organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1037

(1R,3S,5R,6S)-6-Acet­­oxy-8-methyl-3-(p-tolyl­sulfon­yl­oxy)-8-azoniabi­cyclo­[3.2.1]octane (2R,3R)-2,3-bis­­(benzo­yl­oxy)-3-carb­oxy­propanoate

aDepartment of Pharmacy, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 280, Shanghai 200025, People's Republic of China
*Correspondence e-mail: huaxue@shsmu.edu.cn

(Received 6 January 2009; accepted 3 April 2009; online 18 April 2009)

The title compound, C17H24NO5S+·C18H13O8, is the key inter­mediate during the preparation of lesatropane [systematic name (1R,3S,5R,6S)-6-acetoxy-3-(4-methylphenylsulfonyloxy)tropane], a potential anti­glaucoma agent. The tertiary N atom of the tropane ring is involved in inter­molecular N—H⋯O hydrogen bonding, and the carboxylate groups are involved in inter­molecular O—H⋯O hydrogen bonding.

Related literature

For the crystal structure of lesatropane, see: Yang et al. (2008[Yang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.]). For its improved agonistic activity compared to its racemic counterpart, see: Zhu et al. (2008[Zhu, L., Yang, L.-M., Cui, Y.-Y., Zheng, P.-L., Niu, Y.-Y., Wang, H., Lu, Y., Ren, Q.-S., Wei, P.-J. & Chen, H.-Z. (2008). Acta Pharmacol. Sin. 29, 177-184.]). For synthetic details, see: Yang & Wang (1998[Yang, L. & Wang, H. (1998). Acta Pharm. Sin. 33, 832-835.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24NO5S+·C18H13O8

  • Mr = 711.72

  • Orthorhombic, P 21 21 21

  • a = 7.4153 (5) Å

  • b = 19.2664 (12) Å

  • c = 24.7388 (16) Å

  • V = 3534.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.31 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 1.000 (expected range = 0.852–0.987)

  • 18779 measured reflections

  • 6550 independent reflections

  • 5135 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.125

  • S = 1.06

  • 6550 reflections

  • 459 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3094 Friedel pairs

  • Flack parameter: 0.03 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.860 (18) 1.89 (2) 2.699 (4) 156 (3)
O4—H4⋯O2i 0.82 1.66 2.460 (3) 164
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

6β-Acetoxy-3α-paramethylbenzene sulfonyloxy tropane is a potent muscarinic receptor agonist and has been shown to be a promising candidate as a new antiglaucoma agent. The pharmacology results suggest that the (1R,3S,5R,6S) isomer (lesatropane), the crystal structure has been reported (Yang et al., 2008), displays an improved agonistic activity compared to its racemic counterpart (Zhu et al., 2008). The enantiopure isomer was obtained by the optical resolution of the racemic tropane alkaloids with the chiral acid (Yang & Wang, 1998). We report here the crystal structure of the diastereoisomeric salt, (1R,3S,5R,6S)-6-acetoxy-3-paramethylbenzene sulfonyloxytropane and (-)-O',O'-dibenzyl-L-tartaric acid (1/1), formed during the resolution. The three-dimensional structure of the title compound is shown in Fig.1. X-ray structure analytical data showed that the diastereoisomeric salt is produced by the formation of hydrogen bonds. The nitrogen atom of the tropane alkaloid is protonated to form the cation and the chiral acid is deprotonated to form anion. Each anion interacts with a cation (via N atom) forming N–H···O hydrogen bond, and chiral acid anions are linked by O–H···O hydrogen bond with each other (Fig. 2).

Related literature top

For the crystal structure of lesatropane, see: Yang et al. (2008). For its improved agonistic activity compared to its racemic counterpart, see: Zhu et al. (2008). For synthetic details, see: Yang & Wang (1998).

Experimental top

Rac 6β-acetoxy-3α-paramethylbenzene sulfonyloxytropane (586.3 mg, 1.66 mmol) and (-)-2,3-dibenzoyl-L-tartaric acid (728.3 mg, 2.03 mmol) were dissolved in methanol. After disposing at room temperature for 12 h, the title compound as precipitate was collected by filtration. Three recrystallizations of the crude product from anhydrous ethanol gave pure colorless crystals, 30% yield, m.p. 443–445 K, [α]D20 -14.23 (c = 0.084, EtOH).

Refinement top

H atoms were located in a difference Fourier map and refined isotropically with bond restraint: N1–H1A=0.860 (18)Å, other H atoms were positioned geometrically and treated as riding, with C–H and O–H bond lengths constrained to 0.96Å for methyl, 0.97Å for methylene, 0.98Å for methine, 0.93Å for Csp2—H and 0.82Å for hydroxyl, with Uiso(H) = 1.5Ueq(methyl C and hydroxyl O) and Uiso(H) = 1.2Ueq(methylene and methine C). The 3094 Friedel pairs were used in the measurement of the Flack parameter (Flack, 1983).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2080); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The intermolecular N–H···O and O–H···O hydrogen bonds (dashed lines).
(1R,3S,5R,6S)-6-Acetoxy-8-methyl-3-(p- tolylsulfonyloxy)-8-azoniabicyclo[3.2.1]octane (2R,3R)-2,3-bis(benzoyloxy)-3-carboxypropanoate top
Crystal data top
C17H24NO5S+·C18H13O8Dx = 1.338 Mg m3
Mr = 711.72Melting point: 445 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3212 reflections
a = 7.4153 (5) Åθ = 4.5–39.6°
b = 19.2664 (12) ŵ = 0.16 mm1
c = 24.7388 (16) ÅT = 293 K
V = 3534.3 (4) Å3Prismatic, colorless
Z = 40.31 × 0.16 × 0.08 mm
F(000) = 1496
Data collection top
Bruker SMART CCD area-detector
diffractometer
6550 independent reflections
Radiation source: fine-focus sealed tube5135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 88
Tmin = 0.863, Tmax = 1.000k = 2322
18779 measured reflectionsl = 2925
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
6550 reflectionsΔρmax = 0.19 e Å3
459 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 3094 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (12)
Crystal data top
C17H24NO5S+·C18H13O8V = 3534.3 (4) Å3
Mr = 711.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4153 (5) ŵ = 0.16 mm1
b = 19.2664 (12) ÅT = 293 K
c = 24.7388 (16) Å0.31 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
5135 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.081
18779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.17 e Å3
6550 reflectionsAbsolute structure: Flack (1983), 3094 Friedel pairs
459 parametersAbsolute structure parameter: 0.03 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43913 (19)0.80222 (5)0.07318 (5)0.0665 (4)
O10.8630 (3)0.65740 (12)0.25014 (9)0.0447 (6)
O20.9488 (3)0.64372 (13)0.33606 (9)0.0503 (7)
O30.3089 (4)0.53125 (14)0.33986 (11)0.0635 (8)
O40.2542 (3)0.63195 (15)0.29838 (11)0.0607 (8)
H40.15410.62820.31210.091*
O50.6110 (3)0.64586 (10)0.37312 (8)0.0344 (5)
O60.6373 (5)0.76048 (13)0.37990 (11)0.0713 (9)
O70.6535 (3)0.52908 (11)0.29852 (8)0.0381 (6)
O80.4990 (4)0.47399 (14)0.23402 (11)0.0665 (8)
O90.3342 (3)0.51778 (11)0.09819 (9)0.0437 (6)
O100.6199 (4)0.54125 (18)0.11767 (14)0.0864 (10)
O110.3041 (4)0.74042 (11)0.08365 (9)0.0567 (8)
O120.5495 (5)0.81346 (16)0.12012 (13)0.0827 (10)
O130.5200 (6)0.78393 (14)0.02309 (13)0.1013 (14)
N10.0691 (4)0.60385 (15)0.17050 (12)0.0403 (7)
C10.5418 (4)0.58904 (15)0.28989 (13)0.0312 (7)
H10.53250.59740.25090.037*
C20.6353 (4)0.65030 (16)0.31564 (11)0.0308 (7)
H20.57840.69310.30260.037*
C30.8340 (4)0.65123 (16)0.29961 (14)0.0337 (8)
C40.3536 (5)0.57930 (19)0.31248 (13)0.0382 (8)
C50.6121 (5)0.70611 (18)0.40081 (14)0.0425 (9)
C60.5822 (5)0.69397 (18)0.45963 (14)0.0431 (9)
C70.5218 (6)0.6320 (2)0.48022 (15)0.0561 (11)
H70.50150.59490.45700.067*
C80.4907 (7)0.6240 (2)0.53502 (18)0.0750 (14)
H80.44760.58210.54850.090*
C90.5241 (7)0.6785 (3)0.56931 (18)0.0791 (15)
H90.50550.67320.60630.095*
C100.5841 (7)0.7403 (3)0.54952 (18)0.0780 (15)
H100.60520.77710.57300.094*
C110.6139 (6)0.7486 (2)0.49489 (17)0.0663 (12)
H110.65530.79090.48170.080*
C120.6235 (5)0.47548 (18)0.26441 (14)0.0431 (9)
C130.7706 (6)0.42341 (17)0.26702 (14)0.0464 (10)
C140.7538 (7)0.36354 (19)0.23575 (15)0.0697 (14)
H140.64630.35430.21780.084*
C150.8981 (10)0.3175 (2)0.2315 (2)0.0876 (19)
H150.88850.27810.21000.105*
C161.0522 (10)0.3306 (3)0.2589 (2)0.093 (2)
H161.14790.29960.25600.111*
C171.0715 (7)0.3883 (2)0.2910 (2)0.0732 (14)
H171.17850.39620.30960.088*
C180.9293 (6)0.43443 (18)0.29510 (16)0.0529 (11)
H180.94050.47340.31700.064*
C190.2672 (5)0.61242 (17)0.16238 (12)0.0380 (8)
H190.33490.58160.18650.046*
C200.3139 (5)0.68767 (17)0.17330 (13)0.0448 (9)
H20A0.44230.69440.16800.054*
H20B0.28650.69840.21070.054*
C210.2105 (6)0.73772 (18)0.13658 (14)0.0509 (11)
H210.21020.78410.15290.061*
C220.0196 (6)0.71503 (18)0.12643 (15)0.0533 (10)
H22A0.02390.73790.09400.064*
H22B0.05480.73050.15630.064*
C230.0048 (5)0.63679 (18)0.11971 (14)0.0450 (9)
H230.13220.62490.11460.054*
C240.1113 (5)0.60421 (18)0.07602 (13)0.0459 (10)
H24A0.12330.63530.04540.055*
H24B0.05910.56080.06370.055*
C250.2953 (5)0.59160 (16)0.10286 (13)0.0365 (8)
H250.38980.61970.08590.044*
C260.5068 (6)0.4997 (2)0.10702 (16)0.0547 (11)
C270.5346 (8)0.4234 (2)0.10171 (19)0.0869 (16)
H27A0.64150.41010.12100.130*
H27B0.54780.41160.06420.130*
H27C0.43250.39930.11650.130*
C280.0126 (6)0.53036 (19)0.17885 (16)0.0608 (11)
H28A0.04940.50300.14840.091*
H28B0.11620.52820.18250.091*
H28C0.06820.51260.21100.091*
C290.2935 (7)0.87247 (18)0.06412 (14)0.0555 (11)
C300.3384 (7)0.93614 (18)0.08560 (15)0.0591 (12)
H300.44530.94190.10470.071*
C310.2217 (8)0.9912 (2)0.07822 (17)0.0699 (14)
H310.25231.03420.09250.084*
C320.0617 (8)0.9846 (2)0.05054 (16)0.0696 (14)
C330.0230 (9)0.9193 (2)0.03008 (17)0.0857 (17)
H330.08470.91280.01150.103*
C340.1363 (8)0.8643 (2)0.03609 (16)0.0794 (17)
H340.10690.82140.02120.095*
C350.0664 (10)1.0455 (3)0.04588 (19)0.111 (2)
H35A0.10941.05800.08120.167*
H35B0.16671.03290.02340.167*
H35C0.00431.08430.03010.167*
H1A0.032 (5)0.6269 (16)0.1981 (11)0.054 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0980 (10)0.0401 (5)0.0614 (7)0.0053 (6)0.0372 (7)0.0059 (5)
O10.0397 (14)0.0591 (15)0.0352 (13)0.0003 (13)0.0084 (11)0.0051 (11)
O20.0320 (14)0.0785 (18)0.0404 (14)0.0036 (14)0.0004 (12)0.0020 (13)
O30.0570 (19)0.0574 (17)0.076 (2)0.0078 (15)0.0169 (15)0.0155 (15)
O40.0278 (14)0.087 (2)0.0668 (18)0.0102 (15)0.0113 (13)0.0265 (16)
O50.0368 (13)0.0345 (12)0.0318 (12)0.0018 (11)0.0078 (10)0.0011 (10)
O60.121 (3)0.0339 (14)0.0589 (18)0.0120 (16)0.0077 (18)0.0011 (13)
O70.0399 (14)0.0359 (12)0.0385 (13)0.0052 (11)0.0030 (11)0.0047 (10)
O80.075 (2)0.0667 (18)0.0578 (18)0.0039 (17)0.0186 (16)0.0172 (15)
O90.0515 (17)0.0386 (13)0.0409 (14)0.0016 (12)0.0038 (12)0.0042 (11)
O100.053 (2)0.086 (2)0.120 (3)0.0026 (19)0.015 (2)0.012 (2)
O110.095 (2)0.0355 (13)0.0397 (15)0.0029 (14)0.0216 (14)0.0002 (11)
O120.077 (2)0.077 (2)0.093 (2)0.0141 (19)0.003 (2)0.0102 (18)
O130.159 (4)0.0518 (18)0.093 (2)0.002 (2)0.081 (2)0.0111 (16)
N10.0452 (19)0.0415 (17)0.0341 (17)0.0024 (14)0.0082 (14)0.0053 (14)
C10.0264 (18)0.0359 (16)0.0314 (17)0.0040 (15)0.0011 (14)0.0034 (14)
C20.0279 (18)0.0348 (17)0.0299 (17)0.0031 (15)0.0025 (14)0.0021 (14)
C30.0327 (19)0.0298 (16)0.038 (2)0.0031 (15)0.0062 (16)0.0033 (15)
C40.034 (2)0.048 (2)0.0325 (19)0.0028 (18)0.0006 (16)0.0029 (16)
C50.039 (2)0.041 (2)0.047 (2)0.0050 (18)0.0061 (17)0.0086 (18)
C60.037 (2)0.047 (2)0.045 (2)0.0001 (18)0.0039 (17)0.0130 (18)
C70.067 (3)0.058 (2)0.044 (2)0.007 (2)0.007 (2)0.0068 (19)
C80.093 (4)0.078 (3)0.054 (3)0.010 (3)0.015 (3)0.007 (2)
C90.084 (4)0.115 (4)0.038 (3)0.016 (3)0.002 (2)0.001 (3)
C100.074 (4)0.106 (4)0.054 (3)0.001 (3)0.002 (3)0.037 (3)
C110.073 (3)0.075 (3)0.050 (3)0.013 (3)0.007 (2)0.020 (2)
C120.053 (2)0.045 (2)0.031 (2)0.0080 (19)0.0071 (18)0.0013 (17)
C130.074 (3)0.0310 (18)0.035 (2)0.0024 (19)0.018 (2)0.0075 (16)
C140.123 (4)0.046 (2)0.040 (2)0.006 (3)0.020 (2)0.0053 (19)
C150.158 (6)0.039 (2)0.066 (3)0.033 (3)0.036 (4)0.004 (2)
C160.132 (6)0.057 (3)0.090 (4)0.038 (4)0.054 (4)0.026 (3)
C170.075 (3)0.055 (3)0.089 (3)0.023 (2)0.025 (3)0.026 (2)
C180.063 (3)0.039 (2)0.057 (2)0.004 (2)0.020 (2)0.0065 (18)
C190.048 (2)0.0395 (18)0.0269 (18)0.0054 (17)0.0006 (16)0.0074 (15)
C200.061 (3)0.043 (2)0.0304 (19)0.0098 (19)0.0002 (17)0.0058 (16)
C210.075 (3)0.0370 (19)0.041 (2)0.002 (2)0.026 (2)0.0010 (16)
C220.066 (3)0.050 (2)0.043 (2)0.013 (2)0.006 (2)0.0064 (18)
C230.037 (2)0.053 (2)0.045 (2)0.0005 (18)0.0034 (17)0.0060 (18)
C240.063 (3)0.0428 (19)0.0320 (19)0.0073 (19)0.0083 (18)0.0002 (16)
C250.048 (2)0.0293 (17)0.0320 (19)0.0012 (17)0.0033 (16)0.0030 (14)
C260.053 (3)0.062 (3)0.049 (2)0.003 (2)0.002 (2)0.003 (2)
C270.114 (5)0.066 (3)0.081 (3)0.034 (3)0.019 (3)0.010 (3)
C280.060 (3)0.056 (2)0.066 (3)0.013 (2)0.013 (2)0.020 (2)
C290.099 (4)0.039 (2)0.028 (2)0.012 (2)0.013 (2)0.0027 (16)
C300.094 (4)0.037 (2)0.047 (2)0.015 (2)0.013 (2)0.0071 (17)
C310.127 (5)0.037 (2)0.045 (3)0.012 (3)0.017 (3)0.0121 (19)
C320.123 (5)0.052 (3)0.034 (2)0.006 (3)0.000 (3)0.0035 (19)
C330.141 (5)0.068 (3)0.048 (3)0.005 (3)0.037 (3)0.004 (2)
C340.157 (5)0.035 (2)0.047 (3)0.011 (3)0.026 (3)0.0005 (19)
C350.183 (7)0.086 (4)0.064 (3)0.055 (4)0.009 (4)0.004 (3)
Geometric parameters (Å, º) top
S1—O131.421 (3)C15—C161.353 (7)
S1—O121.437 (3)C15—H150.9300
S1—O111.577 (3)C16—C171.372 (7)
S1—C291.746 (4)C16—H160.9300
O1—C31.248 (4)C17—C181.383 (5)
O2—C31.249 (4)C17—H170.9300
O3—C41.194 (4)C18—H180.9300
O4—C41.301 (4)C19—C201.515 (5)
O4—H40.8200C19—C251.540 (4)
O5—C51.348 (4)C19—H190.9800
O5—C21.436 (3)C20—C211.530 (5)
O6—C51.183 (4)C20—H20A0.9700
O7—C121.352 (4)C20—H20B0.9700
O7—C11.437 (3)C21—C221.503 (6)
O8—C121.191 (4)C21—H210.9800
O9—C261.344 (5)C22—C231.527 (5)
O9—C251.456 (4)C22—H22A0.9700
O10—C261.189 (5)C22—H22B0.9700
O11—C211.483 (4)C23—C241.518 (5)
N1—C281.491 (4)C23—H230.9800
N1—C191.492 (5)C24—C251.537 (5)
N1—C231.511 (4)C24—H24A0.9700
N1—H1A0.860 (18)C24—H24B0.9700
C1—C21.510 (4)C25—H250.9800
C1—C41.515 (5)C26—C271.490 (5)
C1—H10.9800C27—H27A0.9600
C2—C31.525 (4)C27—H27B0.9600
C2—H20.9800C27—H27C0.9600
C5—C61.491 (5)C28—H28A0.9600
C6—C71.373 (5)C28—H28B0.9600
C6—C111.387 (5)C28—H28C0.9600
C7—C81.384 (5)C29—C341.365 (6)
C7—H70.9300C29—C301.378 (5)
C8—C91.373 (6)C30—C311.381 (6)
C8—H80.9300C30—H300.9300
C9—C101.362 (6)C31—C321.375 (7)
C9—H90.9300C31—H310.9300
C10—C111.379 (6)C32—C331.386 (6)
C10—H100.9300C32—C351.515 (7)
C11—H110.9300C33—C341.360 (7)
C12—C131.484 (5)C33—H330.9300
C13—C181.383 (5)C34—H340.9300
C13—C141.394 (5)C35—H35A0.9600
C14—C151.393 (7)C35—H35B0.9600
C14—H140.9300C35—H35C0.9600
O13—S1—O12120.1 (2)C20—C19—C25112.9 (3)
O13—S1—O11102.92 (17)N1—C19—H19110.8
O12—S1—O11110.05 (17)C20—C19—H19110.8
O13—S1—C29109.95 (19)C25—C19—H19110.8
O12—S1—C29109.84 (19)C19—C20—C21112.5 (3)
O11—S1—C29102.33 (19)C19—C20—H20A109.1
C4—O4—H4109.5C21—C20—H20A109.1
C5—O5—C2116.8 (2)C19—C20—H20B109.1
C12—O7—C1115.2 (3)C21—C20—H20B109.1
C26—O9—C25115.4 (3)H20A—C20—H20B107.8
C21—O11—S1117.9 (2)O11—C21—C22107.7 (3)
C28—N1—C19113.6 (3)O11—C21—C20108.2 (3)
C28—N1—C23114.4 (3)C22—C21—C20112.8 (3)
C19—N1—C23101.5 (3)O11—C21—H21109.4
C28—N1—H1A107 (2)C22—C21—H21109.4
C19—N1—H1A111 (3)C20—C21—H21109.4
C23—N1—H1A109 (2)C21—C22—C23114.6 (3)
O7—C1—C2107.5 (2)C21—C22—H22A108.6
O7—C1—C4112.1 (3)C23—C22—H22A108.6
C2—C1—C4111.4 (3)C21—C22—H22B108.6
O7—C1—H1108.6C23—C22—H22B108.6
C2—C1—H1108.6H22A—C22—H22B107.6
C4—C1—H1108.6N1—C23—C24102.3 (3)
O5—C2—C1108.3 (2)N1—C23—C22106.3 (3)
O5—C2—C3112.3 (3)C24—C23—C22114.7 (3)
C1—C2—C3110.1 (3)N1—C23—H23111.0
O5—C2—H2108.7C24—C23—H23111.0
C1—C2—H2108.7C22—C23—H23111.0
C3—C2—H2108.7C23—C24—C25105.2 (3)
O1—C3—O2127.0 (3)C23—C24—H24A110.7
O1—C3—C2115.0 (3)C25—C24—H24A110.7
O2—C3—C2118.0 (3)C23—C24—H24B110.7
O3—C4—O4126.8 (3)C25—C24—H24B110.7
O3—C4—C1124.1 (3)H24A—C24—H24B108.8
O4—C4—C1109.0 (3)O9—C25—C24107.2 (3)
O6—C5—O5122.8 (3)O9—C25—C19110.9 (2)
O6—C5—C6126.1 (3)C24—C25—C19104.6 (3)
O5—C5—C6111.1 (3)O9—C25—H25111.3
C7—C6—C11118.8 (4)C24—C25—H25111.3
C7—C6—C5123.2 (3)C19—C25—H25111.3
C11—C6—C5118.0 (4)O10—C26—O9122.2 (4)
C6—C7—C8121.0 (4)O10—C26—C27125.9 (4)
C6—C7—H7119.5O9—C26—C27111.9 (4)
C8—C7—H7119.5C26—C27—H27A109.5
C9—C8—C7119.3 (4)C26—C27—H27B109.5
C9—C8—H8120.3H27A—C27—H27B109.5
C7—C8—H8120.3C26—C27—H27C109.5
C10—C9—C8120.4 (4)H27A—C27—H27C109.5
C10—C9—H9119.8H27B—C27—H27C109.5
C8—C9—H9119.8N1—C28—H28A109.5
C9—C10—C11120.4 (4)N1—C28—H28B109.5
C9—C10—H10119.8H28A—C28—H28B109.5
C11—C10—H10119.8N1—C28—H28C109.5
C10—C11—C6120.1 (4)H28A—C28—H28C109.5
C10—C11—H11119.9H28B—C28—H28C109.5
C6—C11—H11119.9C34—C29—C30120.3 (4)
O8—C12—O7122.7 (4)C34—C29—S1120.3 (3)
O8—C12—C13125.5 (3)C30—C29—S1119.4 (4)
O7—C12—C13111.6 (3)C29—C30—C31118.8 (4)
C18—C13—C14118.8 (4)C29—C30—H30120.6
C18—C13—C12122.9 (3)C31—C30—H30120.6
C14—C13—C12118.0 (4)C32—C31—C30122.4 (4)
C15—C14—C13120.0 (5)C32—C31—H31118.8
C15—C14—H14120.0C30—C31—H31118.8
C13—C14—H14120.0C31—C32—C33116.4 (5)
C16—C15—C14119.5 (5)C31—C32—C35120.5 (4)
C16—C15—H15120.3C33—C32—C35123.1 (5)
C14—C15—H15120.3C34—C33—C32122.6 (5)
C15—C16—C17121.9 (5)C34—C33—H33118.7
C15—C16—H16119.0C32—C33—H33118.7
C17—C16—H16119.0C33—C34—C29119.5 (4)
C16—C17—C18118.9 (5)C33—C34—H34120.2
C16—C17—H17120.5C29—C34—H34120.2
C18—C17—H17120.5C32—C35—H35A109.5
C13—C18—C17120.9 (4)C32—C35—H35B109.5
C13—C18—H18119.6H35A—C35—H35B109.5
C17—C18—H18119.6C32—C35—H35C109.5
N1—C19—C20107.9 (3)H35A—C35—H35C109.5
N1—C19—C25103.5 (3)H35B—C35—H35C109.5
O13—S1—O11—C21172.7 (3)C28—N1—C19—C20161.2 (3)
O12—S1—O11—C2143.5 (3)C23—N1—C19—C2075.6 (3)
C29—S1—O11—C2173.2 (3)C28—N1—C19—C2579.0 (3)
C12—O7—C1—C2159.4 (3)C23—N1—C19—C2544.2 (3)
C12—O7—C1—C477.9 (3)N1—C19—C20—C2158.4 (4)
C5—O5—C2—C1152.1 (3)C25—C19—C20—C2155.3 (4)
C5—O5—C2—C386.1 (3)S1—O11—C21—C22140.3 (3)
O7—C1—C2—O576.2 (3)S1—O11—C21—C2097.5 (3)
C4—C1—C2—O547.0 (3)C19—C20—C21—O1181.1 (4)
O7—C1—C2—C347.0 (3)C19—C20—C21—C2237.9 (4)
C4—C1—C2—C3170.1 (3)O11—C21—C22—C2381.2 (4)
O5—C2—C3—O1177.7 (3)C20—C21—C22—C2338.1 (4)
C1—C2—C3—O161.6 (4)C28—N1—C23—C2475.5 (4)
O5—C2—C3—O24.5 (4)C19—N1—C23—C2447.2 (3)
C1—C2—C3—O2116.2 (3)C28—N1—C23—C22163.8 (3)
O7—C1—C4—O38.4 (5)C19—N1—C23—C2273.5 (3)
C2—C1—C4—O3112.1 (4)C21—C22—C23—N156.9 (4)
O7—C1—C4—O4173.3 (3)C21—C22—C23—C2455.3 (4)
C2—C1—C4—O466.2 (3)N1—C23—C24—C2531.6 (3)
C2—O5—C5—O62.3 (5)C22—C23—C24—C2583.1 (4)
C2—O5—C5—C6179.0 (3)C26—O9—C25—C24164.0 (3)
O6—C5—C6—C7167.8 (4)C26—O9—C25—C1982.3 (4)
O5—C5—C6—C713.5 (5)C23—C24—C25—O9122.5 (3)
O6—C5—C6—C1110.9 (6)C23—C24—C25—C194.7 (3)
O5—C5—C6—C11167.8 (3)N1—C19—C25—O990.9 (3)
C11—C6—C7—C80.8 (6)C20—C19—C25—O9152.8 (3)
C5—C6—C7—C8177.9 (4)N1—C19—C25—C2424.4 (3)
C6—C7—C8—C91.2 (7)C20—C19—C25—C2492.0 (3)
C7—C8—C9—C101.2 (8)C25—O9—C26—O100.3 (6)
C8—C9—C10—C110.7 (8)C25—O9—C26—C27179.7 (3)
C9—C10—C11—C60.2 (8)O13—S1—C29—C3469.6 (4)
C7—C6—C11—C100.3 (7)O12—S1—C29—C34156.1 (3)
C5—C6—C11—C10178.5 (4)O11—S1—C29—C3439.3 (4)
C1—O7—C12—O89.3 (5)O13—S1—C29—C30110.6 (3)
C1—O7—C12—C13166.2 (3)O12—S1—C29—C3023.7 (4)
O8—C12—C13—C18166.6 (4)O11—S1—C29—C30140.6 (3)
O7—C12—C13—C188.7 (5)C34—C29—C30—C310.0 (6)
O8—C12—C13—C147.5 (5)S1—C29—C30—C31179.8 (3)
O7—C12—C13—C14177.1 (3)C29—C30—C31—C320.5 (6)
C18—C13—C14—C152.6 (5)C30—C31—C32—C330.1 (7)
C12—C13—C14—C15171.8 (4)C30—C31—C32—C35176.9 (4)
C13—C14—C15—C161.6 (7)C31—C32—C33—C340.8 (7)
C14—C15—C16—C170.2 (8)C35—C32—C33—C34177.7 (5)
C15—C16—C17—C180.3 (7)C32—C33—C34—C291.2 (8)
C14—C13—C18—C172.2 (5)C30—C29—C34—C330.9 (7)
C12—C13—C18—C17171.9 (3)S1—C29—C34—C33179.0 (4)
C16—C17—C18—C130.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86 (2)1.89 (2)2.699 (4)156 (3)
O4—H4···O2i0.821.662.460 (3)164
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H24NO5S+·C18H13O8
Mr711.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.4153 (5), 19.2664 (12), 24.7388 (16)
V3)3534.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.31 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18779, 6550, 5135
Rint0.081
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.125, 1.06
No. of reflections6550
No. of parameters459
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17
Absolute structureFlack (1983), 3094 Friedel pairs
Absolute structure parameter0.03 (12)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2080), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.860 (18)1.89 (2)2.699 (4)156 (3)
O4—H4···O2i0.821.662.460 (3)164.3
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Fund of the Science and Technology Commission of Shanghai Municipality (Key item, grant No. 06DZ19001) and the Shanghai Municipal Education Commission Fund (grant No. 06BZ009). We thank the Shanghai Institute of Organic Chemistry for the X-ray data collection and analysis.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L. & Wang, H. (1998). Acta Pharm. Sin. 33, 832–835.  CAS Google Scholar
First citationYang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L., Yang, L.-M., Cui, Y.-Y., Zheng, P.-L., Niu, Y.-Y., Wang, H., Lu, Y., Ren, Q.-S., Wei, P.-J. & Chen, H.-Z. (2008). Acta Pharmacol. Sin. 29, 177–184.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1037
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds