Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C13H15NO3, is an E isomer and the phenyl ring does not conjugate with C=C. Both intra- and intermolecular N—H...O hydrogen bonds are found, and the infinite molecular chains stretch along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021517/ww6053sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021517/ww6053Isup2.hkl
Contains datablock I

CCDC reference: 202350

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.047
  • wR factor = 0.118
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), is a by-product obtained in the synthesis of ethyl 3-acetamido-3-phenyl-propylenoate, a prochiral olefinic substrate for producing β-amino acids and derivatives by asymmetric hydrogenation (Hackler et al., 1985; Lubell et al., 1991). The structure determination of (I) was determined in order to obtain more stereochemical information about β-amino acids and their derivatives. In the structure of (I) (Fig. 1), the C1—C2—C3—C8 and C1—C2—C3—C4 torsion angles are 59.0 (2) and −124.07 (18)°, respectively. This shows that the phenyl ring does not completely conjugate with the C1C2 double bond in the solid state; the C12—C1—C2—N1, C2—C1—C12—O3 and C2—C1—C12—C13 torsion angles are 5.3 (3), −2.1 (3) and 179.52 (17)°, respectively. This illustrates that O3—C12—C1—C2—N1—H are almost coplanar and the C12O3 double bond and CC form a conjugated system (Table 1). As shown in Table 2 and the packing diagram (Fig. 2), the crystal structure of (I) is stabilized by both intra- and intermolecular hydrogen bonds, and infinite molecular chains stretch along the b axis.

Experimental top

The title compound was synthesized according to Zhu et al. (1999). A crystal suitable for X-ray analysis was slowly grown in a mixed solvent of ethyl acetate and hexane at room temperature. 1H NMR (400 MHz, acetone-d6, Bruker): δ 0.63–0.67 (t, J = 7.1 Hz, 3H), 2.24 (s, 3H), 3.64–3.69 (q, J = 7.1 Hz, 2H), 7.35–7.49 (m, 5H), 11.02 (br, 1H).

Refinement top

H atoms were included in the riding-model approximation, with Uiso values equal to the Ueq value of the atom to which they were bound.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).
[Figure 2] Fig. 2. Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.
(I) top
Crystal data top
C13H15NO3Dx = 1.261 Mg m3
Mr = 233.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4270 reflections
a = 17.158 (3) Åθ = 1–27.5°
b = 7.6070 (12) ŵ = 0.09 mm1
c = 18.823 (3) ÅT = 294 K
V = 2456.8 (7) Å3Block, colorless
Z = 80.50 × 0.46 × 0.30 mm
F(000) = 992
Data collection top
Siemens CCD area-detector
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.956, Tmax = 0.974k = 99
15490 measured reflectionsl = 2421
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2820 reflectionsΔρmax = 0.16 e Å3
157 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0249 (15)
Crystal data top
C13H15NO3V = 2456.8 (7) Å3
Mr = 233.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.158 (3) ŵ = 0.09 mm1
b = 7.6070 (12) ÅT = 294 K
c = 18.823 (3) Å0.50 × 0.46 × 0.30 mm
Data collection top
Siemens CCD area-detector
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1423 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.974Rint = 0.056
15490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2820 reflectionsΔρmin = 0.26 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14627 (8)0.10722 (15)0.23232 (7)0.0672 (4)
O20.07113 (7)0.29759 (15)0.29087 (6)0.0541 (4)
O30.16365 (9)0.5175 (2)0.08088 (6)0.0838 (5)
N10.15867 (9)0.72069 (18)0.19130 (7)0.0599 (5)
H1A0.16030.71610.14570.072*
H1B0.16260.82020.21270.072*
C10.14337 (9)0.4088 (2)0.19660 (8)0.0440 (4)
C20.15009 (9)0.5743 (2)0.22871 (8)0.0439 (4)
C30.15158 (10)0.6015 (2)0.30711 (8)0.0434 (4)
C40.09829 (12)0.7123 (2)0.33890 (9)0.0600 (5)
H40.06030.76720.31160.072*
C50.10137 (15)0.7419 (2)0.41122 (10)0.0738 (7)
H50.06470.81490.43250.089*
C60.15778 (14)0.6649 (3)0.45182 (10)0.0718 (6)
H60.15980.68650.50040.086*
C70.21172 (13)0.5552 (3)0.42060 (9)0.0626 (5)
H70.25030.50300.44810.075*
C80.20845 (11)0.5228 (2)0.34860 (8)0.0507 (5)
H80.24460.44760.32780.061*
C90.12282 (11)0.2559 (2)0.24018 (9)0.0467 (4)
C100.05537 (13)0.1672 (3)0.34468 (10)0.0701 (6)
H10A0.10330.10900.35870.084*
H10B0.01960.07920.32660.084*
C110.02021 (16)0.2600 (3)0.40655 (10)0.0948 (8)
H11A0.05810.33750.42720.142*
H11B0.00390.17530.44130.142*
H11C0.02400.32690.39100.142*
C120.15219 (11)0.3890 (2)0.12037 (10)0.0559 (5)
C130.14568 (14)0.2117 (3)0.08559 (10)0.0789 (7)
H13A0.14730.22540.03490.118*
H13B0.09730.15770.09900.118*
H13C0.18830.13880.10060.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0933 (11)0.0332 (7)0.0751 (9)0.0091 (7)0.0029 (7)0.0035 (6)
O20.0644 (8)0.0389 (7)0.0590 (8)0.0013 (6)0.0085 (6)0.0035 (6)
O30.1432 (14)0.0649 (10)0.0434 (8)0.0010 (9)0.0057 (7)0.0027 (7)
N10.1003 (13)0.0349 (8)0.0446 (8)0.0020 (8)0.0027 (8)0.0014 (7)
C10.0588 (11)0.0340 (9)0.0393 (9)0.0034 (8)0.0047 (8)0.0030 (8)
C20.0538 (11)0.0350 (10)0.0429 (10)0.0028 (8)0.0019 (8)0.0010 (8)
C30.0619 (11)0.0279 (8)0.0404 (9)0.0029 (8)0.0008 (8)0.0006 (7)
C40.0822 (15)0.0436 (11)0.0540 (12)0.0148 (10)0.0041 (10)0.0007 (9)
C50.118 (2)0.0482 (12)0.0553 (13)0.0187 (13)0.0242 (12)0.0048 (10)
C60.1233 (19)0.0535 (13)0.0386 (11)0.0088 (13)0.0052 (12)0.0046 (10)
C70.0834 (15)0.0570 (12)0.0475 (11)0.0069 (11)0.0114 (10)0.0040 (10)
C80.0613 (11)0.0455 (10)0.0454 (10)0.0027 (9)0.0023 (8)0.0007 (8)
C90.0563 (10)0.0358 (10)0.0481 (10)0.0003 (9)0.0088 (9)0.0054 (8)
C100.0802 (15)0.0526 (12)0.0774 (14)0.0129 (10)0.0113 (11)0.0169 (11)
C110.1080 (19)0.1011 (19)0.0751 (15)0.0256 (16)0.0248 (14)0.0062 (14)
C120.0718 (13)0.0486 (11)0.0471 (11)0.0067 (10)0.0062 (9)0.0069 (9)
C130.1143 (19)0.0666 (15)0.0560 (13)0.0042 (13)0.0082 (11)0.0244 (11)
Geometric parameters (Å, º) top
O1—C91.2098 (19)C5—H50.9300
O2—C91.341 (2)C6—C71.378 (3)
O2—C101.443 (2)C6—H60.9300
O3—C121.244 (2)C7—C81.379 (2)
N1—C21.3255 (19)C7—H70.9300
N1—H1A0.8600C8—H80.9300
N1—H1B0.8600C10—C111.489 (3)
C1—C21.401 (2)C10—H10A0.9700
C1—C121.451 (2)C10—H10B0.9700
C1—C91.466 (2)C11—H11A0.9600
C2—C31.490 (2)C11—H11B0.9600
C3—C41.380 (2)C11—H11C0.9600
C3—C81.386 (2)C12—C131.504 (3)
C4—C51.381 (2)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.365 (3)C13—H13C0.9600
C9—O2—C10117.45 (14)C7—C8—H8119.8
C2—N1—H1A120.0C3—C8—H8119.8
C2—N1—H1B120.0O1—C9—O2121.87 (16)
H1A—N1—H1B120.0O1—C9—C1126.39 (17)
C2—C1—C12120.74 (15)O2—C9—C1111.71 (14)
C2—C1—C9119.41 (14)O2—C10—C11107.38 (16)
C12—C1—C9119.76 (14)O2—C10—H10A110.2
N1—C2—C1122.32 (14)C11—C10—H10A110.2
N1—C2—C3114.07 (14)O2—C10—H10B110.2
C1—C2—C3123.57 (14)C11—C10—H10B110.2
C4—C3—C8119.08 (15)H10A—C10—H10B108.5
C4—C3—C2120.17 (15)C10—C11—H11A109.5
C8—C3—C2120.68 (15)C10—C11—H11B109.5
C3—C4—C5120.11 (18)H11A—C11—H11B109.5
C3—C4—H4119.9C10—C11—H11C109.5
C5—C4—H4119.9H11A—C11—H11C109.5
C6—C5—C4120.61 (19)H11B—C11—H11C109.5
C6—C5—H5119.7O3—C12—C1121.76 (16)
C4—C5—H5119.7O3—C12—C13117.16 (16)
C5—C6—C7119.81 (17)C1—C12—C13121.06 (18)
C5—C6—H6120.1C12—C13—H13A109.5
C7—C6—H6120.1C12—C13—H13B109.5
C6—C7—C8120.02 (18)H13A—C13—H13B109.5
C6—C7—H7120.0C12—C13—H13C109.5
C8—C7—H7120.0H13A—C13—H13C109.5
C7—C8—C3120.35 (17)H13B—C13—H13C109.5
C12—C1—C2—N15.3 (3)C4—C3—C8—C70.1 (3)
C9—C1—C2—N1171.24 (16)C2—C3—C8—C7176.87 (16)
C12—C1—C2—C3172.12 (15)C10—O2—C9—O111.7 (2)
C9—C1—C2—C311.4 (3)C10—O2—C9—C1170.17 (14)
N1—C2—C3—C458.4 (2)C2—C1—C9—O1144.98 (18)
C1—C2—C3—C4124.07 (18)C12—C1—C9—O138.5 (3)
N1—C2—C3—C8118.61 (18)C2—C1—C9—O237.0 (2)
C1—C2—C3—C859.0 (2)C12—C1—C9—O2139.56 (15)
C8—C3—C4—C50.8 (3)C9—O2—C10—C11160.57 (16)
C2—C3—C4—C5177.85 (18)C2—C1—C12—O32.1 (3)
C3—C4—C5—C61.2 (3)C9—C1—C12—O3174.39 (17)
C4—C5—C6—C70.7 (3)C2—C1—C12—C13179.52 (17)
C5—C6—C7—C80.3 (3)C9—C1—C12—C134.0 (3)
C6—C7—C8—C30.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.861.942.592 (2)131
N1—H1B···O1i0.862.233.048 (2)158
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H15NO3
Mr233.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)17.158 (3), 7.6070 (12), 18.823 (3)
V3)2456.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.46 × 0.30
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15490, 2820, 1423
Rint0.056
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.02
No. of reflections2820
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.26

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C91.2098 (19)C2—C31.490 (2)
O3—C121.244 (2)C3—C41.380 (2)
C1—C21.401 (2)C4—C51.381 (2)
C1—C121.451 (2)C5—C61.365 (3)
C1—C91.466 (2)C12—C131.504 (3)
C2—C1—C12120.74 (15)C3—C4—C5120.11 (18)
C2—C1—C9119.41 (14)C6—C5—C4120.61 (19)
C12—C1—C9119.76 (14)O1—C9—O2121.87 (16)
N1—C2—C1122.32 (14)O1—C9—C1126.39 (17)
C4—C3—C8119.08 (15)O3—C12—C1121.76 (16)
C4—C3—C2120.17 (15)
C12—C1—C2—N15.3 (3)C1—C2—C3—C859.0 (2)
C9—C1—C2—N1171.24 (16)C5—C6—C7—C80.3 (3)
C9—C1—C2—C311.4 (3)C4—C3—C8—C70.1 (3)
N1—C2—C3—C458.4 (2)C2—C1—C12—O32.1 (3)
C1—C2—C3—C4124.07 (18)C2—C1—C12—C13179.52 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.861.942.592 (2)131
N1—H1B···O1i0.862.233.048 (2)158
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds