Download citation
Download citation
link to html
The title compound, C26H44N2S2, was prepared by the oxidation of the corresponding thio­carbamate with iodine. The disulfide S—S distance is close to the distances observed in free (uncoordinated) disulfides. A crystallographic twofold axis passes through the mid-point of the S---S bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806008592/ww6458sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806008592/ww6458Isup2.hkl
Contains datablock I

CCDC reference: 285306

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.047
  • wR factor = 0.127
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Bis(N,N-dicyclohexylthiocarbamoyl) disulfide top
Crystal data top
C26H44N2O2S2F(000) = 1048
Mr = 480.75Dx = 1.201 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1510 reflections
a = 12.868 (3) Åθ = 2.5–24.3°
b = 25.435 (6) ŵ = 0.23 mm1
c = 9.080 (2) ÅT = 298 K
β = 116.579 (3)°Block, yellow
V = 2657.8 (11) Å30.53 × 0.41 × 0.32 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2341 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.890, Tmax = 0.932k = 2430
6913 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.1207P]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45764 (5)0.05959 (3)0.32018 (9)0.0439 (2)
N10.26971 (17)0.11701 (8)0.2759 (3)0.0387 (5)
O10.34661 (16)0.13382 (8)0.0954 (2)0.0517 (5)
C10.3461 (2)0.11028 (10)0.2130 (3)0.0396 (6)
C20.1818 (2)0.15968 (10)0.2081 (3)0.0388 (6)
H20.13910.15960.27440.047*
C30.2350 (2)0.21386 (11)0.2277 (4)0.0515 (8)
H3A0.28100.21550.16750.062*
H3B0.28640.22010.34320.062*
C40.1427 (3)0.25628 (12)0.1649 (4)0.0609 (9)
H4A0.10380.25790.23490.073*
H4B0.17930.29010.17060.073*
C50.0543 (2)0.24583 (12)0.0102 (4)0.0654 (9)
H5A0.09160.24820.08210.079*
H5B0.00600.27240.04420.079*
C60.0002 (2)0.19199 (12)0.0272 (4)0.0580 (9)
H6A0.05360.18580.14170.070*
H6B0.04330.19070.03660.070*
C70.0924 (2)0.14929 (11)0.0320 (3)0.0484 (7)
H7A0.05600.11540.02590.058*
H7B0.13060.14820.03890.058*
C80.2781 (2)0.08843 (10)0.4222 (3)0.0379 (6)
H80.33400.05990.44280.046*
C90.1634 (2)0.06283 (11)0.3941 (3)0.0463 (7)
H9A0.10500.08980.37180.056*
H9B0.13700.03980.29900.056*
C100.1783 (3)0.03140 (13)0.5440 (4)0.0594 (9)
H10A0.10350.01740.52670.071*
H10B0.22990.00200.55850.071*
C110.2274 (3)0.06483 (13)0.6979 (4)0.0652 (10)
H11A0.17120.09160.68880.078*
H11B0.24060.04300.79220.078*
C120.3398 (3)0.09089 (12)0.7255 (3)0.0578 (8)
H12A0.39910.06430.74910.069*
H12B0.36510.11410.82010.069*
C130.3256 (2)0.12247 (11)0.5749 (3)0.0478 (7)
H13A0.27320.15170.55910.057*
H13B0.40030.13670.59310.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0370 (4)0.0510 (5)0.0517 (5)0.0039 (3)0.0268 (3)0.0082 (3)
N10.0368 (12)0.0483 (14)0.0375 (13)0.0061 (10)0.0225 (10)0.0074 (11)
O10.0518 (12)0.0683 (13)0.0468 (12)0.0164 (10)0.0326 (10)0.0141 (10)
C10.0352 (14)0.0485 (16)0.0370 (16)0.0002 (12)0.0178 (12)0.0001 (13)
C20.0346 (14)0.0464 (17)0.0395 (16)0.0055 (12)0.0204 (12)0.0062 (13)
C30.0432 (16)0.0525 (18)0.0523 (19)0.0021 (14)0.0157 (14)0.0002 (14)
C40.059 (2)0.0472 (19)0.078 (3)0.0039 (15)0.0317 (19)0.0024 (17)
C50.0504 (19)0.063 (2)0.074 (2)0.0103 (16)0.0203 (18)0.0257 (18)
C60.0394 (16)0.071 (2)0.056 (2)0.0042 (15)0.0141 (15)0.0128 (16)
C70.0415 (16)0.0551 (18)0.0443 (18)0.0031 (13)0.0154 (14)0.0018 (14)
C80.0371 (14)0.0456 (16)0.0366 (16)0.0051 (12)0.0215 (12)0.0063 (13)
C90.0434 (16)0.0496 (17)0.0475 (18)0.0046 (13)0.0218 (14)0.0023 (14)
C100.0546 (18)0.066 (2)0.066 (2)0.0055 (16)0.0343 (17)0.0152 (17)
C110.080 (2)0.078 (2)0.056 (2)0.0150 (19)0.0462 (19)0.0231 (19)
C120.071 (2)0.063 (2)0.0373 (17)0.0032 (17)0.0226 (16)0.0054 (15)
C130.0482 (16)0.0547 (18)0.0386 (16)0.0042 (14)0.0176 (13)0.0029 (14)
Geometric parameters (Å, º) top
S1—C11.849 (3)C6—H6B0.9700
S1—S1i2.0138 (13)C7—H7A0.9700
N1—C11.350 (3)C7—H7B0.9700
N1—C81.475 (3)C8—C131.513 (4)
N1—C21.488 (3)C8—C91.526 (3)
O1—C11.227 (3)C8—H80.9800
C2—C31.513 (4)C9—C101.516 (4)
C2—C71.518 (3)C9—H9A0.9700
C2—H20.9800C9—H9B0.9700
C3—C41.515 (4)C10—C111.511 (4)
C3—H3A0.9700C10—H10A0.9700
C3—H3B0.9700C10—H10B0.9700
C4—C51.508 (4)C11—C121.507 (4)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
C5—C61.513 (4)C12—C131.524 (4)
C5—H5A0.9700C12—H12A0.9700
C5—H5B0.9700C12—H12B0.9700
C6—C71.519 (4)C13—H13A0.9700
C6—H6A0.9700C13—H13B0.9700
C1—S1—S1i100.35 (9)C2—C7—H7B109.5
C1—N1—C8123.0 (2)C6—C7—H7B109.5
C1—N1—C2118.7 (2)H7A—C7—H7B108.1
C8—N1—C2117.9 (2)N1—C8—C13112.3 (2)
O1—C1—N1126.5 (2)N1—C8—C9112.6 (2)
O1—C1—S1119.5 (2)C13—C8—C9111.2 (2)
N1—C1—S1113.98 (19)N1—C8—H8106.8
N1—C2—C3113.3 (2)C13—C8—H8106.8
N1—C2—C7112.7 (2)C9—C8—H8106.8
C3—C2—C7111.8 (2)C10—C9—C8110.6 (2)
N1—C2—H2106.1C10—C9—H9A109.5
C3—C2—H2106.1C8—C9—H9A109.5
C7—C2—H2106.1C10—C9—H9B109.5
C2—C3—C4111.6 (2)C8—C9—H9B109.5
C2—C3—H3A109.3H9A—C9—H9B108.1
C4—C3—H3A109.3C11—C10—C9111.5 (3)
C2—C3—H3B109.3C11—C10—H10A109.3
C4—C3—H3B109.3C9—C10—H10A109.3
H3A—C3—H3B108.0C11—C10—H10B109.3
C5—C4—C3111.5 (2)C9—C10—H10B109.3
C5—C4—H4A109.3H10A—C10—H10B108.0
C3—C4—H4A109.3C12—C11—C10112.0 (3)
C5—C4—H4B109.3C12—C11—H11A109.2
C3—C4—H4B109.3C10—C11—H11A109.2
H4A—C4—H4B108.0C12—C11—H11B109.2
C4—C5—C6111.3 (3)C10—C11—H11B109.2
C4—C5—H5A109.4H11A—C11—H11B107.9
C6—C5—H5A109.4C11—C12—C13111.2 (2)
C4—C5—H5B109.4C11—C12—H12A109.4
C6—C5—H5B109.4C13—C12—H12A109.4
H5A—C5—H5B108.0C11—C12—H12B109.4
C5—C6—C7111.1 (2)C13—C12—H12B109.4
C5—C6—H6A109.4H12A—C12—H12B108.0
C7—C6—H6A109.4C8—C13—C12110.9 (2)
C5—C6—H6B109.4C8—C13—H13A109.4
C7—C6—H6B109.4C12—C13—H13A109.4
H6A—C6—H6B108.0C8—C13—H13B109.5
C2—C7—C6110.7 (2)C12—C13—H13B109.4
C2—C7—H7A109.5H13A—C13—H13B108.0
C6—C7—H7A109.5
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds