Download citation
Download citation
link to html
A com­parative structural study of two related donor–acceptor pyridine-based BF2 com­plexes, namely, 3-(di­methyl­amino)-1,1-di­fluoro-1H-pyrido[1,2-c][1,3,5,2]oxadi­aza­borinin-9-ium-1-uide, C8H10BF2N3O (1), and 3-{(1E,3E)-4-[4-(di­methyl­amino)­phen­yl]buta-1,3-dien-1-yl}-1,1-di­fluoro-1H-pyrido[1,2-c][1,3,5,2]oxadi­aza­borinin-9-ium-1-uide, C18H18BF2N3O (2), containing a di­methyl­amino group and either the shortest (in 1) or the longest (in 2) charge-transfer path known until now in this family of com­pounds, is presented. Single-crystal X-ray diffraction analysis supported by com­putational investigations shed more light on these systems, indicating, among other aspects, the predominance of C—H...F contacts in 1, the formation of anti­parallel dimers held together by π–π inter­actions in both com­pounds, and the involvement of fused BF2-bearing rings in the charge-transfer process.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621012249/wv3007sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621012249/wv30071sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621012249/wv30072sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621012249/wv30071sup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621012249/wv30072sup5.cml
Supplementary material

CCDC references: 1571851; 1571850

Computing details top

For both structures, data collection: CrysAlis PRO (Oxford Diffraction, 2014); cell refinement: CrysAlis PRO (Oxford Diffraction, 2014); data reduction: CrysAlis PRO (Oxford Diffraction, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3-(Dimethylamino)-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]-oxadiazaborinin-9-ium-1-uide (1) top
Crystal data top
C8H10BF2N3OZ = 2
Mr = 213.00F(000) = 220
Triclinic, P1Dx = 1.529 Mg m3
a = 7.7181 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2139 (6) ÅCell parameters from 28335 reflections
c = 8.7684 (6) Åθ = 2.5–30.5°
α = 79.847 (6)°µ = 0.13 mm1
β = 66.782 (7)°T = 100 K
γ = 64.907 (7)°Block, colorless
V = 462.62 (6) Å30.37 × 0.35 × 0.24 mm
Data collection top
Oxford Diffraction SuperNova Dual Source
diffractometer with an Eos detector
2418 reflections with I > 2σ(I)
Radiation source: SuperNova(Mo) X-ray SourceRint = 0.044
ω scansθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2014)
h = 1111
Tmin = 0.924, Tmax = 0.982k = 1111
28335 measured reflectionsl = 1212
2810 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.074P)2 + 0.111P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2810 reflectionsΔρmax = 0.45 e Å3
138 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data were collected on an Oxford Diffraction SuperNova diffractometer with an Eos CCD detector, Mo <i.Kα radiation, λ = 0.71073 Å. Data frames were processed (unit-cell determination, intensity data integration, correction for Lorentz and polarization effects and empirical absorption correction) using the corresponding diffractometer's software package (Oxford Diffraction, 2014). Each structure was solved by direct methods using SHELXS2014/7 (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using SHELXL2014/7 (Sheldrick, 2015). The programs Mercury (Macrae et al., 2020) and POV-Ray (Persistence of Vision Pty. Ltd, 2004) were used to prepare the molecular graphics images. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.15455 (18)0.78905 (15)0.23090 (14)0.0188 (2)
O20.13709 (12)0.70576 (10)0.39554 (9)0.01995 (18)
C30.22058 (15)0.73233 (13)0.48953 (12)0.0164 (2)
N40.29568 (14)0.85773 (12)0.46315 (11)0.01862 (19)
C50.28404 (15)0.97126 (13)0.33165 (12)0.0164 (2)
C60.34857 (16)1.11463 (14)0.31052 (13)0.0197 (2)
H60.39721.13050.38870.024*
C70.34090 (17)1.23032 (14)0.17748 (14)0.0210 (2)
H70.38321.32660.16400.025*
C80.27020 (17)1.20624 (14)0.06084 (14)0.0208 (2)
H80.26501.28510.03210.025*
C90.20907 (16)1.06668 (14)0.08436 (13)0.0195 (2)
H90.16101.04940.00650.023*
N100.21565 (13)0.95164 (11)0.21723 (11)0.01670 (18)
F110.30603 (12)0.66520 (9)0.11001 (9)0.02947 (19)
F120.03083 (11)0.84862 (10)0.20964 (9)0.02895 (19)
N130.22392 (14)0.62404 (12)0.62289 (11)0.01902 (19)
C140.30258 (17)0.64630 (15)0.74086 (14)0.0224 (2)
H14A0.44640.56340.71360.034*
H14B0.22210.62020.85340.034*
H14C0.29200.77030.73490.034*
C150.17249 (17)0.46669 (14)0.64885 (14)0.0209 (2)
H15A0.12280.46400.56270.031*
H15B0.06540.47340.75820.031*
H15C0.29480.35720.64310.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0235 (5)0.0213 (5)0.0191 (5)0.0118 (4)0.0131 (4)0.0033 (4)
O20.0243 (4)0.0259 (4)0.0202 (4)0.0156 (3)0.0140 (3)0.0046 (3)
C30.0150 (4)0.0196 (4)0.0177 (5)0.0071 (3)0.0085 (4)0.0002 (3)
N40.0215 (4)0.0211 (4)0.0200 (4)0.0112 (3)0.0121 (3)0.0028 (3)
C50.0150 (4)0.0181 (4)0.0180 (4)0.0063 (3)0.0079 (4)0.0009 (3)
C60.0215 (5)0.0210 (4)0.0217 (5)0.0108 (4)0.0104 (4)0.0003 (4)
C70.0211 (5)0.0199 (4)0.0244 (5)0.0100 (4)0.0089 (4)0.0016 (4)
C80.0213 (5)0.0211 (5)0.0219 (5)0.0088 (4)0.0109 (4)0.0043 (4)
C90.0205 (5)0.0218 (5)0.0194 (5)0.0087 (4)0.0114 (4)0.0032 (4)
N100.0176 (4)0.0185 (4)0.0175 (4)0.0078 (3)0.0097 (3)0.0018 (3)
F110.0409 (4)0.0244 (3)0.0238 (4)0.0160 (3)0.0076 (3)0.0028 (3)
F120.0332 (4)0.0329 (4)0.0387 (4)0.0203 (3)0.0277 (3)0.0119 (3)
N130.0229 (4)0.0225 (4)0.0195 (4)0.0127 (3)0.0130 (3)0.0039 (3)
C140.0258 (5)0.0276 (5)0.0217 (5)0.0123 (4)0.0155 (4)0.0028 (4)
C150.0236 (5)0.0211 (4)0.0241 (5)0.0120 (4)0.0133 (4)0.0047 (4)
Geometric parameters (Å, º) top
B1—F121.3805 (12)C7—H70.9500
B1—F111.3855 (14)C8—C91.3704 (14)
B1—O21.4652 (13)C8—H80.9500
B1—N101.5664 (13)C9—N101.3677 (13)
O2—C31.3204 (11)C9—H90.9500
C3—N41.3293 (12)N13—C141.4588 (12)
C3—N131.3404 (13)N13—C151.4629 (13)
N4—C51.3560 (13)C14—H14A0.9800
C5—N101.3630 (12)C14—H14B0.9800
C5—C61.4201 (13)C14—H14C0.9800
C6—C71.3723 (14)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—C81.4091 (14)C15—H15C0.9800
F12—B1—F11110.15 (9)C7—C8—H8120.7
F12—B1—O2109.68 (9)N10—C9—C8121.58 (9)
F11—B1—O2109.64 (9)N10—C9—H9119.2
F12—B1—N10109.81 (8)C8—C9—H9119.2
F11—B1—N10108.87 (9)C5—N10—C9121.13 (8)
O2—B1—N10108.66 (8)C5—N10—B1120.06 (8)
C3—O2—B1122.28 (8)C9—N10—B1118.72 (8)
O2—C3—N4125.25 (9)C3—N13—C14120.81 (8)
O2—C3—N13115.67 (8)C3—N13—C15122.67 (8)
N4—C3—N13119.07 (9)C14—N13—C15116.17 (8)
C3—N4—C5118.59 (8)N13—C14—H14A109.5
N4—C5—N10122.56 (9)N13—C14—H14B109.5
N4—C5—C6118.86 (9)H14A—C14—H14B109.5
N10—C5—C6118.58 (9)N13—C14—H14C109.5
C7—C6—C5120.15 (9)H14A—C14—H14C109.5
C7—C6—H6119.9H14B—C14—H14C109.5
C5—C6—H6119.9N13—C15—H15A109.5
C6—C7—C8119.99 (9)N13—C15—H15B109.5
C6—C7—H7120.0H15A—C15—H15B109.5
C8—C7—H7120.0N13—C15—H15C109.5
C9—C8—C7118.57 (9)H15A—C15—H15C109.5
C9—C8—H8120.7H15B—C15—H15C109.5
F12—B1—O2—C3138.58 (9)C6—C5—N10—C90.11 (15)
F11—B1—O2—C3100.35 (11)N4—C5—N10—B12.32 (15)
N10—B1—O2—C318.53 (13)C6—C5—N10—B1176.65 (9)
B1—O2—C3—N412.67 (16)C8—C9—N10—C50.15 (16)
B1—O2—C3—N13168.64 (9)C8—C9—N10—B1176.74 (10)
O2—C3—N4—C51.28 (16)F12—B1—N10—C5133.56 (10)
N13—C3—N4—C5177.37 (9)F11—B1—N10—C5105.77 (10)
C3—N4—C5—N106.12 (16)O2—B1—N10—C513.59 (13)
C3—N4—C5—C6174.90 (9)F12—B1—N10—C949.82 (13)
N4—C5—C6—C7179.20 (10)F11—B1—N10—C970.86 (11)
N10—C5—C6—C70.19 (16)O2—B1—N10—C9169.79 (8)
C5—C6—C7—C80.44 (16)O2—C3—N13—C14176.83 (9)
C6—C7—C8—C90.39 (16)N4—C3—N13—C141.94 (15)
C7—C8—C9—N100.10 (16)O2—C3—N13—C1510.31 (15)
N4—C5—N10—C9178.87 (9)N4—C3—N13—C15170.92 (9)
3-{(1E,3E)-4-[4-(Dimethylamino)phenyl]buta-1,3-dien-1-yl}-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide (2) top
Crystal data top
C18H18BF2N3OZ = 2
Mr = 341.16F(000) = 356
Triclinic, P1Dx = 1.379 Mg m3
a = 8.1445 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2758 (3) ÅCell parameters from 8425 reflections
c = 12.7398 (6) Åθ = 2.5–28.6°
α = 93.518 (4)°µ = 0.10 mm1
β = 105.066 (4)°T = 100 K
γ = 95.613 (3)°Block, red
V = 821.83 (6) Å30.34 × 0.23 × 0.17 mm
Data collection top
Oxford Diffraction SuperNova Dual Source
diffractometer with an Eos detector
2965 reflections with I > 2σ(I)
Radiation source: SuperNova (Mo) X-ray SourceRint = 0.092
ω scansθmax = 28.9°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2014)
h = 1010
Tmin = 0.508, Tmax = 0.983k = 1111
20647 measured reflectionsl = 1717
3953 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.073P)2 + 0.1888P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3953 reflectionsΔρmax = 0.31 e Å3
228 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data were collected on an Oxford Diffraction SuperNova diffractometer with an Eos CCD detector, Mo <i.Kα radiation, λ = 0.71073 Å. Data frames were processed (unit-cell determination, intensity data integration, correction for Lorentz and polarization effects and empirical absorption correction) using the corresponding diffractometer's software package (Oxford Diffraction, 2014). Each structure was solved by direct methods using SHELXS2014/7 (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using SHELXL2014/7 (Sheldrick, 2015). The programs Mercury (Macrae et al., 2020) and POV-Ray (Persistence of Vision Pty. Ltd, 2004) were used to prepare the molecular graphics images. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.2606 (2)0.0227 (2)0.29228 (13)0.0232 (3)
O20.16721 (12)0.10249 (13)0.19984 (8)0.0242 (3)
C30.22710 (18)0.13520 (18)0.11526 (11)0.0214 (3)
N40.37553 (15)0.10459 (15)0.10316 (9)0.0227 (3)
C50.48359 (18)0.03306 (17)0.18358 (11)0.0210 (3)
C60.64306 (18)0.00080 (18)0.17044 (12)0.0248 (3)
H60.67370.02630.10580.030*
C70.75499 (19)0.06748 (19)0.25046 (13)0.0287 (4)
H70.86380.08790.24190.034*
C80.7083 (2)0.1069 (2)0.34466 (12)0.0292 (4)
H80.78490.15320.40130.035*
C90.55000 (19)0.07757 (19)0.35357 (12)0.0259 (3)
H90.51610.10700.41640.031*
N100.43969 (15)0.00762 (15)0.27532 (9)0.0213 (3)
F110.28629 (11)0.12133 (12)0.38840 (7)0.0320 (3)
F120.17079 (11)0.12496 (11)0.29893 (7)0.0313 (2)
C130.11647 (18)0.21145 (18)0.02888 (11)0.0230 (3)
H130.16080.24210.02990.028*
C140.04312 (18)0.24205 (17)0.02540 (11)0.0218 (3)
H140.08870.21190.08380.026*
C150.14948 (18)0.31794 (17)0.06164 (11)0.0224 (3)
H150.10190.35400.11800.027*
C160.31252 (18)0.34050 (17)0.06754 (11)0.0218 (3)
H160.35680.30190.01050.026*
C170.42918 (18)0.41718 (17)0.15110 (11)0.0217 (3)
C180.38915 (19)0.47354 (18)0.24392 (11)0.0243 (3)
H180.27950.46140.25440.029*
C190.5044 (2)0.54619 (19)0.32062 (12)0.0261 (3)
H190.47290.58230.38280.031*
C200.6686 (2)0.56789 (19)0.30836 (11)0.0278 (4)
C210.70956 (19)0.51175 (19)0.21539 (12)0.0263 (3)
H210.81880.52410.20430.032*
C220.59203 (19)0.43864 (18)0.13978 (11)0.0227 (3)
H220.62330.40160.07770.027*
N230.7829 (2)0.6411 (2)0.38437 (12)0.0455 (4)
C240.7416 (2)0.6897 (2)0.48204 (13)0.0371 (4)
H24A0.63950.77010.46230.056*
H24B0.83790.73800.52720.056*
H24C0.71930.59410.52320.056*
C250.9488 (2)0.6653 (2)0.36915 (14)0.0385 (4)
H25A1.01080.55960.36420.058*
H25B1.01410.71720.43120.058*
H25C0.93400.73530.30170.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0198 (8)0.0301 (9)0.0202 (7)0.0021 (6)0.0065 (6)0.0022 (6)
O20.0204 (5)0.0333 (6)0.0216 (5)0.0067 (4)0.0082 (4)0.0049 (4)
C30.0206 (7)0.0205 (7)0.0229 (7)0.0013 (5)0.0077 (5)0.0016 (5)
N40.0208 (6)0.0241 (7)0.0243 (6)0.0026 (5)0.0080 (5)0.0023 (5)
C50.0188 (7)0.0204 (7)0.0227 (7)0.0014 (5)0.0062 (5)0.0031 (5)
C60.0211 (7)0.0250 (8)0.0294 (7)0.0005 (6)0.0106 (6)0.0002 (6)
C70.0178 (7)0.0286 (8)0.0376 (8)0.0014 (6)0.0059 (6)0.0054 (6)
C80.0239 (7)0.0307 (9)0.0284 (8)0.0065 (6)0.0009 (6)0.0025 (6)
C90.0231 (7)0.0314 (8)0.0221 (7)0.0045 (6)0.0041 (5)0.0010 (6)
N100.0189 (6)0.0236 (7)0.0203 (6)0.0015 (5)0.0044 (5)0.0012 (5)
F110.0273 (5)0.0476 (6)0.0222 (4)0.0091 (4)0.0081 (3)0.0037 (4)
F120.0210 (4)0.0367 (6)0.0375 (5)0.0016 (4)0.0094 (4)0.0107 (4)
C130.0244 (7)0.0229 (8)0.0224 (7)0.0024 (6)0.0073 (5)0.0025 (5)
C140.0236 (7)0.0186 (7)0.0226 (7)0.0008 (6)0.0065 (5)0.0000 (5)
C150.0248 (7)0.0193 (7)0.0224 (7)0.0013 (6)0.0058 (5)0.0008 (5)
C160.0243 (7)0.0197 (7)0.0209 (7)0.0017 (6)0.0061 (5)0.0007 (5)
C170.0235 (7)0.0192 (7)0.0212 (7)0.0012 (6)0.0051 (5)0.0006 (5)
C180.0241 (7)0.0249 (8)0.0254 (7)0.0037 (6)0.0093 (6)0.0005 (6)
C190.0335 (8)0.0266 (8)0.0212 (7)0.0068 (6)0.0109 (6)0.0044 (6)
C200.0351 (8)0.0286 (8)0.0211 (7)0.0139 (7)0.0066 (6)0.0010 (6)
C210.0246 (7)0.0298 (8)0.0255 (7)0.0080 (6)0.0074 (6)0.0003 (6)
C220.0255 (7)0.0221 (7)0.0217 (7)0.0018 (6)0.0084 (5)0.0019 (5)
N230.0527 (10)0.0674 (11)0.0278 (7)0.0409 (9)0.0156 (6)0.0178 (7)
C240.0484 (10)0.0363 (9)0.0234 (8)0.0093 (8)0.0018 (7)0.0045 (6)
C250.0339 (9)0.0460 (11)0.0326 (9)0.0143 (8)0.0001 (7)0.0027 (7)
Geometric parameters (Å, º) top
B1—F121.3800 (19)C15—H150.9500
B1—F111.3859 (17)C16—C171.454 (2)
B1—O21.4593 (19)C16—H160.9500
B1—N101.5706 (19)C17—C221.398 (2)
O2—C31.3250 (17)C17—C181.400 (2)
C3—N41.3043 (19)C18—C191.380 (2)
C3—C131.450 (2)C18—H180.9500
N4—C51.3719 (19)C19—C201.413 (2)
C5—N101.3599 (19)C19—H190.9500
C5—C61.401 (2)C20—N231.373 (2)
C6—C71.370 (2)C20—C211.405 (2)
C6—H60.9500C21—C221.384 (2)
C7—C81.397 (2)C21—H210.9500
C7—H70.9500C22—H220.9500
C8—C91.367 (2)N23—C241.441 (2)
C8—H80.9500N23—C251.445 (2)
C9—N101.3576 (19)C24—H24A0.9800
C9—H90.9500C24—H24B0.9800
C13—C141.338 (2)C24—H24C0.9800
C13—H130.9500C25—H25A0.9800
C14—C151.438 (2)C25—H25B0.9800
C14—H140.9500C25—H25C0.9800
C15—C161.342 (2)
F12—B1—F11109.81 (12)C14—C15—H15118.3
F12—B1—O2110.14 (12)C15—C16—C17127.54 (14)
F11—B1—O2110.23 (13)C15—C16—H16116.2
F12—B1—N10109.14 (13)C17—C16—H16116.2
F11—B1—N10108.69 (11)C22—C17—C18116.60 (13)
O2—B1—N10108.80 (11)C22—C17—C16119.24 (13)
C3—O2—B1123.43 (11)C18—C17—C16124.15 (13)
N4—C3—O2125.81 (14)C19—C18—C17121.85 (14)
N4—C3—C13117.66 (13)C19—C18—H18119.1
O2—C3—C13116.53 (12)C17—C18—H18119.1
C3—N4—C5119.15 (12)C18—C19—C20121.18 (13)
N10—C5—N4121.75 (12)C18—C19—H19119.4
N10—C5—C6119.27 (14)C20—C19—H19119.4
N4—C5—C6118.98 (13)N23—C20—C21121.55 (14)
C7—C6—C5120.23 (14)N23—C20—C19121.17 (14)
C7—C6—H6119.9C21—C20—C19117.28 (14)
C5—C6—H6119.9C22—C21—C20120.50 (14)
C6—C7—C8119.66 (14)C22—C21—H21119.8
C6—C7—H7120.2C20—C21—H21119.8
C8—C7—H7120.2C21—C22—C17122.59 (14)
C9—C8—C7118.56 (15)C21—C22—H22118.7
C9—C8—H8120.7C17—C22—H22118.7
C7—C8—H8120.7C20—N23—C24120.56 (15)
N10—C9—C8122.01 (14)C20—N23—C25120.30 (14)
N10—C9—H9119.0C24—N23—C25119.10 (14)
C8—C9—H9119.0N23—C24—H24A109.5
C9—N10—C5120.25 (12)N23—C24—H24B109.5
C9—N10—B1118.74 (12)H24A—C24—H24B109.5
C5—N10—B1121.01 (12)N23—C24—H24C109.5
C14—C13—C3125.21 (14)H24A—C24—H24C109.5
C14—C13—H13117.4H24B—C24—H24C109.5
C3—C13—H13117.4N23—C25—H25A109.5
C13—C14—C15123.77 (14)N23—C25—H25B109.5
C13—C14—H14118.1H25A—C25—H25B109.5
C15—C14—H14118.1N23—C25—H25C109.5
C16—C15—C14123.46 (14)H25A—C25—H25C109.5
C16—C15—H15118.3H25B—C25—H25C109.5
F12—B1—O2—C3117.06 (14)F11—B1—N10—C5122.52 (14)
F11—B1—O2—C3121.62 (13)O2—B1—N10—C52.47 (18)
N10—B1—O2—C32.52 (18)N4—C3—C13—C14175.79 (13)
B1—O2—C3—N41.3 (2)O2—C3—C13—C144.1 (2)
B1—O2—C3—C13178.54 (12)C3—C13—C14—C15179.99 (12)
O2—C3—N4—C50.4 (2)C13—C14—C15—C16176.36 (13)
C13—C3—N4—C5179.76 (11)C14—C15—C16—C17179.24 (12)
C3—N4—C5—N100.4 (2)C15—C16—C17—C22176.11 (13)
C3—N4—C5—C6179.82 (12)C15—C16—C17—C183.4 (2)
N10—C5—C6—C71.5 (2)C22—C17—C18—C190.2 (2)
N4—C5—C6—C7178.66 (12)C16—C17—C18—C19179.71 (13)
C5—C6—C7—C80.9 (2)C17—C18—C19—C200.4 (2)
C6—C7—C8—C90.7 (2)C18—C19—C20—N23179.58 (15)
C7—C8—C9—N101.8 (2)C18—C19—C20—C210.3 (2)
C8—C9—N10—C51.2 (2)N23—C20—C21—C22179.85 (15)
C8—C9—N10—B1179.69 (13)C19—C20—C21—C220.1 (2)
N4—C5—N10—C9179.69 (12)C20—C21—C22—C170.1 (2)
C6—C5—N10—C90.5 (2)C18—C17—C22—C210.1 (2)
N4—C5—N10—B11.2 (2)C16—C17—C22—C21179.46 (12)
C6—C5—N10—B1178.60 (12)C21—C20—N23—C24176.59 (15)
F12—B1—N10—C961.37 (16)C19—C20—N23—C243.5 (3)
F11—B1—N10—C958.37 (18)C21—C20—N23—C251.2 (3)
O2—B1—N10—C9178.42 (11)C19—C20—N23—C25178.69 (15)
F12—B1—N10—C5117.74 (14)
Hydrogen-bonding parameters (Å, °) for 1 and 2 top
The cut-offs for hydrogen bonding were based on IUPAC recommendations and the book by Desiraju & Steiner (Arunan et al., 2011a,b; Desiraju & Steiner, 2006).
CompoundD—H···AH···AD···AD—H···A
1C9—H9···F12i2.353.2209 (15)152
C14—H14C···F12ii2.923.7863 (14)148
C7—H7···F11iii2.583.4274 (13)148
C7—H7···F11iv2.663.2127 (16)118
C14—H14A···F11v2.803.5723 (16)136
C14—H14B···F11vi2.703.2788 (15)119
C14—H14A···O2v2.903.8768 (16)172
C15—H15A···O2vii2.783.4155 (18)123
C15—H15C···N4v2.743.6580 (17)156
C7—H7···F12i2.473.3675 (19)157
C15—H15···F12ii2.803.2863 (16)113
C24—H24B···F12iii2.563.2175 (18)124
2C8—H8···F11iv2.893.3992 (17)115
C9—H9···F11iv2.603.2676 (17)127
C19—H19···F11v2.773.4066 (19)125
C24—H24A···F11v2.823.7389 (19)156
C25—H25B···F11vi2.853.3743 (19)114
C7—H7···O2i2.993.7359 (19)137
C25—H25C···O2vi2.943.697 (2)135
C6—H6···N4vii2.733.5014 (19)139
Symmetry codes for 1: (i) -x, -y+2, -z; (ii) -x, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) -x+1, -y+1, -z+1; (vi) x, y, z+1; (vii) -x, -y+1, -z+1. Symmetry codes for 2: (i) x+1, y, z; (ii) -x, -y, -z; (iii) x-1, y+1, z-1; (iv) -x+1, -y, -z+1; (v) -x, -y+1, -z; (vi) -x-1, -y+1, -z; (vii) -x+1, -y, -z.
Geometricala, bond topologicalb and integratedc properties for the NBF2O moiety and the amine group after isolated molecule geometry optimizations of structures 1 and 2 top
dXRDdρbcp\Nabla2ρbcpεG/ρbcpH/ρbcpδ
1
N10—B11.5664 (13)1.5850.993.30.021.16-0.930.27
O2—B11.4652 (13)1.4781.0510.90.021.56-0.840.27
F11—B11.3855 (12)1.3821.2019.60.011.92-0.780.31
F12—B11.3805 (12)1.3741.2320.40.011.94-0.780.31
O2—C31.3204 (11)1.3122.26-19.50.081.00-1.610.94
N10—C51.3630 (12)1.3652.18-24.50.150.54-1.331.14
N4—C31.3293 (12)1.3242.45-28.20.180.48-1.291.23
N4—C51.3560 (13)1.3472.30-25.60.130.46-1.241.21
N13—C31.3404 (13)1.3482.29-27.00.280.51-1.331.09
2
N10—B11.5706 (19)1.5930.963.40.021.16-0.920.27
O2—B11.4593 (19)1.4691.0911.10.021.56-0.850.28
F11—B11.3889 (17)1.3771.2220.10.011.93-0.780.31
F12—B11.3800 (19)1.3821.2019.60.001.92-0.780.31
O2—C31.3250 (17)1.3152.21-16.60.031.07-1.600.98
N10—C51.3599 (19)1.3622.19-24.70.150.55-1.341.14
N4—C31.3043 (19)1.3172.46-29.60.180.54-1.381.30
N4—C51.3719 (19)1.3552.28-24.90.110.44-1.211.20
N23—C201.373 (2)1.3772.10-22.90.160.51-1.281.11
Notes: (a) bond length (d in Å); (b) electron density (ρbcp in e Å-3), Laplacian of the electron density (\Nabla2ρbcp in e Å-5), the bond ellipticity (ε), and kinetic and total energy density over ρbcp ratios (G/ρbcp and H/ρbcp in he-); (c) δ is the delocalization index.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds