoordinated water mol­ecules are included in the crystal lattice. The angle between the Ni center and the two oxygen atoms from the coordinated water mol­ecules are 86.52 (5)° (O7—Ni1—O8) and 86.9 (4)° (O5—Ni1—O6) for LUMVIY and TIYQAT, respectively. The corresponding angle O2—Ni—O1 in the tittle compound has a value of 88.70 (8)°, which is in good agreement with the reported values. The title compound is the first example of a crystal structure of [Ni(tren)(H2O)2]2+ co-crystallizing with the [Ni(H2O)6]2+ complex.

5. Synthesis and crystallization

The synthesis of the title compound is summarized in the reaction scheme shown in Fig. 3[link]. NiSO4·6H2O and tris­(2-amino­eth­yl)amine (tren) were used without further purification. A methano­lic solution of NiSO4·6H2O (0.0265 g, 0.1 mmol) was added slowly to a tren (0.0146 g, 0.1 mmol) solution (4 mL MeOH) at room temperature. The resulting solution was stirred for two h and it changed color from light green to purple. The solution was then filtered through celite and evaporated under reduced pressure. Single crystals of the title compound were obtained by vapor diffusion of methanol into 2-propanol. In the crystallization process, two types of crystal were formed: the starting reagent hexa­hydrate nickel (II) complex (turquoise crystals) and the nickel(II) tren complex (purple crystals, Fig. 4[link]). The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the title compound. IR data: 3265 (m), 3171 (m), 2937 (w), 2891 (w), 1607 (m), 1472 (w) 1338 (w), 1054 (s), 984 (m), 885 (m), 750 (w), 685 (w).

[Figure 3]
Figure 3
Reaction scheme for the synthesis of [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2.
[Figure 4]
Figure 4
Crystallization of [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2 and [Ni(H2O)6]SO4 in the same reaction vial.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in geometrically calculated positions for the alkyl and amine groups using a riding model: C—H = 0.97 Å and N—H = 0.89 Å with Uiso(H) =1.2Ueq(C, N). The hydrogen atoms of the water mol­ecules were located from the difference-Fourier map; they were refined freely in the case of O1 and O2, with a DFIX of 0.85 (2) Å and Uiso(H) =1.5Ueq(O) in the case of O3 and O4, and riding with O—H = 0.88 Å and Uiso(H) =1.5Ueq(O) in the case of O5.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2
Mr 599.91
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 293
a, b, c (Å) 11.8937 (1), 21.3933 (2), 8.4468 (1)
V3) 2149.25 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.76
Crystal size (mm) 0.28 × 0.21 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.353, 0.661
No. of measured, independent and observed [I > 2σ(I)] reflections 17858, 2044, 1996
Rint 0.023
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.12
No. of reflections 2044
No. of parameters 173
No. of restraints 8
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The N3 and C3 atoms of the tren ligand lie on a mirror plane perpendicular to [010]. This results in a symmetry-induced disorder of the N3/C4/C3 fragment.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 20156); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate) top
Crystal data top
[Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2Dx = 1.854 Mg m3
Mr = 599.91Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 14387 reflections
a = 11.8937 (1) Åθ = 3.7–68.8°
b = 21.3933 (2) ŵ = 4.76 mm1
c = 8.4468 (1) ÅT = 293 K
V = 2149.25 (4) Å3Block, clear violet
Z = 40.28 × 0.21 × 0.09 mm
F(000) = 1256
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, HyPix3000
diffractometer
1996 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 68.9°, θmin = 4.1°
Tmin = 0.353, Tmax = 0.661h = 1414
17858 measured reflectionsk = 2525
2044 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.2986P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2044 reflectionsΔρmax = 0.37 e Å3
173 parametersΔρmin = 0.35 e Å3
8 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00044 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.31517 (3)0.2500000.58049 (4)0.01987 (12)
O10.49430 (15)0.2500000.5573 (2)0.0285 (4)
H10.523 (2)0.2795 (11)0.592 (3)0.042 (7)*
O20.33527 (17)0.2500000.8268 (2)0.0315 (4)
H20.304 (2)0.2795 (11)0.867 (3)0.056 (8)*
N10.29062 (16)0.2500000.3386 (2)0.0237 (4)
N20.32729 (13)0.34830 (7)0.55183 (18)0.0291 (3)
H2A0.2750560.3673130.6099110.035*
H2B0.3945370.3615630.5835830.035*
N30.14137 (18)0.2500000.5913 (3)0.0330 (5)
H3A0.1164290.2117400.6131500.040*0.5
H3B0.1181270.2757220.6673510.040*0.5
C10.34686 (17)0.30780 (9)0.2826 (2)0.0336 (4)
H1A0.3275060.3152690.1726890.040*
H1B0.4277610.3027520.2895090.040*
C20.31074 (17)0.36314 (9)0.3821 (2)0.0362 (4)
H2C0.3548560.3996080.3538540.043*
H2D0.2321770.3724760.3623530.043*
C30.1684 (2)0.2500000.3008 (3)0.0344 (6)
H3C0.1459520.2081720.2697410.041*0.5
H3D0.1549940.2775940.2116890.041*0.5
C40.0975 (3)0.27067 (19)0.4375 (5)0.0384 (10)0.5
H4A0.0928040.3159340.4370650.046*0.5
H4B0.0220180.2543690.4240140.046*0.5
Ni20.5000000.5000001.0000000.02058 (12)
O30.46413 (12)0.51163 (6)0.76229 (15)0.0337 (3)
H3E0.4398 (19)0.5433 (9)0.723 (2)0.051*
H3F0.5103 (18)0.4984 (11)0.693 (2)0.051*
O40.47512 (11)0.40611 (6)0.96546 (16)0.0291 (3)
H4C0.4079 (14)0.3972 (9)0.956 (3)0.044*
H4D0.5051 (17)0.3935 (9)0.883 (2)0.044*
O50.33269 (10)0.51618 (6)1.05567 (15)0.0309 (3)
H5A0.3205450.5104481.1568840.046*
H5B0.2886250.4906801.0034020.046*
S10.14894 (3)0.39419 (2)0.92733 (4)0.02016 (12)
O60.26060 (10)0.36508 (6)0.92041 (16)0.0339 (3)
O70.15935 (10)0.46130 (5)0.88353 (15)0.0297 (3)
O80.07525 (11)0.36247 (6)0.81077 (16)0.0341 (3)
O90.10124 (13)0.38801 (6)1.08500 (15)0.0408 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0238 (2)0.0199 (2)0.0160 (2)0.0000.00128 (15)0.000
O10.0262 (9)0.0235 (9)0.0357 (10)0.0000.0058 (8)0.000
O20.0465 (11)0.0277 (10)0.0203 (9)0.0000.0002 (8)0.000
N10.0257 (10)0.0280 (10)0.0172 (9)0.0000.0027 (8)0.000
N20.0326 (8)0.0234 (7)0.0313 (8)0.0027 (6)0.0018 (6)0.0024 (6)
N30.0275 (11)0.0381 (12)0.0335 (12)0.0000.0076 (9)0.000
C10.0396 (10)0.0397 (11)0.0214 (9)0.0057 (8)0.0016 (8)0.0098 (8)
C20.0439 (10)0.0254 (9)0.0392 (11)0.0015 (8)0.0059 (9)0.0115 (8)
C30.0316 (13)0.0423 (15)0.0292 (13)0.0000.0114 (11)0.000
C40.0252 (16)0.046 (2)0.044 (2)0.0077 (14)0.0074 (15)0.0045 (16)
Ni20.0226 (2)0.0206 (2)0.0185 (2)0.00029 (15)0.00085 (15)0.00050 (15)
O30.0442 (8)0.0364 (7)0.0206 (6)0.0102 (6)0.0007 (6)0.0031 (5)
O40.0297 (6)0.0264 (6)0.0312 (7)0.0037 (5)0.0030 (6)0.0036 (5)
O50.0258 (6)0.0392 (7)0.0279 (6)0.0029 (5)0.0000 (5)0.0073 (6)
S10.0224 (2)0.0187 (2)0.0193 (2)0.00018 (14)0.00065 (14)0.00073 (14)
O60.0255 (6)0.0294 (7)0.0468 (8)0.0032 (5)0.0021 (6)0.0059 (6)
O70.0369 (7)0.0207 (6)0.0316 (7)0.0039 (5)0.0083 (5)0.0049 (5)
O80.0378 (7)0.0280 (6)0.0364 (7)0.0079 (5)0.0130 (6)0.0017 (5)
O90.0594 (9)0.0344 (7)0.0284 (7)0.0040 (7)0.0168 (6)0.0024 (6)
Geometric parameters (Å, º) top
Ni1—O12.1395 (18)C2—H2D0.9700
Ni1—O22.0940 (19)C3—H3C0.9700
Ni1—N12.0640 (19)C3—H3Ci0.9700
Ni1—N22.1217 (15)C3—H3D0.9700
Ni1—N2i2.1217 (15)C3—H3Di0.9700
Ni1—N32.069 (2)C3—C41.496 (4)
O1—H10.78 (2)C4—H4A0.9700
O1—H1i0.78 (2)C4—H4B0.9700
O2—H20.81 (2)Ni2—O3ii2.0678 (13)
O2—H2i0.81 (2)Ni2—O32.0678 (13)
N1—C11.483 (2)Ni2—O4ii2.0511 (13)
N1—C1i1.483 (2)Ni2—O42.0511 (13)
N1—C31.488 (3)Ni2—O52.0739 (12)
N2—H2A0.8900Ni2—O5ii2.0739 (12)
N2—H2B0.8900O3—H3E0.808 (15)
N2—C21.481 (2)O3—H3F0.851 (15)
N3—H3Ai0.8900O4—H4C0.826 (15)
N3—H3A0.8900O4—H4D0.830 (15)
N3—H3B0.8900O5—H5A0.8756
N3—H3Bi0.8900O5—H5B0.8759
N3—C41.468 (4)S1—O61.4679 (13)
C1—H1A0.9700S1—O71.4878 (12)
C1—H1B0.9700S1—O81.4826 (12)
C1—C21.514 (3)S1—O91.4537 (13)
C2—H2C0.9700
O2—Ni1—O188.70 (8)C1—C2—H2D109.8
O2—Ni1—N296.06 (4)H2C—C2—H2D108.2
O2—Ni1—N2i96.06 (4)N1—C3—H3Ci109.06 (3)
N1—Ni1—O192.87 (8)N1—C3—H3C109.1
N1—Ni1—O2178.42 (8)N1—C3—H3Di109.07 (10)
N1—Ni1—N2i84.07 (4)N1—C3—H3D109.1
N1—Ni1—N284.07 (4)N1—C3—C4112.6 (2)
N1—Ni1—N384.39 (9)H3C—C3—H3Ci134.6
N2i—Ni1—O185.52 (4)H3Ci—C3—H3Di107.8
N2—Ni1—O185.52 (4)H3C—C3—H3D107.8
N2i—Ni1—N2164.74 (9)H3C—C3—H3Di35.2
N3—Ni1—O1177.27 (8)H3D—C3—H3Ci35.2
N3—Ni1—O294.03 (9)H3D—C3—H3Di75.0
N3—Ni1—N2i94.18 (4)C4—C3—H3C109.1
N3—Ni1—N294.18 (4)C4—C3—H3Ci77.37 (16)
Ni1—O1—H1i113.6 (18)C4—C3—H3Di133.34 (17)
Ni1—O1—H1113.6 (18)C4—C3—H3D109.1
H1—O1—H1i109 (3)N3—C4—H3Ai34.21 (10)
Ni1—O2—H2111.3 (19)N3—C4—C3113.2 (3)
Ni1—O2—H2i111.3 (19)N3—C4—H4A108.9
H2—O2—H2i103 (4)N3—C4—H4B108.9
C1i—N1—Ni1104.58 (11)C3—C4—H3Ai136.9 (3)
C1—N1—Ni1104.58 (11)C3—C4—H4A108.9
C1—N1—C1i113.0 (2)C3—C4—H4B108.9
C1—N1—C3111.85 (12)H4A—C4—H3Ai76.7
C1i—N1—C3111.85 (12)H4A—C4—H4B107.8
C3—N1—Ni1110.50 (15)H4B—C4—H3Ai109.6
Ni1—N2—H2A110.0O3ii—Ni2—O3180.0
Ni1—N2—H2B110.0O3ii—Ni2—O589.88 (5)
H2A—N2—H2B108.4O3—Ni2—O590.12 (5)
C2—N2—Ni1108.29 (11)O3ii—Ni2—O5ii90.12 (5)
C2—N2—H2A110.0O3—Ni2—O5ii89.88 (5)
C2—N2—H2B110.0O4—Ni2—O3ii92.87 (5)
Ni1—N3—H3A110.0O4ii—Ni2—O392.87 (5)
Ni1—N3—H3Ai110.008 (12)O4—Ni2—O387.13 (5)
Ni1—N3—H3Bi110.01 (5)O4ii—Ni2—O3ii87.13 (5)
Ni1—N3—H3B110.0O4ii—Ni2—O4180.0
H3A—N3—H3Ai133.8O4ii—Ni2—O5ii93.28 (5)
H3A—N3—H3B108.4O4ii—Ni2—O586.72 (5)
H3A—N3—H3Bi34.7O4—Ni2—O5ii86.72 (5)
H3Ai—N3—H3Bi108.4O4—Ni2—O593.28 (5)
H3B—N3—H3Ai34.7O5—Ni2—O5ii180.00 (7)
H3B—N3—H3Bi76.4Ni2—O3—H3E124.9 (15)
C4—N3—Ni1108.42 (19)Ni2—O3—H3F119.7 (15)
C4—N3—H3A110.0H3E—O3—H3F103 (2)
C4—N3—H3Ai77.77 (16)Ni2—O4—H4C112.3 (14)
C4—N3—H3B110.0Ni2—O4—H4D112.1 (14)
C4—N3—H3Bi135.62 (17)H4C—O4—H4D105 (2)
N1—C1—H1A109.6Ni2—O5—H5A110.9
N1—C1—H1B109.6Ni2—O5—H5B110.8
N1—C1—C2110.31 (15)H5A—O5—H5B107.8
H1A—C1—H1B108.1O6—S1—O7108.92 (8)
C2—C1—H1A109.6O6—S1—O8108.32 (8)
C2—C1—H1B109.6O8—S1—O7109.01 (7)
N2—C2—C1109.38 (14)O9—S1—O6110.55 (9)
N2—C2—H2C109.8O9—S1—O7110.37 (8)
N2—C2—H2D109.8O9—S1—O8109.63 (8)
C1—C2—H2C109.8
Ni1—N1—C1—C248.90 (17)N1—C3—C4—N335.8 (3)
Ni1—N1—C3—C418.68 (18)C1i—N1—C1—C2162.01 (12)
Ni1—N2—C2—C127.22 (18)C1—N1—C3—C497.4 (2)
Ni1—N3—C4—C334.2 (3)C1i—N1—C3—C4134.7 (2)
N1—C1—C2—N252.2 (2)C3—N1—C1—C270.7 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O8iii0.78 (2)2.05 (2)2.8212 (16)172 (2)
O2—H2···O60.81 (2)1.96 (2)2.7342 (15)162 (3)
O3—H3E···O9iv0.81 (2)1.94 (2)2.731 (2)167 (2)
O3—H3F···O7iii0.85 (2)2.05 (2)2.8403 (18)155 (2)
O4—H4C···O60.83 (2)1.91 (2)2.7249 (18)171 (2)
O4—H4D···O8iii0.83 (2)1.95 (2)2.7810 (18)179 (2)
O5—H5A···O7v0.882.022.8125 (19)150
O5—H5B···O70.881.952.7826 (17)160
Symmetry codes: (iii) x+1/2, y, z+3/2; (iv) x+1/2, y+1, z1/2; (v) x+1/2, y+1, z+1/2.
 

Acknowledgements

We are grateful to the Department of Natural Science at UPR Carolina Campus (Department of Education, grant No. PO31S130068; however, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government) and the University of Puerto Rico's Mol­ecular Sciences Research Center for the use of the Rigaku XTLab SuperNova diffractometer. Special thanks to Dr Indranil Chakraborty for consultation on the final refinement of the structure.

Funding information

This material is based upon work supported by the National Science Foundation under grant No. 1626103. This study was supported by an Institutional Development Award (IDeA) INBRE grant No. P20GM103475 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH), and the Bioinformatics Research Core of the INBRE. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIGMS or NIH.

References

First citationAlbertin, G., Bordignon, E. & Orio, A. A. (1975). Inorg. Chem. 14, 1411–1413.  CrossRef CAS Web of Science Google Scholar
First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267–9277.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, C., Cai, J., Feng, X. & Chen, X. (2001). J. Chem. Crystallogr. 31, 271–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMarzotto, A., Clemente, D. A., Ciccarese, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 119–131.  CSD CrossRef CAS Web of Science Google Scholar
First citationPark, H. W., Sung, S. M., Min, K. S., Bang, H. & Suh, M. P. (2001). Eur. J. Inorg. Chem. pp. 2857–2863.  CrossRef Google Scholar
First citationPedersen, K. S., Bendix, J. & Clérac, R. (2014). Chem. Commun. 50, 4396–4415.  Web of Science CrossRef CAS Google Scholar
First citationRao, S. A., Pal, A., Ghosh, R. & Das, S. K. (2009). Inorg. Chem. 48, 10476.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRuffin, H., Boussambe, G. N. M., Roisnel, T., Dorcet, V., Boitrel, B. & Le Gac, S. (2017). J. Am. Chem. Soc. 139, 13847–13857.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSakai, K., Yamada, Y. & Tsubomura, T. (1996). Inorg. Chem. 35, 3163–3172.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSalam, A. Md. & Aoki, K. (2001). Inorg. Chim. Acta, 314, 71–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanase, T., Doi, M., Nouchi, R., Kato, M., Sato, Y., Ishida, K., Kobayashi, K., Sakurai, T., Yamamoto, Y. & Yano, S. (1996). Inorg. Chem. 35, 4848–4857.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds