Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The molecule of the title compound, C9H15NO3, is an E isomer and the crystal structure involves an N—H...O hydrogen bond, forming one-dimensional chains along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021554/ww6055sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021554/ww6055Isup2.hkl
Contains datablock I

CCDC reference: 202351

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.064
  • wR factor = 0.198
  • Data-to-parameter ratio = 19.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.116
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), is one of the prochiral olefin widely investigated in the asymmetric hydrogenation reaction (Hackler et al., 1985; Lubell et al., 1991) for producing β-amino acids and their derivatives. The enantiomeric excess of the hydrogenation product is significantly influenced by the structure of the substrate. The structure determination of (I) was conducted in order to obtain more stereochemical information about β-amino acids and their derivatives.

In the structure of (I) (Fig. 1), the bond lengths and angles are in the expected ranges (Table 1). As shown in the packing diagram (Fig. 2), the crystal structure contains intermolecular hydrogen bonds, and infinite molecular chains stretch along the a axis.

Experimental top

The title compound was synthesized according to Zhu et al. (1999). A crystal suitable for X-ray analysis was grown slowly in a mixture of ethyl acetate and hexane at room temperature. 1H NMR (400 MHz, acetone-d6, Bruker): δ 1.13 (d, J = 7.1 Hz, 6H), 2.09 (s, 3H), 3.59 (s, 3H), 4.34 (sep, J = 7.1 Hz, 1H), 6.99 (s, 1H), 8.18 (br, 1H).

Refinement top

H atoms were included in the riding-model approximation, with Uiso values equal to Ueq of the atom to which they were bound.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).
[Figure 2] Fig. 2. Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.
(I) top
Crystal data top
C9H15NO3Dx = 1.182 Mg m3
Mr = 185.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2463 reflections
a = 9.806 (2) Åθ = 1–27.5°
b = 12.435 (3) ŵ = 0.09 mm1
c = 17.067 (4) ÅT = 294 K
V = 2081.1 (9) Å3Needle, colorless
Z = 80.28 × 0.10 × 0.10 mm
F(000) = 800
Data collection top
Siemens CCD area-detector
diffractometer
2384 independent reflections
Radiation source: fine-focus sealed tube888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.976, Tmax = 0.991k = 1416
13157 measured reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2384 reflectionsΔρmax = 0.18 e Å3
123 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (5)
Crystal data top
C9H15NO3V = 2081.1 (9) Å3
Mr = 185.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.806 (2) ŵ = 0.09 mm1
b = 12.435 (3) ÅT = 294 K
c = 17.067 (4) Å0.28 × 0.10 × 0.10 mm
Data collection top
Siemens CCD area-detector
diffractometer
2384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
888 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.991Rint = 0.116
13157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2384 reflectionsΔρmin = 0.32 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5932 (3)0.4260 (2)0.69203 (16)0.0987 (10)
O20.7795 (2)0.45268 (18)0.62146 (13)0.0695 (8)
O30.6352 (2)0.73287 (18)0.48475 (12)0.0641 (8)
N10.4320 (2)0.6810 (2)0.53746 (14)0.0537 (7)
H10.34590.69380.53540.064*
C10.6501 (3)0.4738 (3)0.63972 (19)0.0557 (9)
C20.5949 (3)0.5557 (2)0.58826 (17)0.0543 (9)
H20.65140.57820.54770.065*
C30.4732 (3)0.6023 (2)0.59198 (17)0.0487 (8)
C40.3648 (3)0.5779 (3)0.65281 (18)0.0574 (9)
H40.40730.53310.69320.069*
C50.2491 (3)0.5130 (3)0.6172 (2)0.0769 (12)
H5A0.21220.55110.57310.115*
H5B0.17890.50260.65570.115*
H5C0.28300.44440.60020.115*
C60.3103 (4)0.6779 (3)0.6930 (2)0.0887 (13)
H6A0.38470.71760.71530.133*
H6B0.24790.65730.73370.133*
H6C0.26370.72190.65530.133*
C70.5116 (3)0.7396 (3)0.48738 (18)0.0523 (9)
C80.4351 (3)0.8151 (3)0.4358 (2)0.0782 (12)
H8A0.45560.88790.45050.117*
H8B0.33900.80250.44120.117*
H8C0.46150.80370.38220.117*
C90.8506 (4)0.3734 (3)0.6671 (2)0.0751 (12)
H9A0.84070.38970.72180.113*
H9B0.94550.37390.65340.113*
H9C0.81300.30360.65660.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.088 (2)0.115 (2)0.093 (2)0.0283 (16)0.0236 (16)0.0547 (18)
O20.0538 (15)0.0714 (17)0.0832 (17)0.0097 (12)0.0024 (12)0.0256 (13)
O30.0457 (15)0.0780 (18)0.0686 (16)0.0003 (12)0.0031 (10)0.0238 (12)
N10.0388 (14)0.0616 (18)0.0608 (17)0.0021 (13)0.0032 (12)0.0173 (14)
C10.052 (2)0.058 (2)0.057 (2)0.0023 (17)0.0023 (15)0.0062 (18)
C20.055 (2)0.055 (2)0.053 (2)0.0014 (17)0.0041 (14)0.0097 (17)
C30.0517 (19)0.052 (2)0.0428 (18)0.0036 (16)0.0002 (13)0.0051 (15)
C40.058 (2)0.063 (2)0.051 (2)0.0009 (18)0.0082 (15)0.0157 (17)
C50.069 (2)0.078 (3)0.083 (3)0.016 (2)0.0214 (19)0.004 (2)
C60.114 (3)0.090 (3)0.062 (3)0.000 (3)0.024 (2)0.010 (2)
C70.046 (2)0.060 (2)0.051 (2)0.0016 (18)0.0011 (14)0.0089 (16)
C80.057 (2)0.089 (3)0.088 (3)0.002 (2)0.0022 (18)0.042 (2)
C90.068 (2)0.078 (3)0.080 (3)0.017 (2)0.0131 (19)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.209 (4)C5—H5A0.9600
O2—C11.333 (4)C5—H5B0.9600
O2—C91.437 (4)C5—H5C0.9600
O3—C71.216 (3)C6—H6A0.9600
N1—C71.368 (4)C6—H6B0.9600
N1—C31.410 (4)C6—H6C0.9600
N1—H10.8600C7—C81.491 (4)
C1—C21.449 (4)C8—H8A0.9600
C2—C31.328 (4)C8—H8B0.9600
C2—H20.9300C8—H8C0.9600
C3—C41.516 (4)C9—H9A0.9600
C4—C61.517 (5)C9—H9B0.9600
C4—C51.520 (4)C9—H9C0.9600
C4—H40.9800
C1—O2—C9118.0 (3)H5A—C5—H5C109.5
C7—N1—C3128.2 (3)H5B—C5—H5C109.5
C7—N1—H1115.9C4—C6—H6A109.5
C3—N1—H1115.9C4—C6—H6B109.5
O1—C1—O2121.0 (3)H6A—C6—H6B109.5
O1—C1—C2128.4 (3)C4—C6—H6C109.5
O2—C1—C2110.6 (3)H6A—C6—H6C109.5
C3—C2—C1127.8 (3)H6B—C6—H6C109.5
C3—C2—H2116.1O3—C7—N1123.8 (3)
C1—C2—H2116.1O3—C7—C8121.5 (3)
C2—C3—N1122.0 (3)N1—C7—C8114.7 (3)
C2—C3—C4125.1 (3)C7—C8—H8A109.5
N1—C3—C4112.9 (3)C7—C8—H8B109.5
C3—C4—C6113.1 (3)H8A—C8—H8B109.5
C3—C4—C5110.8 (3)C7—C8—H8C109.5
C6—C4—C5110.6 (3)H8A—C8—H8C109.5
C3—C4—H4107.3H8B—C8—H8C109.5
C6—C4—H4107.3O2—C9—H9A109.5
C5—C4—H4107.3O2—C9—H9B109.5
C4—C5—H5A109.5H9A—C9—H9B109.5
C4—C5—H5B109.5O2—C9—H9C109.5
H5A—C5—H5B109.5H9A—C9—H9C109.5
C4—C5—H5C109.5H9B—C9—H9C109.5
C9—O2—C1—O11.6 (5)C7—N1—C3—C4163.4 (3)
C9—O2—C1—C2179.7 (3)C2—C3—C4—C6128.7 (3)
O1—C1—C2—C36.4 (6)N1—C3—C4—C651.7 (4)
O2—C1—C2—C3175.0 (3)C2—C3—C4—C5106.4 (4)
C1—C2—C3—N1179.7 (3)N1—C3—C4—C573.2 (3)
C1—C2—C3—C40.1 (5)C3—N1—C7—O32.1 (5)
C7—N1—C3—C217.0 (5)C3—N1—C7—C8178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.283.124 (3)166
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H15NO3
Mr185.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)9.806 (2), 12.435 (3), 17.067 (4)
V3)2081.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.10 × 0.10
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13157, 2384, 888
Rint0.116
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.198, 1.02
No. of reflections2384
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.32

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C11.209 (4)N1—C71.368 (4)
O2—C11.333 (4)N1—C31.410 (4)
O2—C91.437 (4)C1—C21.449 (4)
O3—C71.216 (3)C4—C61.517 (5)
C1—O2—C9118.0 (3)O1—C1—O2121.0 (3)
C7—N1—C3128.2 (3)O1—C1—C2128.4 (3)
C9—O2—C1—O11.6 (5)C7—N1—C3—C4163.4 (3)
C9—O2—C1—C2179.7 (3)N1—C3—C4—C573.2 (3)
C1—C2—C3—N1179.7 (3)C3—N1—C7—C8178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.283.124 (3)166
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds