Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure determination of the title compound, C8H13NO3, shows that it is the E isomer. An N—H...O intermolecular hydrogen bond is observed and is responsible for the formation of infinite chains stretching along the b axis of the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017373/ww6044sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017373/ww6044Isup2.hkl
Contains datablock I

CCDC reference: 198977

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.053
  • wR factor = 0.153
  • Data-to-parameter ratio = 19.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), is one of the products obtained from ethyl 3-amine-2-butenoate on reflux with acetic anhydride for a period of 48 h. This prochiral olefin is a model substrate studied in the asymmetric hydrogenation reaction (Hackler et al., 1985; Lubell et al., 1991). The structure determination of (I) was conducted in order to obtain more stereochemical information about the behaviour of these kinds of substrates in hydrogenation reactions.

The crystal structure of (I) (Fig. 1) shows that the molecule is nearly planar. The angles C3—C4—C5 [124.71 (19)°] and C4—C3—C8 [125.27 (18)°] are wider and N1—C3—C8 [112.12 (16)°] narrower than the value of 120°. This results in a close mutual repulsion between the methyl group on C3 and the carbonyl group on C4 (Table 1). The molecules in the crystal structure are interconnected by N—H···O hydrogen bonding (Table 2). As shown in the packing diagram (Fig. 2), the N—H···O hydrogen bond links the molecules along b axis.

Experimental top

The title compound was synthesized according theliterature (Zhu et al., 1999) A crystal suitable for X-ray analysis was grown slowly from a mixture of ethyl acetate and hexane at room temperature. 1H NMR (400 MHz, acetone-d6, p.p.m.): δ 1.24 (t, J = 7.1 Hz, 3H), 2.06 (s, 3H), 2.33 (s, 3H), 4.09 (q, J = 7.1 Hz, 2H), 6.89 (d, J = 1 Hz, 1H), 8.79 (br, 1H).

Refinement top

H atoms were included in the riding-model approximation with Uiso values equal to Ueq of the atom to which they were bound.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 30% probability level (Siemens, 1995).
[Figure 2] Fig. 2. Packing diagram for (I). The hydrogen bonds are indicated by dashed lines.
(E)-Ethyl 3-acetamido-2-butenoate top
Crystal data top
C8H13NO3F(000) = 736
Mr = 171.19Dx = 1.212 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.006 (4) ÅCell parameters from 2174 reflections
b = 9.545 (2) Åθ = 1–27.5°
c = 11.922 (2) ŵ = 0.09 mm1
β = 124.479 (4)°T = 294 K
V = 1876.7 (6) Å3Plate, colorless
Z = 80.34 × 0.28 × 0.10 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2162 independent reflections
Radiation source: fine-focus sealed tube1053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.6°, θmin = 3.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2225
Tmin = 0.969, Tmax = 0.991k = 1212
6283 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
2162 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H13NO3V = 1876.7 (6) Å3
Mr = 171.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.006 (4) ŵ = 0.09 mm1
b = 9.545 (2) ÅT = 294 K
c = 11.922 (2) Å0.34 × 0.28 × 0.10 mm
β = 124.479 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2162 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1053 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.991Rint = 0.035
6283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2162 reflectionsΔρmin = 0.16 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24031 (10)0.98771 (15)0.21996 (17)0.0769 (5)
O20.43183 (11)0.88023 (17)0.06239 (18)0.0906 (6)
O30.40086 (9)1.09940 (14)0.08209 (14)0.0692 (5)
N10.27942 (10)0.77021 (15)0.20365 (16)0.0551 (5)
H1A0.27240.68300.21230.066*
C10.19104 (15)0.7954 (2)0.2785 (3)0.0819 (8)
H1B0.15060.86000.26610.123*
H1C0.22670.77180.37320.123*
H1D0.16520.71200.22670.123*
C20.23847 (12)0.8610 (2)0.2317 (2)0.0564 (6)
C30.33135 (12)0.79732 (19)0.16286 (19)0.0518 (5)
C40.34191 (12)0.9254 (2)0.1309 (2)0.0592 (6)
H40.31280.99840.13560.071*
C50.39601 (13)0.9594 (2)0.0889 (2)0.0623 (6)
C60.45348 (14)1.1505 (2)0.0444 (2)0.0752 (7)
H6A0.43501.11720.04570.090*
H6B0.50841.11740.10850.090*
C70.45111 (17)1.3072 (3)0.0457 (3)0.0932 (9)
H7A0.39611.33850.01400.140*
H7B0.48301.34430.01550.140*
H7C0.47281.33920.13650.140*
C80.37290 (14)0.6677 (2)0.1617 (2)0.0690 (6)
H8A0.41540.69280.15090.104*
H8B0.33440.60870.08740.104*
H8C0.39560.61820.24590.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1022 (13)0.0467 (9)0.1292 (14)0.0032 (8)0.0939 (12)0.0030 (8)
O20.1093 (14)0.0831 (11)0.1347 (15)0.0115 (10)0.1024 (14)0.0118 (10)
O30.0809 (11)0.0683 (10)0.0891 (11)0.0093 (8)0.0667 (10)0.0011 (7)
N10.0636 (11)0.0454 (8)0.0789 (11)0.0032 (8)0.0538 (10)0.0026 (8)
C10.1037 (19)0.0548 (12)0.141 (2)0.0015 (12)0.1015 (19)0.0013 (13)
C20.0624 (13)0.0481 (12)0.0771 (14)0.0016 (10)0.0505 (12)0.0029 (10)
C30.0489 (11)0.0585 (12)0.0567 (12)0.0010 (9)0.0350 (11)0.0044 (9)
C40.0662 (14)0.0564 (12)0.0786 (14)0.0033 (10)0.0552 (13)0.0036 (10)
C50.0644 (14)0.0699 (14)0.0705 (14)0.0014 (11)0.0489 (13)0.0012 (11)
C60.0704 (16)0.0911 (17)0.0808 (16)0.0113 (13)0.0529 (14)0.0127 (13)
C70.103 (2)0.0963 (19)0.0912 (18)0.0282 (15)0.0613 (18)0.0042 (14)
C80.0747 (15)0.0631 (13)0.0928 (16)0.0095 (11)0.0615 (14)0.0032 (11)
Geometric parameters (Å, º) top
O1—C21.220 (2)C3—C81.495 (3)
O2—C51.200 (2)C4—C51.463 (3)
O3—C51.345 (2)C4—H40.9300
O3—C61.444 (2)C6—C71.496 (3)
N1—C21.358 (2)C6—H6A0.9700
N1—C31.398 (2)C6—H6B0.9700
N1—H1A0.8600C7—H7A0.9600
C1—C21.485 (3)C7—H7B0.9600
C1—H1B0.9600C7—H7C0.9600
C1—H1C0.9600C8—H8A0.9600
C1—H1D0.9600C8—H8B0.9600
C3—C41.333 (3)C8—H8C0.9600
C5—O3—C6116.38 (17)O2—C5—C4128.1 (2)
C2—N1—C3129.64 (16)O3—C5—C4109.46 (17)
C2—N1—H1A115.2O3—C6—C7107.52 (19)
C3—N1—H1A115.2O3—C6—H6A110.2
C2—C1—H1B109.5C7—C6—H6A110.2
C2—C1—H1C109.5O3—C6—H6B110.2
H1B—C1—H1C109.5C7—C6—H6B110.2
C2—C1—H1D109.5H6A—C6—H6B108.5
H1B—C1—H1D109.5C6—C7—H7A109.5
H1C—C1—H1D109.5C6—C7—H7B109.5
O1—C2—N1122.88 (17)H7A—C7—H7B109.5
O1—C2—C1121.88 (17)C6—C7—H7C109.5
N1—C2—C1115.24 (17)H7A—C7—H7C109.5
C4—C3—N1122.61 (17)H7B—C7—H7C109.5
C4—C3—C8125.27 (18)C3—C8—H8A109.5
N1—C3—C8112.12 (16)C3—C8—H8B109.5
C3—C4—C5124.71 (19)H8A—C8—H8B109.5
C3—C4—H4117.6C3—C8—H8C109.5
C5—C4—H4117.6H8A—C8—H8C109.5
O2—C5—O3122.39 (18)H8B—C8—H8C109.5
C3—N1—C2—O12.3 (3)C6—O3—C5—O21.5 (3)
C3—N1—C2—C1177.4 (2)C6—O3—C5—C4178.83 (17)
C2—N1—C3—C47.3 (3)C3—C4—C5—O28.7 (4)
C2—N1—C3—C8171.98 (19)C3—C4—C5—O3171.69 (19)
N1—C3—C4—C5179.42 (18)C5—O3—C6—C7178.91 (19)
C8—C3—C4—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.943 (2)165
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H13NO3
Mr171.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)20.006 (4), 9.545 (2), 11.922 (2)
β (°) 124.479 (4)
V3)1876.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.28 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6283, 2162, 1053
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.05
No. of reflections2162
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL-NT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT.

Selected geometric parameters (Å, º) top
O1—C21.220 (2)C3—C41.333 (3)
O2—C51.200 (2)C3—C81.495 (3)
N1—C21.358 (2)C4—C51.463 (3)
N1—C31.398 (2)
O1—C2—N1122.88 (17)C3—C4—C5124.71 (19)
O1—C2—C1121.88 (17)O2—C5—C4128.1 (2)
C4—C3—C8125.27 (18)O3—C5—C4109.46 (17)
N1—C3—C8112.12 (16)
C3—N1—C2—O12.3 (3)C6—O3—C5—C4178.83 (17)
C8—C3—C4—C50.2 (3)C3—C4—C5—O3171.69 (19)
C6—O3—C5—O21.5 (3)C5—O3—C6—C7178.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.102.943 (2)165
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds