Download citation
Download citation
link to html
One of the first events taking place when a crystal of a metalloprotein is exposed to X-ray radiation is photoreduction of the metal centres. The oxidation state of a metal cannot always be determined from routine X-ray diffraction experiments alone, but it may have a crucial impact on the metal's environment and on the analysis of the structural data when considering the functional mechanism of a metalloenzyme. Here, UV–Vis microspectrophotometry is used to test the efficacy of selected scavengers in reducing the undesirable photoreduction of the iron and copper centres in myoglobin and azurin, respectively, and X-ray crystallography to assess their capacity of mitigating global and specific radiation damage effects. UV–Vis absorption spectra of native crystals, as well as those soaked in 18 different radioprotectants, show dramatic metal reduction occurring in the first 60 s of irradiation with an X-ray beam from a third-generation synchrotron source. Among the tested radioprotectants only potassium hexacyanoferrate(III) seems to be capable of partially mitigating the rate of metal photoreduction at the concentrations used, but not to a sufficient extent that would allow a complete data set to be recorded from a fully oxidized crystal. On the other hand, analysis of the X-ray crystallographic data confirms ascorbate as an efficient protecting agent against radiation damage, other than metal centre reduction, and suggests further testing of HEPES and 2,3-dichloro-1,4-naphtoquinone as potential scavengers.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds