Download citation
Download citation
link to html
The title compound, C21H25BrN2O, was synthesized by the Heck reaction. Its crystal structure shows that there are π–π-stacking interactions between the two aromatic rings of the two neighboring mol­ecules in the unit cell. The C—I bond distance is 2.108 (4) Å and the butene double-bond distance is 1.311 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802004956/ww6013sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802004956/ww6013Isup2.hkl
Contains datablock I

CCDC reference: 183820

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.103
  • Data-to-parameter ratio = 14.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1989); cell refinement: CAD-4-PC; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

4-{5-(dimethylamino)-2-[(4-(dimethylamino)-2 -iodophenyl)methyl]phenyl}-(3E)-3-Buten-2-one top
Crystal data top
C21H25IN2OZ = 2
Mr = 448.33F(000) = 452
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Melting point: 437-438K K
a = 9.168 (3) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.884 (1) ÅCell parameters from 25 reflections
c = 10.969 (2) Åθ = 0.0–25.0°
α = 84.83 (1)°µ = 1.63 mm1
β = 82.21 (2)°T = 293 K
γ = 65.51 (2)°Plate, brown
V = 986.2 (4) Å30.3 × 0.2 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2963 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.682, Tmax = 0.721l = 013
3613 measured reflections5 standard reflections every 300 reflections
3417 independent reflections intensity decay: 0.0005%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.02P)2 + 1.98P]
where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. All commercially available reagents were used as supplied. 1H NMR spectra were obtained from CDCl3 solution using TMS as an internal standard on a Bruker FC-80 A instrument. Mass spectra (MS) were measured on an HP-5988 A GCMS spectrometer. CHN analyses were performed on a Carlo Erba 1106 elemental analyzer. FT–IR spectra were taken on a Nicolet 179 SXFT-IR spectrophotometer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32012 (3)0.26835 (3)0.97653 (3)0.09612 (10)
N10.8990 (4)0.0835 (4)1.1479 (3)0.0958 (12)
N20.8529 (4)0.5409 (3)0.3573 (3)0.0869 (10)
O10.8223 (4)0.0984 (3)0.5422 (3)0.1048 (11)
C11.0574 (5)0.0737 (4)1.1539 (4)0.0904 (13)
H1A1.05150.15011.19500.136*
H1B1.11040.07231.07200.136*
H1C1.11710.00791.19870.136*
C20.8401 (5)0.0056 (5)1.2351 (4)0.1074 (16)
H2A0.75570.06461.29130.161*
H2B0.92630.05591.27990.161*
H2C0.79870.04461.19300.161*
C30.7987 (4)0.1759 (4)1.0673 (3)0.0702 (10)
C40.8456 (4)0.2650 (4)0.9901 (3)0.0738 (11)
H40.94540.26650.99450.089*
C50.7459 (4)0.3507 (3)0.9074 (3)0.0684 (10)
H50.78150.40850.85710.082*
C60.5961 (4)0.3555 (3)0.8951 (3)0.0602 (9)
C70.5481 (4)0.2733 (3)0.9733 (3)0.0662 (9)
C80.6438 (4)0.1837 (4)1.0578 (3)0.0703 (10)
H80.60490.12841.10870.084*
C90.4930 (4)0.4572 (4)0.8025 (3)0.0698 (10)
H9A0.41400.42660.78230.084*
H9B0.43480.54340.84110.084*
C100.5877 (4)0.4775 (3)0.6851 (3)0.0622 (9)
C110.6601 (4)0.3758 (3)0.5967 (3)0.0600 (9)
C120.7471 (4)0.3991 (3)0.4904 (3)0.0629 (9)
H120.79260.33230.43250.075*
C130.7693 (4)0.5182 (3)0.4666 (3)0.0642 (9)
C140.7001 (4)0.6166 (3)0.5554 (3)0.0689 (10)
H140.71360.69710.54350.083*
C150.6120 (4)0.5944 (3)0.6606 (3)0.0676 (10)
H150.56670.66180.71790.081*
C160.8916 (4)0.6558 (4)0.3420 (4)0.0800 (12)
H16A0.79460.73640.35460.120*
H16B0.94300.65900.26020.120*
H16C0.96320.64930.40090.120*
C170.9421 (5)0.4316 (4)0.2774 (4)0.0879 (13)
H17A1.02310.36090.32040.132*
H17B0.99290.46290.20660.132*
H17C0.87040.39760.25150.132*
C180.6433 (4)0.2480 (3)0.6166 (3)0.0639 (9)
H180.55230.24920.66650.077*
C190.7429 (4)0.1313 (3)0.5716 (3)0.0692 (10)
H190.83520.12940.52320.083*
C200.7237 (5)0.0044 (4)0.5898 (3)0.0754 (11)
C210.5803 (5)0.0020 (4)0.6708 (5)0.1036 (15)
H21A0.59560.09460.68560.155*
H21B0.48460.04630.63050.155*
H21C0.56940.03830.74770.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.07575 (13)0.1258 (2)0.0981 (2)0.05593 (12)0.00825 (13)0.01221 (15)
N10.0807 (18)0.107 (2)0.091 (2)0.0339 (17)0.0151 (17)0.0260 (19)
N20.106 (2)0.0722 (17)0.077 (2)0.0377 (15)0.0179 (17)0.0105 (15)
O10.130 (2)0.0638 (14)0.107 (2)0.0330 (15)0.0177 (18)0.0155 (14)
C10.085 (2)0.082 (2)0.097 (3)0.026 (2)0.024 (2)0.006 (2)
C20.100 (3)0.119 (3)0.093 (3)0.040 (2)0.019 (2)0.036 (2)
C30.0695 (18)0.0708 (19)0.065 (2)0.0252 (16)0.0001 (16)0.0033 (16)
C40.0621 (17)0.085 (2)0.074 (2)0.0310 (16)0.0040 (16)0.0037 (18)
C50.0652 (17)0.0677 (18)0.071 (2)0.0291 (14)0.0018 (16)0.0007 (16)
C60.0567 (15)0.0603 (16)0.0592 (18)0.0210 (13)0.0037 (14)0.0099 (14)
C70.0625 (16)0.0672 (18)0.070 (2)0.0291 (14)0.0042 (16)0.0093 (16)
C80.0695 (18)0.0707 (19)0.068 (2)0.0290 (15)0.0034 (16)0.0028 (16)
C90.0635 (18)0.0659 (19)0.067 (2)0.0148 (15)0.0005 (16)0.0083 (16)
C100.0583 (16)0.0587 (17)0.0602 (18)0.0136 (14)0.0080 (14)0.0045 (15)
C110.0592 (15)0.0573 (16)0.0590 (18)0.0177 (13)0.0128 (14)0.0013 (14)
C120.0656 (17)0.0546 (17)0.0595 (18)0.0154 (14)0.0037 (15)0.0074 (14)
C130.0643 (17)0.0590 (17)0.0623 (19)0.0186 (14)0.0071 (15)0.0007 (15)
C140.0777 (19)0.0542 (17)0.067 (2)0.0198 (15)0.0074 (17)0.0012 (15)
C150.0733 (19)0.0548 (17)0.0634 (19)0.0139 (15)0.0069 (16)0.0080 (15)
C160.086 (2)0.072 (2)0.077 (2)0.0310 (17)0.0000 (19)0.0019 (18)
C170.096 (2)0.077 (2)0.080 (2)0.0302 (19)0.014 (2)0.011 (2)
C180.0689 (17)0.0618 (17)0.0591 (18)0.0241 (14)0.0089 (15)0.0025 (15)
C190.0767 (19)0.0613 (18)0.064 (2)0.0235 (15)0.0041 (16)0.0017 (16)
C200.091 (2)0.0613 (19)0.070 (2)0.0273 (17)0.0056 (18)0.0046 (17)
C210.093 (3)0.0831 (12)0.072 (4)0.031 (12)0.0011 (13)0.0038 (12)
Geometric parameters (Å, º) top
I1—C72.108 (4)C9—H9B0.9700
N1—C31.390 (5)C10—C151.378 (5)
N1—C21.421 (6)C10—C111.420 (4)
N1—C11.422 (5)C11—C121.387 (5)
N2—C131.393 (4)C11—C181.456 (5)
N2—C161.425 (5)C12—C131.390 (5)
N2—C171.428 (5)C12—H120.9300
O1—C201.217 (4)C13—C141.398 (5)
C1—H1A0.9600C14—C151.379 (5)
C1—H1B0.9600C14—H140.9300
C1—H1C0.9600C15—H150.9300
C2—H2A0.9600C16—H16A0.9600
C2—H2B0.9600C16—H16B0.9600
C2—H2C0.9600C16—H16C0.9600
C3—C41.392 (5)C17—H17A0.9600
C3—C81.405 (5)C17—H17B0.9600
C4—C51.377 (5)C17—H17C0.9600
C4—H40.9300C18—C191.311 (4)
C5—C61.377 (5)C18—H180.9300
C5—H50.9300C19—C201.456 (5)
C6—C71.347 (5)C19—H190.9300
C6—C91.530 (4)C20—C211.507 (6)
C7—C81.389 (5)C21—H21A0.9600
C8—H80.9300C21—H21B0.9600
C9—C101.506 (5)C21—H21C0.9600
C9—H9A0.9700
C3—N1—C2120.6 (4)C11—C10—C9121.6 (3)
C3—N1—C1121.1 (4)C12—C11—C10119.4 (3)
C2—N1—C1118.0 (3)C12—C11—C18120.0 (3)
C13—N2—C16120.3 (3)C10—C11—C18120.6 (3)
C13—N2—C17119.3 (3)C11—C12—C13122.7 (3)
C16—N2—C17117.6 (3)C11—C12—H12118.6
N1—C1—H1A109.5C13—C12—H12118.6
N1—C1—H1B109.5C12—C13—N2121.6 (3)
H1A—C1—H1B109.5C12—C13—C14117.4 (3)
N1—C1—H1C109.5N2—C13—C14121.0 (3)
H1A—C1—H1C109.5C15—C14—C13120.1 (3)
H1B—C1—H1C109.5C15—C14—H14120.0
N1—C2—H2A109.5C13—C14—H14120.0
N1—C2—H2B109.5C10—C15—C14123.3 (3)
H2A—C2—H2B109.5C10—C15—H15118.3
N1—C2—H2C109.5C14—C15—H15118.3
H2A—C2—H2C109.5N2—C16—H16A109.5
H2B—C2—H2C109.5N2—C16—H16B109.5
N1—C3—C4122.5 (3)H16A—C16—H16B109.5
N1—C3—C8121.7 (3)N2—C16—H16C109.5
C4—C3—C8115.9 (3)H16A—C16—H16C109.5
C5—C4—C3120.8 (4)H16B—C16—H16C109.5
C5—C4—H4119.6N2—C17—H17A109.5
C3—C4—H4119.6N2—C17—H17B109.5
C4—C5—C6123.4 (3)H17A—C17—H17B109.5
C4—C5—H5118.3N2—C17—H17C109.5
C6—C5—H5118.3H17A—C17—H17C109.5
C7—C6—C5115.7 (3)H17B—C17—H17C109.5
C7—C6—C9124.9 (3)C19—C18—C11126.9 (3)
C5—C6—C9119.3 (3)C19—C18—H18116.5
C6—C7—C8123.4 (3)C11—C18—H18116.5
C6—C7—I1122.6 (2)C18—C19—C20126.7 (3)
C8—C7—I1114.0 (3)C18—C19—H19116.7
C7—C8—C3120.7 (3)C20—C19—H19116.7
C7—C8—H8119.7O1—C20—C19121.6 (4)
C3—C8—H8119.7O1—C20—C21118.5 (4)
C10—C9—C6114.1 (3)C19—C20—C21119.9 (3)
C10—C9—H9A108.7C20—C21—H21A109.5
C6—C9—H9A108.7C20—C21—H21B109.5
C10—C9—H9B108.7H21A—C21—H21B109.5
C6—C9—H9B108.7C20—C21—H21C109.5
H9A—C9—H9B107.6H21A—C21—H21C109.5
C15—C10—C11117.1 (3)H21B—C21—H21C109.5
C15—C10—C9121.3 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds