Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystals of the title compound, (CH6N3)3[H6CoMo6O24]·4H2O, containing the well known B-type Anderson-Evans heteropolyoxometalate structure, were obtained by recrystallization of powder (CH6N3)3[H6CoMo6O24nH2O. The anion has a CoIII atom at an inversion center and has approximate \overline 3 symmetry, with Co-O bond lengths in the range 1.905 (3)-1.918 (3) Å and Mo-O bond lengths in the ranges 1.704 (3)-1.722 (3) (Ot), 1.915 (3)-1.949 (3) (Ob), and 2.266 (3)-2.312 (3) Å (Oc), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009991/ww6068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009991/ww6068Isup2.hkl
Contains datablock I

CCDC reference: 214783

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](N-C) = 0.009 Å
  • H-atom completeness 57%
  • Disorder in solvent or counterion
  • R factor = 0.031
  • wR factor = 0.084
  • Data-to-parameter ratio = 15.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 23.00 Perc. PLAT_420 Alert C D-H Without Acceptor N2 - H2A ? General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C3 H32 Co1 Mo6 N9 O28 Atom count from the _atom_site data: C3 H18 Co1 Mo6 N9 O28 ABSTM_02 The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.603 0.678 Tmin and Tmax expected: 0.423 0.570 RR = 1.199 Please check that your absorption correction is appropriate. CELLZ_01 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C3 H32 Co Mo6 N9 O28 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 3.00 3.00 0.00 H 32.00 18.00 14.00 Co 1.00 1.00 0.00 Mo 6.00 6.00 0.00 N 9.00 9.00 0.00 O 28.00 28.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? CHEMW_03 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_weight 1276.95 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 3.00 36.03 H 1.01 18.00 18.14 N 14.01 9.00 126.06 Mo 95.94 6.00 575.64 O 16.00 28.00 447.97 Co 58.93 1.00 58.93 Calculated formula weight 1262.79 The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

We have recently reported the crystal structures of two guanidinium salts of polyoxometalates, viz. (CH6N3)8[PtW6O24] (Lee, Jang et al., 2003). and (CH6N3)8[SiPt2W10O40]·6H2O (Lee, Joo et al., 2003). Also, (CH6N3)4[GeMo12O40] (Strandberg & Hedman, 1982), (CH6N3)2[MoO4] (Ozeki et al., 1987), (CH6N3)4[SiMo12O40]·H2O (Ichida et al., 1980), (CH6N3)4[As2Mo18O62]·9H2O (Ichida & Sasaki, 1983), and (CH6N3)6[V10O28]·6H2O (Wang et al., 1993) have been reported by others. Good crystals of guanidinium polyoxometalates can not always be obtained, but sometimes very stable single crystals are obtained by recrystallization. And, these salts were shown to be arresting crystal packing by hydrogen bonds and thermal behavior of crystalline water molecules.

Several heteropolyoxometalates containing the [H6CoMo6O24]3− polyanion, such as (18-crown-6.K+)2·K[H6CoMo6O24].12H2O (Nagano et al., 1990), [Ga(H2O)6]3[H6CoMo6O24].10H2O (Panneerselvam et al., 1996), Na3[H6CoMo6O24]·8H2O (Nolan et al., 1998), K3[H6CoMo6O24]·KNO3·4H2O (Lee & Joo, 2000), and K3[H6CoMo6O24]·4H2O (Lee et al., 2001), have been reported. The [H6CoMo6O24]3− anion is a typical B-type Anderson–Evans heteropolyanion structure (Anderson, 1937; Evans, 1948; Tsigdinos, 1978). Detailed discussions related to the position of six H atoms in the [H6CoMo6O24]3− have been given by Nolan et al. (1998). Six non-acidic H atoms are bound to six central Oc atoms surrounding the CoIII atom. As expected, they were not substituted by guanidinium ion. The crystal structure of (I) is a good example of the packing and the hydrogen bonding found in the B-type Anderson–Evans heteropolyoxometalate structure and thermal behavior of crystalline water molecules. Here we report on the crystal structure of (I), in which the replaceable cations were completely exchanged by guanidinium ions.

Fig. 1 shows the structure of the [H6CoMo6O24]3− polyanion. The labeling of the O atoms in the polyanion is the same as the labeling in the previous structure (Lee et al., 2001). The distance ranges of Co—Mo and Mo—Mo are 3.2999 (9)–3.3319 (9) and 3.3081 (9)–3.328 (1) Å, respectively. The bond-length range of Co—O is 1.905 (3)–1.918 (3) Å, and the three types of Mo—O bond-length ranges are 1.704 (3)–1.722 (3) (Ot), 1.915 (3)–1.949 (3) (Ob), and 2.266 (3)–2.312 (3) Å (Oc). The bond lengths and angles of (I) have shown a similar trend to what is found in the literatures, and the guanidinium ions also agree well with those in CH6N3Cl (Hass et al., 1965) and CH6N3(NO3) (Katrusiak& Szafrański, 1994). There are one and a half crystallographically independent guanidinium (CH6N3)+ ions in the asymmetric unit, one of which lies on an inversion center.

Fig. 2 shows the hydrogen-bonding interaction of (CH6N3)+ ions with O atoms of the anions and crystalline water molecules. The list of all probable hydrogen bonds with N···O and O···O distances within 3.1 Å is given in Tables 1 and 2.An iInter-anion hydrogen bond is formed by Oc3—H···Ot11 [2.831 (4) Å]. All O atoms in the polyanion except Oc3 form strong N—H····O and O—H····O hydrogen bonds, with all N atoms of the guanidinium ions and all the crystalline water molecules. Each crystalline water molecule forms strong hydrogen bonds. As a result, the degradation temperature was very high (543 K) and those were decomposed with (CH6N3)+ ions. All probable N—Opoly anion hydrogen-bond distances fall into the range 2.78–3.10 Å, with the range of N—H···O angles varying between 119 and 177°. The crystal structure of (I) is stabilized by the formation of extensive N—H···O and O—H···O hydrogen-bond interactions with the guanidinium ions and the waters of crystallization. Fig. 3 shows the unit-cell packing and probable hydrogen-bonding interactions in the lattice.

Experimental top

A blue powder of (I) was obtained by adding a small excess stoichiometric amount of CH6N3Cl to a K3[H6CoMo6O24].nH2O solution (Lee et al., 2001). Single crystals of (I) were obtained by recrystallizing the powdered crude sample from a boiling aqueous solution.

Refinement top

The guanidiniun ion that lies on an inversion center was fixed on (1/2, 1/2, 0) and refined under the restraint of FLAT, SAME conditions, and H atoms were generated by PART. All H atoms were placed in calculated positions with N—H distances of 0.86 Å and H—N—H angles of 120°. They were included in the refinement in riding-motion approximation with, Uiso = 1.2Ueq(N). The highest peak in the difference map is 0.43 Å from N5, and the largest hole is 0.42 Å from N5.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Figures top
[Figure 1] Fig. 1. The anion structure in (CH6N3)3[H6CoMo6O24]·4H2O. Displacement ellipsoids are drawn at the 50% probability level. H atoms was not shown. [Symmetry code: (i) 1 − x, −y, 1 − z.]
[Figure 2] Fig. 2. Formation of hydrogen bonds by guanidinium ions and crystalline water molecules. [Symmetry cods: (i) −1 + x, y, z; (ii) 1 − x, −y, 2 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) −1 + x, y, −1 + z; (v) 1 − x, −y, 1 − z; (vi) 2 − x, −y, 1 − z; (vii) 2 − x, 1 − y, 1 − z; (viii) 1 − x, 1 − y, −z; (ix) x, y, −1 + z.]
[Figure 3] Fig. 3. The crystal packing of (CH6N3)3[H6CoMo6O24]·4H2O in the unit cell shown as a polyhedral model. Violet and cyan octahedra are [CoO6] and [MoO6], respectively. Probable hydrogen bonds are shown in blue (N···O), and red (O···O) broken lines. [Symmetry code: (i) 1 − x, −y, 1 − z.]
(I) top
Crystal data top
(CH6N3)3[H6CoMo6O24]·4H2OZ = 1
Mr = 1276.95F(000) = 616
Triclinic, P1Dx = 2.707 Mg m3
Hall symbol: -p_1Mo Kα radiation, λ = 0.7107 Å
a = 8.821 (1) ÅCell parameters from 27 reflections
b = 11.603 (3) Åθ = 9.5–10.4°
c = 8.013 (1) ŵ = 2.96 mm1
α = 93.93 (3)°T = 298 K
β = 105.95 (1)°Polyhedron, blue
γ = 83.77 (1)°0.38 × 0.25 × 0.19 mm
V = 783.3 (2) Å3
Data collection top
Stoe Stadi-4
diffractometer
3309 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω/2–θ scansh = 1111
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 1515
Tmin = 0.603, Tmax = 0.678l = 010
3588 measured reflections3 standard reflections every 60 min
3588 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0366P)2 + 2.8997P]
where P = (Fo2 + 2Fc2)/3
3588 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 1.42 e Å3
7 restraintsΔρmin = 1.64 e Å3
Crystal data top
(CH6N3)3[H6CoMo6O24]·4H2Oγ = 83.77 (1)°
Mr = 1276.95V = 783.3 (2) Å3
Triclinic, P1Z = 1
a = 8.821 (1) ÅMo Kα radiation
b = 11.603 (3) ŵ = 2.96 mm1
c = 8.013 (1) ÅT = 298 K
α = 93.93 (3)°0.38 × 0.25 × 0.19 mm
β = 105.95 (1)°
Data collection top
Stoe Stadi-4
diffractometer
3309 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.000
Tmin = 0.603, Tmax = 0.6783 standard reflections every 60 min
3588 measured reflections intensity decay: 2.0%
3588 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0317 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.15Δρmax = 1.42 e Å3
3588 reflectionsΔρmin = 1.64 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.50000.00000.50000.01253 (15)
Mo10.54492 (4)0.27422 (3)0.45785 (5)0.01909 (10)
Mo20.75405 (4)0.13827 (3)0.81265 (5)0.01957 (10)
Mo30.69975 (4)0.13468 (3)0.86017 (4)0.01856 (10)
Oc10.3702 (3)0.1413 (2)0.4394 (4)0.0160 (5)
Oc20.6723 (3)0.0911 (2)0.5200 (4)0.0167 (6)
Oc30.5409 (3)0.0282 (2)0.7463 (3)0.0150 (5)
Ob40.4941 (4)0.2072 (3)0.2236 (4)0.0223 (6)
Ob50.5889 (4)0.2565 (3)0.7037 (4)0.0229 (6)
Ob60.8349 (4)0.0218 (3)0.8280 (4)0.0235 (6)
Ot70.4006 (5)0.3876 (3)0.4360 (5)0.0333 (8)
Ot80.7122 (5)0.3319 (3)0.4465 (5)0.0341 (8)
Ot90.9163 (4)0.1958 (3)0.7878 (5)0.0375 (9)
Ot100.7456 (4)0.1745 (3)1.0201 (4)0.0315 (8)
Ot110.6861 (4)0.0991 (3)1.0681 (4)0.0278 (7)
Ot120.8312 (4)0.2549 (3)0.8737 (5)0.0329 (8)
C10.9309 (7)0.4957 (5)0.2659 (8)0.0387 (12)
N10.8336 (7)0.5577 (4)0.3460 (8)0.0509 (13)
H1a0.83860.63130.36370.061*
H1b0.76570.52410.38010.061*
N21.0340 (8)0.5444 (5)0.2136 (9)0.0632 (17)
H2a1.09490.50350.16030.076*
H2b1.04160.61770.23200.076*
N30.9172 (7)0.3831 (4)0.2390 (9)0.0593 (17)
H3a0.97730.34100.18590.071*
H3b0.84820.35200.27460.071*
C20.50000.50000.00000.091 (6)
N40.4269 (15)0.5214 (8)0.1453 (12)0.061 (4)0.50
H4a0.39760.59120.17460.073*0.50
H4b0.41360.46410.20080.073*0.50
N50.5239 (14)0.5628 (10)0.0806 (15)0.079 (5)0.50
H5a0.55430.54000.17160.095*0.50
H5b0.51260.63570.05370.095*0.50
N60.5084 (13)0.3763 (7)0.0123 (13)0.045 (3)0.50
H6a0.53720.33910.09680.054*0.50
H6b0.48480.33900.06470.054*0.50
Ow10.0959 (4)0.0823 (4)0.3372 (5)0.0389 (9)
Ow20.1414 (5)0.1924 (3)0.5934 (5)0.0379 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0136 (3)0.0128 (3)0.0127 (3)0.0021 (3)0.0057 (3)0.0004 (3)
Mo10.0261 (2)0.01388 (17)0.02034 (19)0.00479 (13)0.01006 (14)0.00137 (13)
Mo20.02118 (19)0.02327 (19)0.01604 (18)0.00880 (14)0.00616 (13)0.00232 (13)
Mo30.02037 (18)0.01963 (18)0.01537 (17)0.00139 (13)0.00518 (13)0.00228 (13)
Oc10.0189 (13)0.0145 (13)0.0167 (13)0.0003 (11)0.0085 (11)0.0022 (10)
Oc20.0189 (14)0.0161 (13)0.0175 (13)0.0049 (11)0.0078 (11)0.0001 (11)
Oc30.0156 (13)0.0173 (13)0.0135 (13)0.0035 (10)0.0058 (10)0.0001 (10)
Ob40.0301 (16)0.0220 (15)0.0183 (14)0.0063 (12)0.0105 (12)0.0035 (11)
Ob50.0329 (17)0.0179 (14)0.0204 (15)0.0045 (12)0.0112 (13)0.0026 (11)
Ob60.0170 (14)0.0288 (16)0.0240 (15)0.0032 (12)0.0039 (12)0.0013 (12)
Ot70.044 (2)0.0196 (16)0.038 (2)0.0038 (14)0.0159 (16)0.0031 (14)
Ot80.041 (2)0.0322 (18)0.0355 (19)0.0175 (16)0.0160 (16)0.0011 (15)
Ot90.0329 (19)0.048 (2)0.035 (2)0.0192 (17)0.0100 (16)0.0006 (17)
Ot100.042 (2)0.0348 (19)0.0182 (16)0.0069 (15)0.0092 (14)0.0034 (13)
Ot110.0315 (17)0.0322 (18)0.0197 (15)0.0021 (14)0.0070 (13)0.0011 (13)
Ot120.0308 (18)0.0296 (18)0.0344 (19)0.0084 (14)0.0064 (15)0.0028 (14)
C10.041 (3)0.034 (3)0.048 (3)0.009 (2)0.023 (3)0.007 (2)
N10.057 (3)0.035 (3)0.071 (4)0.002 (2)0.038 (3)0.009 (2)
N20.076 (4)0.049 (3)0.086 (5)0.029 (3)0.052 (4)0.011 (3)
N30.062 (4)0.034 (3)0.103 (5)0.014 (2)0.059 (4)0.016 (3)
C20.141 (13)0.056 (7)0.033 (5)0.053 (8)0.022 (6)0.010 (5)
N40.137 (12)0.021 (5)0.026 (5)0.003 (6)0.027 (6)0.003 (4)
N50.153 (16)0.036 (7)0.049 (8)0.012 (8)0.027 (9)0.005 (6)
N60.079 (8)0.024 (4)0.045 (6)0.011 (4)0.044 (6)0.011 (4)
Ow10.037 (2)0.048 (2)0.0308 (19)0.0020 (17)0.0103 (16)0.0044 (17)
Ow20.039 (2)0.040 (2)0.043 (2)0.0017 (17)0.0257 (17)0.0029 (17)
Geometric parameters (Å, º) top
Mo1—Mo23.328 (1)Mo3—Ot121.704 (3)
Mo2—Mo33.317 (1)Mo3—Ot111.722 (3)
Mo1—Mo3i3.3081 (9)Mo3—Ob4i1.920 (3)
Co—Mo13.2999 (9)Mo3—Ob61.938 (3)
Co—Mo23.3191 (9)Mo3—Oc1i2.307 (3)
Co—Mo33.3319 (9)Mo3—Oc32.308 (3)
Co—Oc11.905 (3)Oc3—Ot11ii2.831 (4)
Co—Oc21.909 (3)C1—N21.295 (7)
Co—Oc31.918 (3)C1—N31.323 (7)
Mo1—Ot71.711 (3)C1—N11.331 (7)
Mo1—Ot81.712 (3)C2—N51.08 (1)
Mo1—Ob51.921 (3)C2—N61.427 (8)
Mo1—Ob41.934 (3)C2—N41.473 (9)
Mo1—Oc12.266 (3)Ow1—Oc2iii2.814 (5)
Mo1—Oc22.312 (3)Ow1—Ot10iv2.765 (5)
Mo2—Ot101.706 (3)Ow1—Ob6i2.956 (5)
Mo2—Ot91.707 (3)Ow1—Ow22.843 (6)
Mo2—Ob61.915 (3)Ow2—Oc12.638 (4)
Mo2—Ob51.949 (3)Ow2—Ot9iii2.837 (5)
Mo2—Oc22.302 (3)Ow2—Ot11ii2.937 (5)
Mo2—Oc32.308 (3)Ow2—N1v2.930 (7)
Mo3—Mo2—Mo1119.78 (3)Ot10—Mo2—Oc395.06 (14)
Mo3i—Mo1—Mo2120.63 (2)Ot9—Mo2—Oc3158.18 (15)
Oc1—Co—Oc2i95.10 (12)Ob6—Mo2—Oc372.12 (12)
Oc1—Co—Oc284.90 (12)Ob5—Mo2—Oc381.28 (12)
Oc2i—Co—Oc2180.0Oc2—Mo2—Oc368.22 (10)
Oc1—Co—Oc395.56 (12)Ot12—Mo3—Ot11106.57 (17)
Oc1i—Co—Oc384.44 (12)Ot12—Mo3—Ob698.30 (16)
Oc2i—Co—Oc395.00 (12)Ot11—Mo3—Ob6101.96 (15)
Oc2—Co—Oc385.00 (12)Ot12—Mo3—Oc3159.32 (14)
Ot7—Mo1—Ot8106.05 (18)Ot11—Mo3—Oc393.41 (13)
Ot7—Mo1—Ob598.69 (16)Ob6—Mo3—Oc371.75 (11)
Ot8—Mo1—Ob5101.04 (16)N2—C1—N3121.1 (5)
Ot7—Mo1—Ob4100.43 (16)N2—C1—N1121.1 (5)
Ot8—Mo1—Ob495.84 (16)N3—C1—N1117.9 (5)
Ob5—Mo1—Ob4149.82 (13)N5—C2—N6132.1 (8)
Ot7—Mo1—Oc192.65 (15)N5—C2—N4128.1 (8)
Ot8—Mo1—Oc1159.47 (15)N6—C2—N499.4 (5)
Ob5—Mo1—Oc184.02 (12)Ot10iv—Ow1—Oc2iii104.60 (15)
Ob4—Mo1—Oc172.01 (11)Ot10iv—Ow1—Ow2124.06 (18)
Ot7—Mo1—Oc2159.33 (14)Oc2iii—Ow1—Ow298.87 (15)
Ot8—Mo1—Oc294.01 (15)Ot10iv—Ow1—Ob6i84.11 (14)
Ob5—Mo1—Oc272.02 (12)Oc2iii—Ow1—Ob6i167.65 (18)
Ob4—Mo1—Oc282.07 (12)Ow2—Ow1—Ob6i82.89 (14)
Oc1—Mo1—Oc268.41 (10)Oc1—Ow2—Ot9iii166.92 (19)
Ot10—Mo2—Ot9106.45 (18)Oc1—Ow2—Ow196.44 (16)
Ot10—Mo2—Ob6102.30 (16)Ot9iii—Ow2—Ow182.23 (15)
Ot9—Mo2—Ob699.15 (17)Oc1—Ow2—N1v98.81 (17)
Ot10—Mo2—Ob595.67 (15)Ot9iii—Ow2—N1v92.29 (17)
Ot9—Mo2—Ob599.79 (17)Ow1—Ow2—N1v126.9 (2)
OB6—Mo2—Ob5148.91 (13)Oc1—Ow2—Ot11ii96.96 (15)
Ot10—Mo2—Oc2160.06 (15)Ot9iii—Ow2—Ot11ii73.68 (14)
Ot9—Mo2—Oc291.24 (15)Ow1—Ow2—Ot11ii125.36 (17)
Ob6—Mo2—Oc283.38 (12)N1v—Ow2—Ot11ii102.79 (19)
Ob5—Mo2—Oc271.80 (11)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1b···Ot7v0.862.463.044 (6)126
N2—H2b···Ot9vi0.862.263.094 (7)164
N3—H3a···Ot12vii0.862.022.855 (6)163
N3—H3b···Ot80.862.102.900 (6)155
N4—H4a···Ob5v0.861.962.78 (1)159
N4—H4b···Ot70.862.172.96 (1)152
N5—H5b···Ob4viii0.862.342.95 (1)128
N6—H6a···Ob5ix0.861.942.803 (9)177
N6—H6b···Ob40.862.042.852 (9)158
N6—H6a···Ot10ix0.862.542.941 (9)110
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y+1, z; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formula(CH6N3)3[H6CoMo6O24]·4H2O
Mr1276.95
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.821 (1), 11.603 (3), 8.013 (1)
α, β, γ (°)93.93 (3), 105.95 (1), 83.77 (1)
V3)783.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.38 × 0.25 × 0.19
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.603, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
3588, 3588, 3309
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.15
No. of reflections3588
No. of parameters229
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.42, 1.64

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected bond lengths (Å) top
Mo1—Mo23.328 (1)Mo3—Ot121.704 (3)
Mo2—Mo33.317 (1)Mo3—Ot111.722 (3)
Mo1—Mo3i3.3081 (9)Mo3—Ob4i1.920 (3)
Co—Mo13.2999 (9)Mo3—Ob61.938 (3)
Co—Mo23.3191 (9)Mo3—Oc1i2.307 (3)
Co—Mo33.3319 (9)Mo3—Oc32.308 (3)
Co—Oc11.905 (3)Oc3—Ot11ii2.831 (4)
Co—Oc21.909 (3)C1—N21.295 (7)
Co—Oc31.918 (3)C1—N31.323 (7)
Mo1—Ot71.711 (3)C1—N11.331 (7)
Mo1—Ot81.712 (3)C2—N51.08 (1)
Mo1—Ob51.921 (3)C2—N61.427 (8)
Mo1—Ob41.934 (3)C2—N41.473 (9)
Mo1—Oc12.266 (3)Ow1—Oc2iii2.814 (5)
Mo1—Oc22.312 (3)Ow1—Ot10iv2.765 (5)
Mo2—Ot101.706 (3)Ow1—Ob6i2.956 (5)
Mo2—Ot91.707 (3)Ow1—Ow22.843 (6)
Mo2—Ob61.915 (3)Ow2—Oc12.638 (4)
Mo2—Ob51.949 (3)Ow2—Ot9iii2.837 (5)
Mo2—Oc22.302 (3)Ow2—Ot11ii2.937 (5)
Mo2—Oc32.308 (3)Ow2—N1v2.930 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1b···Ot7v0.862.463.044 (6)126
N2—H2b···Ot9vi0.862.263.094 (7)164
N3—H3a···Ot12vii0.862.022.855 (6)163
N3—H3b···Ot80.862.102.900 (6)155
N4—H4a···Ob5v0.861.962.78 (1)159
N4—H4b···Ot70.862.172.96 (1)152
N5—H5b···Ob4viii0.862.342.95 (1)128
N6—H6a···Ob5ix0.861.942.803 (9)177
N6—H6b···Ob40.862.042.852 (9)158
N6—H6a···Ot10ix0.862.542.941 (9)110
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y+1, z; (ix) x, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds