research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and structures of three isoxazole-containing Schiff bases

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, England, and bSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England
*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

Edited by W. Lewis, University of Sydney, Australia (Received 7 July 2020; accepted 31 July 2020; online 29 August 2020)

The synthesis and structures of three isoxazole-containing Schiff bases are reported, namely, (E)-2-{[(isoxazol-3-yl)imino]­meth­yl}phenol, C10H8N2O2, (E)-2-{[(5-methyl­isoxazol-3-yl)imino]­meth­yl}phenol, C11H10N2O2, and (E)-2,4-di-tert-butyl-6-{[(isoxazol-3-yl)imino]­meth­yl}phenol, C18H24N2O2. All three structures contain an intra­molecular O—H⋯N hydrogen bond, alongside weaker inter­molecular C—H⋯N and C—H⋯O contacts. The C—O(H) and imine C=N bond lengths were consistent with structures existing in the enol rather than the keto form. Despite having dihedral angles <25°, none of the com­pounds were observed to be strongly thermochromic, unlike their anil counterparts; however, all three com­pounds showed a visible colour change upon irradiation with UV light.

1. Introduction

A wide range of Schiff bases can be relatively easily prepared making them versatile as ligands and consequently they have found widespread use over many years in areas such as organometallic chemistry (Kargar et al., 2020[Kargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A. & Tahir, M. N. (2020). J. Mol. Struct. 1205, article No. 127642.]), polymer synthesis (Mighani, 2020[Mighani, H. (2020). J. Polym. Res. 27, article No. 168.]), anti­cancer drugs (Parveen, 2020[Parveen, S. (2020). Appl. Organomet. Chem. 2020, article No. e5687.]), catalysts (Kumari et al., 2019[Kumari, S., Das, B. & Ray, S. (2019). Dalton Trans. 48, 15942-15954.]) and sensors (Sahu et al., 2020[Sahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, article No. 119633.]). In addition, Schiff bases themselves have been found to display inter­esting properties with anils, i.e. Schiff bases of salicyl­aldehyde derivatives with aniline derivatives, having been first found to exhibit both thermo- and photochromism in the solid state (Senier et al., 1909[Senier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943-1955.]; Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]). Originally, the thermo- and photochromism of anils were thought to be mutually exclusive (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]), but this has since been found not to be the case and it is thought they all display thermochromism with some also displaying photochromism (Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]). The colour change is believed to be due to a photo- or thermally induced tautomeric equilibrium shift between colourless enol(–imine) and keto(–amine) forms (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]).

The Schiff bases of salicyl­aldehyde (2-hy­droxy­benz­al­de­hyde) derivatives with isoxazole derivatives have not been widely characterized structurally, with a search of the Cam­bridge Structural Database (CSD; Version of June 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealing two structures, namely, (E)-2-meth­oxy-6-{[(5-methyl­isoxazol-3-yl)imino]­meth­yl}phenol (refcode GITGIA; Zhao et al., 2008[Zhao, R. G., Lu, J. & Li, J. K. (2008). Acta Cryst. E64, o499.]) and N-(5-methyl­isoxazol-3-yl)-3,5-di-tert-butyl­salicyl­aldimine (refcode YINFAD; Çelik et al., 2007[Çelik, O., Ulusoy, M., Tas, E. & Ide, S. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x185-x186.]). Herein the synthesis and characterization of three isoxazole-con­taining Schiff bases are reported, namely, (E)-2-{[(isoxazol-3-yl)imino]­meth­yl}phenol, 1, (E)-2-{[(5-methyl­isoxazol-3-yl)imino]­meth­yl}phenol, 2, and (E)-2,4-di-tert-butyl-6-{[(isoxazol-3-yl)imino]­meth­yl}phenol, 3 (see Scheme 1[link]).

2. Experimental

2.1. Synthesis

All reagents were used as supplied by Aldrich. Compounds were synthesized by direct condensation of the appropriate salicyl­aldehyde and isoxazole derivatives in ethanol. The salicyl­aldehyde (0.0025 mol) and aniline (0.0025 mol) were each dissolved in ethanol (25 ml). The resulting solutions were combined and refluxed with stirring for 6–8 h. Any precipitate was filtered off, rinsed with ethanol and left to dry. The (remaining) solution was then rotary evaporated until (further) precipitate formed. Recrystallization was carried out from hexa­ne–di­chloro­methane for 1, ethanol for 2 or chloro­form for 3 (see Scheme 1[link]).

2.2. Characterization

Elemental C, H and N content analysis was carried out using the Durham University Analytical service on an Exeter Analytical E-440 Elemental Analyzer. Mass spectrometry in positive electrospray (ES+) mode was performed by the Durham University Mass Spectrometry service on a Waters TQD with an Acquity solvent system. Full details are available in the supporting information.

2.3. Refinement

All H atoms, apart from the hy­droxy H atom involved in intra­molecular hydrogen bonding with the imine N atom, were positioned geometrically and refined using a riding model. The H atoms involved in the intra­molecular hydrogen bonding were located in a Fourier difference map wherever feasible.

[Scheme 1]
Compounds 1 and 2 crystallized in noncentrosymmetric space groups; however, the Flack parameters obtained were not meaningful as the data were collected with molybdenum radiation and there are no heavy atoms to facilitate anomalous dispersion. In 3, which contained two independent mol­ecules in the asymmetric unit, one of the tert-butyl groups was disordered; the sum of the occupancies of the two parts was set to equal 1 and subsequently fixed at the refined values. The inter­planar dihedral angle was calculated by measuring the angle between planes computed through the five or six non-H atoms of the two rings. See Table 1[link] for further details of the crystallographic data collections.

Table 1
Experimental details

For all structures: Z = 4. Experiments were carried out with Mo Kα radiation. H atoms were treated by a mixture of independent and constrained refinement.

  1 2 3
Crystal data
Chemical formula C10H8N2O2 C11H10N2O2 C18H24N2O2
Mr 188.18 202.21 300.39
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pna21 Triclinic, P[\overline{1}]
Temperature (K) 210 120 120
a, b, c (Å) 4.5999 (5), 10.2684 (10), 18.711 (2) 20.5584 (7), 10.0468 (4), 4.6417 (2) 10.8955 (5), 10.9571 (4), 14.8329 (6)
α, β, γ (°) 90, 90, 90 90, 90, 90 82.335 (3), 88.326 (4), 75.178 (3)
V3) 883.79 (16) 958.73 (7) 1696.56 (12)
μ (mm−1) 0.10 0.10 0.08
Crystal size (mm) 0.3 × 0.08 × 0.05 0.49 × 0.24 × 0.09 0.6 × 0.31 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII area detector Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra) Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.654, 0.746 0.969, 0.991 0.833, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10497, 2166, 1978 6756, 2021, 1819 14901, 6942, 5078
Rint 0.020 0.040 0.037
(sin θ/λ)max−1) 0.667 0.641 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.08 0.037, 0.081, 1.05 0.049, 0.119, 1.02
No. of reflections 2166 2021 6942
No. of parameters 131 141 447
No. of restraints 0 1 0
Δρmax, Δρmin (e Å−3) 0.18, −0.14 0.16, −0.17 0.26, −0.22
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

3.1. Structural discussion

The structures of 13 all consist of the same basic backbone with a hy­droxy-substituted arene group joined to an isoxazole ring via an imine (C=N) group (Fig. 1[link]). The C7=N1 bond lengths are consistent with the presence of a double bond [ranging from 1.283 (2) Å in 1 to 1.293 (2) Å in 3], while the C1—O1 bond lengths [ranging from 1.350 (2) Å in 1 to 1.3655 (18) Å in 3] are consistent with a single bond. Indeed, the hy­droxy H atom was located in a Fourier difference map in the vicinity of the O atom, supporting the fact that the structures are all in the more commonly observed enol form rather than the keto form. All three structures contain an intra­molecular O1—H1⋯N1 hydrogen bond with similar parameters, e.g. the O1⋯N1 distances range from 2.6062 (17) to 2.632 (2) Å (Tables 2[link]–4[link][link]). The structures also contain weaker inter­molecular C—H⋯N and C—H⋯O inter­actions (Tables 2[link]–4[link][link]).

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (3) 1.86 (3) 2.6110 (19) 146 (3)
C7—H7⋯N2i 0.93 2.71 3.599 (2) 159
C9—H9⋯O1ii 0.93 2.70 3.400 (2) 133
C9—H9⋯N2i 0.93 2.61 3.403 (2) 144
C10—H10⋯O1i 0.93 2.52 3.235 (2) 134
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.61 3.502 (3) 157
C7—H7⋯N2i 0.95 2.49 3.394 (3) 159
C9—H9⋯N2i 0.95 2.74 3.591 (3) 149
C2—H2⋯O1ii 0.95 2.62 3.496 (3) 153
O1—H1⋯N1 0.95 (3) 1.80 (3) 2.632 (2) 145 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, -y+2, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O2i 0.95 2.60 3.5232 (19) 165
C25—H25⋯N2i 0.95 2.70 3.637 (2) 169
C5—H5⋯O4ii 0.95 2.66 3.538 (2) 155
C7—H7⋯N4ii 0.95 2.82 3.708 (2) 156
C18—H18B⋯N2iii 0.98 2.67 3.559 (2) 152
O1—H1⋯N1 0.92 (2) 1.76 (2) 2.6207 (18) 153 (2)
O3—H3⋯N3 0.91 (3) 1.77 (2) 2.6062 (17) 151 (2)
C10—H10⋯O3ii 0.95 2.53 3.187 (2) 127
C28—H28⋯O1i 0.95 2.69 3.3370 (19) 126
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x+1, -y+1, -z]; (iii) [-x, -y, -z].
[Figure 1]
Figure 1
Illustration of the structures of 1 [at 210 (2) K], 2 [120 (2) K] and 3 [120 (2) K], with the atomic numbering schemes depicted. Anisotropic displacement parameters are drawn at the 50% probability level. In the case of 3, only one position of the disordered tert-butyl group is shown for clarity.

Examining the structure of 1, short ππ stacking type inter­actions are found between the six-membered aromatic ring and the C=N group [centroid-to-centroid distance = 3.2905 (3) Å] (Corne et al., 2016[Corne, V., Sarotti, A. M., Ramirez de Arellano, C., Spanevello, R. A. & Suárez, A. G. (2016). Beilstein J. Org. Chem. 12, 1616-1623.]), creating one-dimensional stacks in approximately the [101] direction. The inter­molecular inter­actions involving the isoxazole N atom and the OH group are: (i) bifurcated C—H⋯N inter­actions to other mol­ecules; (ii) bifurcated C—H⋯O inter­actions to two different mol­ecules. These inter­actions link a central mol­ecule with four mol­ecules in total, i.e. two mol­ecules either side of itself, creating chains in approximately the b-axis direction. Combining these inter­actions with the ππ stacking creates a three-dimensional network with a herringbone-type packing structure (Fig. 2[link]).

[Figure 2]
Figure 2
Illustration of the packing in 1, looking down the b axis.

The structure of 2 has short ππ stacking type inter­actions that exist between the six-membered aromatic ring and the C=N group [centroid-to-centroid distance = 3.2772 (1) Å], creating a one-dimensional stack approximately up the [101] direction. All the stacks in the ac plane are in the same direction; however, moving in the b-axis direction by one mol­ecule, the stacks in the ac plane are in different directions due to the presence of the 21 screw axes and glide planes. The structure also contains: (i) C—H⋯N and C—H⋯O inter­actions involving the N and O atoms of isoxazole; (ii) C—H⋯O inter­actions involving the O atom of the OH group. These inter­actions link the central mol­ecule to four others, two on each side of the mol­ecule, creating a three-dimensional network. An illustration of the overall packing is shown in Fig. 3[link].

[Figure 3]
Figure 3
Illustration of the packing in 2, looking down the b axis. Mol­ecules are shown in elemental colours (C grey, O red, N blue and H white) at the front, while mol­ecules shown in blue are one mol­ecule down the b axis, showing the different orientations.

In 3, the two independent mol­ecules show slightly different inter­molecular inter­actions: (i) C—H⋯N (bifurcated for the isoxazole ring containing atoms N2 and O2, and not for the isoxazole ring containing atoms N4 and O4) and a C—H⋯O inter­action involving the N and O atoms of isoxazole; (ii) C—H⋯O inter­actions involving the O atom of the OH group. This creates a three-dimensional packing network (Fig. 4[link]). There are no ππ stacking type inter­actions between the six-membered aromatic ring and the C=N group in this case, presumably because of the presence of the bulky tert-butyl groups.

[Figure 4]
Figure 4
Illustration of the packing in 3, looking down the a axis.

3.2. Chromic studies

The chromic behaviour of com­pounds 13 was not fully investigated herein; however, some observations are worth reporting given the similarity of the structures to the widely studied anils. Schiff bases of salicyl­aldehyde derivatives with aniline derivatives, which exhibit both thermo- and photochromism in the solid state (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]; Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]). In anils, a link has been proposed between the dihedral angle (Φ) and the chromic behaviour of some of the Schiff bases, with a suggestion that com­pounds with Φ < 25° are expected to be strongly thermochromic, while those with Φ > 25° are more likely to be photochromic (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). Clearly the dihedral angle is not the only factor that has been found to influence chromism in anils, with thermochromic structures tending to be more closely packed than photochromic structures and substituents that weaken the O—H bond or strengthen the accepting ability of the N atom often resulting in more strongly thermochromic complexes (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). The Schiff bases of salicyl­aldehyde derivatives with isoxazole derivatives presented here have not been widely studied in terms of their chromic behaviour and the three com­pounds presented herein appear to show some differences from the anils. The Φ value was 6.95 (12)° for 1, 4.42 (14)° for 2 and 6.53 (10)/14.27 (8)° (two molecules) for 3; however, none of the com­pounds were observed to be strongly thermochromic by eye when cooled to ∼80 K. In the case of 2 and 3, this is perhaps not a major surprise as they are yellow at room temperature and, while they did become paler in colour at lower temperatures, the strongly thermochromic anil com­pounds are typically a red/orange colour at room temperature and change to yellow upon cooling. However, 1, which is orange at room temperature, remained an orange colour at ∼80 K also. All three com­pounds did show evidence of photochromism with a colour change, from orange to red for 1 and from yellow to orange for 2 and 3, upon irradiation with UV light.

4. Conclusion

The structures of three Schiff bases of salicyl­aldehyde derivatives with isoxazole derivatives, namely, (E)-2-{[(isoxazol-3-yl)imino]­meth­yl}phenol, 1, (E)-2-{[(5-methyl­isoxazol-3-yl)imino]­meth­yl}phenol, 2, and (E)-2,4-di-tert-butyl-6-{[(isoxazol-3-yl)imino]­meth­yl}phenol, 3, are reported. The three structures all exist in the enol form and display an intra­molecular O—H⋯N hydrogen bond. All three structures contain inter­molecular C—H⋯N and C—H⋯O contacts. In the structures of 1 and 2, ππ-type contacts were identified between the C=N group and the phenol ring. All three com­pounds had dihedral angles of <25°; however, none of the com­pounds were observed to be strongly thermochromic and even 1, which was orange at room temperature, did not show a significant colour change upon cooling. This is in contrast to the anils where orange com­pounds with a dihedral angle of <25° are normally strongly thermochromic. All three title com­pounds did show evidence of photochromism upon irradiation with UV light.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012) for (1); CrysAlis PRO (Oxford Diffraction, 2010) for (2), (3). Cell refinement: SAINT (Bruker, 2012) for (1); CrysAlis PRO (Oxford Diffraction, 2010) for (2), (3). Data reduction: SAINT (Bruker, 2012) for (1); CrysAlis PRO (Oxford Diffraction, 2010) for (2), (3). Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) for (1); SHELXS97 (Sheldrick, 2008) for (2), (3). For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-2-{[(Isoxazol-3-yl)imino]methyl}phenol (1) top
Crystal data top
C10H8N2O2Dx = 1.414 Mg m3
Mr = 188.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6240 reflections
a = 4.5999 (5) Åθ = 2.3–28.3°
b = 10.2684 (10) ŵ = 0.10 mm1
c = 18.711 (2) ÅT = 210 K
V = 883.79 (16) Å3Needle, yellow
Z = 40.3 × 0.08 × 0.05 mm
F(000) = 392
Data collection top
Bruker SMART APEXII area detector
diffractometer
2166 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs1978 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.020
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω and φ scansh = 56
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.654, Tmax = 0.746l = 2423
10497 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1297P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2166 reflectionsΔρmax = 0.18 e Å3
131 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5619 (3)0.28237 (12)0.62081 (8)0.0437 (3)
H10.442 (6)0.299 (3)0.6544 (15)0.076 (9)*
O20.2634 (3)0.38706 (13)0.84027 (7)0.0458 (3)
N10.2661 (3)0.42750 (13)0.70936 (7)0.0323 (3)
N20.0828 (4)0.34323 (14)0.78487 (8)0.0416 (4)
C10.6881 (4)0.39393 (18)0.59858 (9)0.0348 (4)
C20.8989 (4)0.3867 (2)0.54531 (9)0.0440 (4)
H20.9497990.3064910.5259390.053*
C31.0319 (4)0.4989 (2)0.52136 (9)0.0483 (5)
H31.1734690.4933980.4860020.058*
C40.9584 (4)0.6193 (2)0.54901 (10)0.0462 (5)
H41.0486910.6942750.5321900.055*
C50.7498 (4)0.62710 (18)0.60178 (10)0.0389 (4)
H50.6999310.7080060.6204600.047*
C60.6123 (3)0.51527 (16)0.62759 (9)0.0320 (3)
C70.3974 (4)0.52744 (15)0.68378 (8)0.0310 (3)
H70.3536090.6095770.7017460.037*
C80.0651 (4)0.44484 (16)0.76451 (8)0.0306 (3)
C90.0105 (4)0.55739 (17)0.80429 (10)0.0416 (4)
H90.0630120.6413510.7996830.050*
C100.2116 (5)0.51451 (18)0.84982 (10)0.0438 (4)
H100.3039660.5661240.8837700.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (8)0.0369 (7)0.0483 (8)0.0034 (6)0.0043 (6)0.0077 (5)
O20.0545 (8)0.0400 (7)0.0428 (7)0.0028 (7)0.0158 (6)0.0049 (5)
N10.0320 (7)0.0332 (7)0.0316 (7)0.0026 (6)0.0012 (6)0.0007 (5)
N20.0484 (9)0.0338 (7)0.0426 (8)0.0003 (7)0.0097 (8)0.0010 (6)
C10.0298 (8)0.0445 (9)0.0302 (8)0.0040 (7)0.0056 (7)0.0028 (7)
C20.0346 (9)0.0635 (11)0.0338 (9)0.0065 (9)0.0023 (7)0.0129 (8)
C30.0313 (9)0.0860 (15)0.0275 (8)0.0006 (10)0.0013 (7)0.0010 (9)
C40.0355 (9)0.0655 (12)0.0377 (9)0.0061 (9)0.0018 (8)0.0123 (9)
C50.0340 (9)0.0441 (9)0.0385 (9)0.0001 (8)0.0042 (8)0.0051 (7)
C60.0276 (8)0.0397 (8)0.0288 (7)0.0024 (7)0.0049 (6)0.0009 (6)
C70.0309 (8)0.0320 (7)0.0302 (8)0.0050 (7)0.0030 (6)0.0013 (6)
C80.0324 (8)0.0306 (7)0.0290 (8)0.0020 (6)0.0028 (6)0.0022 (6)
C90.0531 (11)0.0320 (8)0.0395 (9)0.0041 (8)0.0097 (9)0.0043 (7)
C100.0567 (12)0.0396 (9)0.0352 (8)0.0005 (8)0.0117 (8)0.0020 (7)
Geometric parameters (Å, º) top
O1—H10.85 (3)C3—C41.382 (3)
O1—C11.350 (2)C4—H40.9300
O2—N21.403 (2)C4—C51.379 (3)
O2—C101.342 (2)C5—H50.9300
N1—C71.283 (2)C5—C61.397 (2)
N1—C81.397 (2)C6—C71.449 (2)
N2—C81.302 (2)C7—H70.9300
C1—C21.392 (2)C8—C91.418 (2)
C1—C61.403 (2)C9—H90.9300
C2—H20.9300C9—C101.333 (3)
C2—C31.379 (3)C10—H100.9300
C3—H30.9300
C1—O1—H1109.5 (19)C4—C5—C6120.96 (18)
C10—O2—N2107.82 (13)C6—C5—H5119.5
C7—N1—C8119.02 (14)C1—C6—C7121.80 (15)
C8—N2—O2105.57 (13)C5—C6—C1118.93 (16)
O1—C1—C2118.36 (17)C5—C6—C7119.27 (15)
O1—C1—C6121.83 (15)N1—C7—C6121.53 (15)
C2—C1—C6119.82 (17)N1—C7—H7119.2
C1—C2—H2120.1C6—C7—H7119.2
C3—C2—C1119.81 (18)N1—C8—C9130.84 (16)
C3—C2—H2120.1N2—C8—N1117.36 (14)
C2—C3—H3119.4N2—C8—C9111.80 (15)
C2—C3—C4121.11 (17)C8—C9—H9128.2
C4—C3—H3119.4C10—C9—C8103.68 (16)
C3—C4—H4120.3C10—C9—H9128.2
C5—C4—C3119.37 (19)O2—C10—H10124.4
C5—C4—H4120.3C9—C10—O2111.12 (16)
C4—C5—H5119.5C9—C10—H10124.4
O1—C1—C2—C3179.96 (16)C2—C3—C4—C50.4 (3)
O1—C1—C6—C5179.52 (15)C3—C4—C5—C60.0 (3)
O1—C1—C6—C70.9 (2)C4—C5—C6—C10.5 (2)
O2—N2—C8—N1179.55 (13)C4—C5—C6—C7179.11 (15)
O2—N2—C8—C90.3 (2)C5—C6—C7—N1179.78 (15)
N1—C8—C9—C10179.35 (18)C6—C1—C2—C30.0 (2)
N2—O2—C10—C90.3 (2)C7—N1—C8—N2174.09 (16)
N2—C8—C9—C100.5 (2)C7—N1—C8—C96.1 (3)
C1—C2—C3—C40.4 (3)C8—N1—C7—C6178.73 (14)
C1—C6—C7—N10.2 (2)C8—C9—C10—O20.4 (2)
C2—C1—C6—C50.4 (2)C10—O2—N2—C80.01 (19)
C2—C1—C6—C7179.10 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (3)1.86 (3)2.6110 (19)146 (3)
C7—H7···N2i0.932.713.599 (2)159
C9—H9···O1ii0.932.703.400 (2)133
C9—H9···N2i0.932.613.403 (2)144
C10—H10···O1i0.932.523.235 (2)134
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
(E)-2-{[(5-Methylisoxazol-3-yl)imino]methyl}phenol (2) top
Crystal data top
C11H10N2O2Dx = 1.401 Mg m3
Mr = 202.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1956 reflections
a = 20.5584 (7) Åθ = 2.8–30.4°
b = 10.0468 (4) ŵ = 0.10 mm1
c = 4.6417 (2) ÅT = 120 K
V = 958.73 (7) Å3Plate, yellow
Z = 40.49 × 0.24 × 0.09 mm
F(000) = 424
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
diffractometer
2021 independent reflections
Radiation source: Enhance (Mo) X-ray Source1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1511 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω scansh = 2624
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 712
Tmin = 0.969, Tmax = 0.991l = 55
6756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.0649P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2021 reflectionsΔρmax = 0.16 e Å3
141 parametersΔρmin = 0.17 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81572 (8)0.82495 (18)0.5857 (4)0.0178 (4)
O20.69696 (7)0.88359 (16)1.1087 (4)0.0252 (4)
C50.89944 (10)0.6016 (2)0.0907 (6)0.0230 (5)
H50.8764790.5224020.1372530.028*
C80.76594 (9)0.8126 (2)0.7920 (5)0.0174 (5)
C70.83312 (10)0.7187 (2)0.4495 (5)0.0171 (5)
H70.8120900.6368880.4929660.021*
C60.88369 (10)0.7205 (2)0.2328 (4)0.0185 (5)
C90.73150 (10)0.7000 (2)0.8961 (5)0.0190 (5)
H90.7371170.6095530.8415720.023*
N20.74662 (9)0.9233 (2)0.9160 (4)0.0254 (5)
C100.68911 (10)0.7496 (2)1.0894 (5)0.0187 (5)
C20.96625 (11)0.8330 (3)0.0493 (5)0.0280 (6)
H20.9892090.9116880.0994090.034*
C10.91752 (10)0.8371 (2)0.1593 (5)0.0212 (5)
C40.94762 (11)0.5978 (3)0.1150 (5)0.0282 (6)
H40.9579310.5166310.2097190.034*
C30.98101 (10)0.7139 (3)0.1827 (5)0.0294 (6)
H31.0145820.7112940.3232610.035*
C110.63763 (10)0.6919 (2)1.2750 (5)0.0246 (5)
H11A0.6494940.6005961.3276220.037*
H11B0.5962620.6912091.1700930.037*
H11C0.6331060.7456911.4499760.037*
O10.90403 (8)0.95508 (17)0.2871 (4)0.0271 (4)
H10.8719 (16)0.943 (3)0.431 (7)0.062 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0184 (9)0.0183 (10)0.0167 (9)0.0007 (7)0.0013 (7)0.0014 (8)
O20.0273 (8)0.0198 (8)0.0286 (9)0.0038 (7)0.0080 (7)0.0025 (7)
C50.0234 (11)0.0234 (13)0.0221 (12)0.0041 (9)0.0012 (10)0.0035 (10)
C80.0166 (10)0.0172 (11)0.0184 (11)0.0019 (8)0.0032 (9)0.0008 (9)
C70.0177 (10)0.0162 (11)0.0175 (11)0.0015 (9)0.0037 (8)0.0005 (9)
C60.0166 (10)0.0228 (12)0.0162 (12)0.0011 (9)0.0035 (8)0.0019 (9)
C90.0212 (11)0.0143 (11)0.0216 (12)0.0009 (9)0.0004 (9)0.0041 (9)
N20.0278 (10)0.0191 (10)0.0293 (12)0.0008 (8)0.0081 (9)0.0017 (9)
C100.0178 (10)0.0185 (11)0.0197 (12)0.0004 (9)0.0057 (8)0.0004 (10)
C20.0181 (11)0.0425 (17)0.0232 (13)0.0075 (10)0.0040 (9)0.0097 (12)
C10.0191 (10)0.0252 (13)0.0194 (12)0.0019 (9)0.0057 (9)0.0019 (10)
C40.0264 (12)0.0376 (16)0.0206 (12)0.0107 (10)0.0008 (10)0.0004 (11)
C30.0168 (11)0.0502 (18)0.0210 (12)0.0031 (11)0.0009 (9)0.0050 (12)
C110.0208 (11)0.0287 (14)0.0243 (12)0.0006 (10)0.0020 (10)0.0030 (11)
O10.0297 (9)0.0228 (9)0.0287 (9)0.0084 (7)0.0002 (8)0.0016 (8)
Geometric parameters (Å, º) top
N1—C81.407 (3)C9—C101.347 (3)
N1—C71.291 (3)C10—C111.483 (3)
O2—N21.415 (2)C2—H20.9500
O2—C101.358 (3)C2—C11.394 (3)
C5—H50.9500C2—C31.381 (4)
C5—C61.402 (3)C1—O11.354 (3)
C5—C41.377 (3)C4—H40.9500
C8—C91.420 (3)C4—C31.389 (4)
C8—N21.314 (3)C3—H30.9500
C7—H70.9500C11—H11A0.9800
C7—C61.447 (3)C11—H11B0.9800
C6—C11.405 (3)C11—H11C0.9800
C9—H90.9500O1—H10.95 (3)
C7—N1—C8117.49 (18)C9—C10—C11134.7 (2)
C10—O2—N2108.88 (17)C1—C2—H2120.1
C6—C5—H5119.5C3—C2—H2120.1
C4—C5—H5119.5C3—C2—C1119.7 (2)
C4—C5—C6121.1 (2)C2—C1—C6120.0 (2)
N1—C8—C9131.7 (2)O1—C1—C6121.5 (2)
N2—C8—N1116.30 (19)O1—C1—C2118.6 (2)
N2—C8—C9112.03 (19)C5—C4—H4120.4
N1—C7—H7119.0C5—C4—C3119.3 (2)
N1—C7—C6121.9 (2)C3—C4—H4120.4
C6—C7—H7119.0C2—C3—C4121.2 (2)
C5—C6—C7118.8 (2)C2—C3—H3119.4
C5—C6—C1118.8 (2)C4—C3—H3119.4
C1—C6—C7122.3 (2)C10—C11—H11A109.5
C8—C9—H9127.6C10—C11—H11B109.5
C10—C9—C8104.72 (19)C10—C11—H11C109.5
C10—C9—H9127.6H11A—C11—H11B109.5
C8—N2—O2104.84 (18)H11A—C11—H11C109.5
O2—C10—C11115.73 (19)H11B—C11—H11C109.5
C9—C10—O2109.53 (19)C1—O1—H1110 (2)
N1—C8—C9—C10179.3 (2)C7—C6—C1—O10.5 (3)
N1—C8—N2—O2179.62 (17)C6—C5—C4—C30.1 (3)
N1—C7—C6—C5179.1 (2)C9—C8—N2—O20.5 (2)
N1—C7—C6—C10.8 (3)N2—O2—C10—C90.6 (2)
C5—C6—C1—C20.7 (3)N2—O2—C10—C11178.90 (17)
C5—C6—C1—O1179.4 (2)N2—C8—C9—C100.9 (2)
C5—C4—C3—C20.6 (3)C10—O2—N2—C80.0 (2)
C8—N1—C7—C6179.86 (18)C1—C2—C3—C40.7 (4)
C8—C9—C10—O20.8 (2)C4—C5—C6—C7179.34 (19)
C8—C9—C10—C11178.5 (2)C4—C5—C6—C10.8 (3)
C7—N1—C8—C93.8 (3)C3—C2—C1—C60.0 (3)
C7—N1—C8—N2176.33 (19)C3—C2—C1—O1179.9 (2)
C7—C6—C1—C2179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.613.502 (3)157
C7—H7···N2i0.952.493.394 (3)159
C9—H9···N2i0.952.743.591 (3)149
C2—H2···O1ii0.952.623.496 (3)153
O1—H1···N10.95 (3)1.80 (3)2.632 (2)145 (3)
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+2, y+2, z1/2.
(E)-2,4-Di-tert-butyl-6-{[(isoxazol-3-yl)imino]methyl}phenol (3) top
Crystal data top
C18H24N2O2Z = 4
Mr = 300.39F(000) = 648
Triclinic, P1Dx = 1.176 Mg m3
a = 10.8955 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9571 (4) ÅCell parameters from 3727 reflections
c = 14.8329 (6) Åθ = 2.8–30.6°
α = 82.335 (3)°µ = 0.08 mm1
β = 88.326 (4)°T = 120 K
γ = 75.178 (3)°Block, yellow
V = 1696.56 (12) Å30.6 × 0.31 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)
diffractometer
6942 independent reflections
Radiation source: Enhance (Mo) X-ray Source5078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1511 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 201)
k = 1313
Tmin = 0.833, Tmax = 1.000l = 1718
14901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2797P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6942 reflectionsΔρmax = 0.26 e Å3
447 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C240.62533 (14)0.44081 (15)0.23482 (11)0.0194 (3)
C200.77675 (14)0.32155 (14)0.35354 (11)0.0190 (3)
C190.75097 (14)0.39906 (15)0.26936 (11)0.0199 (4)
C230.52635 (14)0.40545 (15)0.28547 (11)0.0205 (4)
H230.4424620.4330700.2614670.025*
C210.67363 (14)0.29147 (15)0.40078 (11)0.0204 (4)
H210.6897070.2403050.4582390.024*
C220.54747 (14)0.33172 (15)0.36914 (11)0.0197 (4)
C250.59372 (14)0.52312 (14)0.14975 (11)0.0200 (4)
H250.5079540.5474710.1294590.024*
C330.43854 (15)0.29616 (16)0.42524 (12)0.0252 (4)
C260.63774 (14)0.64763 (15)0.02015 (11)0.0194 (3)
C290.91235 (14)0.27455 (15)0.39314 (12)0.0215 (4)
C320.91766 (16)0.18777 (18)0.48356 (13)0.0317 (4)
H32A0.8670810.2359520.5289720.048*
H32B1.0059540.1561480.5045300.048*
H32C0.8833530.1156530.4750820.048*
C310.96017 (17)0.38940 (17)0.41060 (14)0.0324 (4)
H31A0.9618640.4445850.3531070.049*
H31B1.0459810.3596820.4365760.049*
H31C0.9032250.4373280.4532750.049*
C301.00116 (15)0.19654 (16)0.32725 (13)0.0276 (4)
H30A0.9726080.1204780.3201480.041*
H30B1.0879010.1709430.3516730.041*
H30C0.9995470.2484990.2679430.041*
C20.07843 (14)0.06923 (15)0.20567 (11)0.0192 (3)
C30.04914 (14)0.12430 (15)0.22980 (11)0.0199 (4)
H3A0.0680230.1988170.2730370.024*
C10.10414 (14)0.04067 (15)0.14176 (11)0.0204 (4)
C60.00444 (14)0.09006 (15)0.10284 (11)0.0207 (4)
C40.15019 (14)0.07657 (15)0.19430 (11)0.0189 (3)
C50.12126 (14)0.03076 (15)0.13060 (11)0.0213 (4)
H50.1879420.0653340.1049330.026*
C110.18571 (15)0.12427 (16)0.24995 (12)0.0228 (4)
C150.28885 (14)0.13476 (15)0.22475 (12)0.0217 (4)
C70.02506 (15)0.20119 (15)0.03592 (11)0.0224 (4)
H70.0463800.2294360.0123310.027*
C80.14592 (14)0.36909 (15)0.06000 (11)0.0207 (4)
C160.37378 (15)0.15129 (16)0.14078 (12)0.0269 (4)
H16A0.3693660.0677320.1059300.040*
H16B0.3446410.2048900.1026310.040*
H16C0.4616630.1918260.1600580.040*
C180.30689 (15)0.26528 (16)0.28202 (12)0.0268 (4)
H18A0.3972680.3017100.2959340.040*
H18B0.2756440.3220120.2479150.040*
H18C0.2592990.2555990.3388260.040*
C140.13416 (16)0.24950 (16)0.31207 (13)0.0306 (4)
H14A0.0790920.3114890.2769440.046*
H14B0.2051100.2828750.3370460.046*
H14C0.0852910.2342560.3619520.046*
C170.32965 (16)0.04451 (17)0.28165 (13)0.0307 (4)
H17A0.3182990.0394440.2457180.046*
H17B0.4191870.0788500.2989780.046*
H17C0.2775100.0365240.3365590.046*
C130.26844 (16)0.02779 (17)0.30742 (13)0.0325 (4)
H13A0.2173730.0155320.3571490.049*
H13B0.3399300.0600320.3326900.049*
H13C0.3007560.0536960.2690410.049*
C120.26677 (17)0.15318 (18)0.17645 (13)0.0338 (4)
H12A0.3328350.1908380.2055010.051*
H12B0.2126770.2131020.1393690.051*
H12C0.3065010.0740530.1376100.051*
O10.22667 (10)0.10067 (12)0.11699 (9)0.0277 (3)
H10.221 (2)0.169 (2)0.0752 (16)0.058 (7)*
N10.13695 (12)0.26419 (12)0.00656 (9)0.0221 (3)
N20.25886 (12)0.42300 (12)0.09629 (10)0.0227 (3)
N30.67760 (12)0.56493 (12)0.10016 (9)0.0210 (3)
O30.84641 (10)0.43463 (12)0.22084 (9)0.0266 (3)
H30.811 (2)0.481 (2)0.1680 (18)0.072 (8)*
O40.65569 (11)0.78296 (11)0.09613 (8)0.0283 (3)
O20.24050 (10)0.52280 (10)0.16117 (8)0.0253 (3)
C90.05245 (15)0.43050 (16)0.09767 (12)0.0266 (4)
H90.0353030.4100460.0828170.032*
N40.71975 (13)0.70662 (13)0.01941 (10)0.0248 (3)
C270.51994 (15)0.68092 (15)0.02802 (11)0.0224 (4)
H270.4463630.6509250.0135710.027*
C100.11690 (15)0.52365 (16)0.15882 (12)0.0275 (4)
H100.0805780.5828330.1958530.033*
C280.53779 (15)0.76434 (16)0.09833 (12)0.0260 (4)
H280.4758890.8051890.1438390.031*
C34A0.3752 (3)0.2222 (3)0.3685 (2)0.0348 (8)0.595
H34A0.4364970.1431820.3571100.052*0.595
H34B0.3461500.2742140.3104430.052*0.595
H34C0.3024200.2017120.4017440.052*0.595
C35A0.3371 (3)0.4226 (3)0.4403 (3)0.0402 (9)0.595
H35A0.2658560.4016800.4753040.060*0.595
H35B0.3061570.4702940.3811600.060*0.595
H35C0.3760410.4744700.4736860.060*0.595
C36A0.4795 (3)0.2210 (4)0.5141 (3)0.0481 (10)0.595
H36A0.4054230.2036010.5472220.072*0.595
H36B0.5206140.2691260.5493580.072*0.595
H36C0.5396820.1404480.5047020.072*0.595
C34B0.4739 (5)0.1446 (5)0.4570 (4)0.0401 (12)0.405
H34D0.5550230.1189030.4898580.060*0.405
H34E0.4808130.0998330.4033870.060*0.405
H34F0.4071830.1231460.4969870.060*0.405
C36B0.3150 (4)0.3263 (6)0.3762 (4)0.0475 (15)0.405
H36D0.2530670.2939450.4152420.071*0.405
H36E0.3265140.2860310.3203310.071*0.405
H36F0.2839470.4187550.3607660.071*0.405
C35B0.4259 (5)0.3583 (6)0.5127 (4)0.0488 (14)0.405
H35D0.3581930.3342600.5502310.073*0.405
H35E0.4051940.4510940.4973110.073*0.405
H35F0.5062990.3293470.5465120.073*0.405
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C240.0181 (8)0.0219 (8)0.0182 (9)0.0050 (6)0.0009 (6)0.0032 (7)
C200.0172 (8)0.0203 (8)0.0198 (9)0.0039 (6)0.0018 (6)0.0055 (7)
C190.0173 (8)0.0229 (8)0.0206 (9)0.0068 (6)0.0028 (7)0.0042 (7)
C230.0132 (7)0.0253 (8)0.0226 (9)0.0042 (6)0.0007 (6)0.0030 (7)
C210.0209 (8)0.0217 (8)0.0174 (9)0.0036 (7)0.0008 (7)0.0019 (7)
C220.0180 (8)0.0211 (8)0.0208 (9)0.0063 (6)0.0007 (7)0.0029 (7)
C250.0172 (8)0.0220 (8)0.0206 (9)0.0038 (6)0.0005 (7)0.0040 (7)
C330.0206 (8)0.0326 (9)0.0232 (10)0.0095 (7)0.0029 (7)0.0018 (8)
C260.0210 (8)0.0210 (8)0.0167 (9)0.0060 (7)0.0019 (7)0.0038 (7)
C290.0163 (8)0.0257 (9)0.0224 (10)0.0041 (7)0.0025 (7)0.0050 (7)
C320.0209 (9)0.0405 (11)0.0295 (11)0.0015 (8)0.0072 (8)0.0002 (8)
C310.0258 (9)0.0326 (10)0.0405 (12)0.0063 (8)0.0091 (8)0.0114 (9)
C300.0191 (8)0.0304 (9)0.0320 (11)0.0023 (7)0.0006 (7)0.0077 (8)
C20.0183 (8)0.0242 (8)0.0171 (9)0.0079 (7)0.0012 (6)0.0055 (7)
C30.0216 (8)0.0208 (8)0.0170 (9)0.0045 (7)0.0015 (7)0.0022 (7)
C10.0143 (7)0.0248 (9)0.0220 (9)0.0039 (6)0.0018 (7)0.0043 (7)
C60.0180 (8)0.0243 (9)0.0200 (9)0.0061 (7)0.0003 (7)0.0021 (7)
C40.0158 (7)0.0223 (8)0.0190 (9)0.0042 (6)0.0005 (6)0.0060 (7)
C50.0158 (8)0.0271 (9)0.0213 (9)0.0065 (7)0.0021 (7)0.0027 (7)
C110.0196 (8)0.0272 (9)0.0239 (10)0.0106 (7)0.0003 (7)0.0017 (7)
C150.0157 (8)0.0255 (9)0.0235 (10)0.0033 (7)0.0028 (7)0.0051 (7)
C70.0167 (8)0.0287 (9)0.0221 (10)0.0070 (7)0.0008 (7)0.0023 (7)
C80.0177 (8)0.0225 (8)0.0213 (9)0.0038 (7)0.0007 (7)0.0039 (7)
C160.0179 (8)0.0303 (9)0.0302 (11)0.0022 (7)0.0006 (7)0.0036 (8)
C180.0202 (8)0.0312 (9)0.0257 (10)0.0002 (7)0.0035 (7)0.0034 (8)
C140.0279 (9)0.0333 (10)0.0329 (11)0.0152 (8)0.0009 (8)0.0023 (8)
C170.0244 (9)0.0318 (10)0.0350 (12)0.0025 (8)0.0093 (8)0.0089 (8)
C130.0270 (9)0.0379 (10)0.0331 (12)0.0104 (8)0.0108 (8)0.0040 (9)
C120.0280 (9)0.0409 (11)0.0380 (12)0.0185 (8)0.0043 (8)0.0051 (9)
O10.0145 (6)0.0327 (7)0.0325 (8)0.0054 (5)0.0020 (5)0.0075 (6)
N10.0193 (7)0.0243 (7)0.0218 (8)0.0054 (6)0.0008 (6)0.0005 (6)
N20.0214 (7)0.0229 (7)0.0233 (8)0.0072 (6)0.0024 (6)0.0018 (6)
N30.0212 (7)0.0244 (7)0.0177 (8)0.0069 (6)0.0007 (6)0.0017 (6)
O30.0166 (6)0.0384 (7)0.0246 (7)0.0099 (5)0.0008 (5)0.0027 (6)
O40.0296 (6)0.0304 (7)0.0239 (7)0.0097 (5)0.0018 (5)0.0041 (5)
O20.0241 (6)0.0264 (6)0.0240 (7)0.0068 (5)0.0030 (5)0.0032 (5)
C90.0170 (8)0.0305 (9)0.0305 (11)0.0061 (7)0.0008 (7)0.0019 (8)
N40.0265 (7)0.0281 (8)0.0194 (8)0.0086 (6)0.0026 (6)0.0016 (6)
C270.0198 (8)0.0256 (9)0.0217 (10)0.0052 (7)0.0002 (7)0.0035 (7)
C100.0212 (9)0.0316 (10)0.0292 (11)0.0093 (7)0.0030 (7)0.0018 (8)
C280.0213 (8)0.0282 (9)0.0267 (10)0.0030 (7)0.0026 (7)0.0026 (8)
C34A0.0294 (16)0.0399 (19)0.041 (2)0.0199 (15)0.0049 (15)0.0064 (16)
C35A0.0336 (17)0.0361 (18)0.053 (2)0.0126 (15)0.0223 (17)0.0109 (17)
C36A0.0302 (18)0.076 (3)0.037 (2)0.0265 (19)0.0025 (15)0.024 (2)
C34B0.036 (3)0.038 (3)0.048 (3)0.019 (2)0.011 (2)0.005 (2)
C36B0.022 (2)0.074 (4)0.045 (3)0.021 (3)0.001 (2)0.014 (3)
C35B0.045 (3)0.062 (4)0.050 (4)0.030 (3)0.026 (3)0.020 (3)
Geometric parameters (Å, º) top
C24—C191.416 (2)C7—H70.9500
C24—C231.402 (2)C7—N11.2933 (19)
C24—C251.445 (2)C8—N11.397 (2)
C20—C191.405 (2)C8—N21.3172 (19)
C20—C211.394 (2)C8—C91.421 (2)
C20—C291.541 (2)C16—H16A0.9800
C19—O31.3564 (19)C16—H16B0.9800
C23—H230.9500C16—H16C0.9800
C23—C221.378 (2)C18—H18A0.9800
C21—H210.9500C18—H18B0.9800
C21—C221.406 (2)C18—H18C0.9800
C22—C331.531 (2)C14—H14A0.9800
C25—H250.9500C14—H14B0.9800
C25—N31.293 (2)C14—H14C0.9800
C33—C34A1.531 (4)C17—H17A0.9800
C33—C35A1.573 (3)C17—H17B0.9800
C33—C36A1.473 (4)C17—H17C0.9800
C33—C34B1.613 (5)C13—H13A0.9800
C33—C36B1.489 (5)C13—H13B0.9800
C33—C35B1.530 (6)C13—H13C0.9800
C26—N31.400 (2)C12—H12A0.9800
C26—N41.313 (2)C12—H12B0.9800
C26—C271.427 (2)C12—H12C0.9800
C29—C321.531 (2)O1—H10.92 (2)
C29—C311.534 (2)N2—O21.4078 (17)
C29—C301.538 (2)O3—H30.91 (3)
C32—H32A0.9800O4—N41.4056 (17)
C32—H32B0.9800O4—C281.353 (2)
C32—H32C0.9800O2—C101.3507 (19)
C31—H31A0.9800C9—H90.9500
C31—H31B0.9800C9—C101.335 (2)
C31—H31C0.9800C27—H270.9500
C30—H30A0.9800C27—C281.336 (2)
C30—H30B0.9800C10—H100.9500
C30—H30C0.9800C28—H280.9500
C2—C31.402 (2)C34A—H34A0.9800
C2—C11.402 (2)C34A—H34B0.9800
C2—C111.540 (2)C34A—H34C0.9800
C3—H3A0.9500C35A—H35A0.9800
C3—C41.396 (2)C35A—H35B0.9800
C1—C61.410 (2)C35A—H35C0.9800
C1—O11.3655 (18)C36A—H36A0.9800
C6—C51.405 (2)C36A—H36B0.9800
C6—C71.439 (2)C36A—H36C0.9800
C4—C51.381 (2)C34B—H34D0.9800
C4—C151.537 (2)C34B—H34E0.9800
C5—H50.9500C34B—H34F0.9800
C11—C141.532 (2)C36B—H36D0.9800
C11—C131.538 (2)C36B—H36E0.9800
C11—C121.536 (2)C36B—H36F0.9800
C15—C161.532 (2)C35B—H35D0.9800
C15—C181.532 (2)C35B—H35E0.9800
C15—C171.535 (2)C35B—H35F0.9800
C19—C24—C25122.25 (15)N2—C8—N1116.85 (14)
C23—C24—C19119.65 (15)N2—C8—C9112.00 (14)
C23—C24—C25118.06 (14)C15—C16—H16A109.5
C19—C20—C29121.58 (14)C15—C16—H16B109.5
C21—C20—C19117.03 (14)C15—C16—H16C109.5
C21—C20—C29121.37 (14)H16A—C16—H16B109.5
C20—C19—C24120.26 (14)H16A—C16—H16C109.5
O3—C19—C24119.60 (15)H16B—C16—H16C109.5
O3—C19—C20120.14 (14)C15—C18—H18A109.5
C24—C23—H23119.1C15—C18—H18B109.5
C22—C23—C24121.79 (14)C15—C18—H18C109.5
C22—C23—H23119.1H18A—C18—H18B109.5
C20—C21—H21117.8H18A—C18—H18C109.5
C20—C21—C22124.44 (15)H18B—C18—H18C109.5
C22—C21—H21117.8C11—C14—H14A109.5
C23—C22—C21116.82 (15)C11—C14—H14B109.5
C23—C22—C33121.57 (14)C11—C14—H14C109.5
C21—C22—C33121.61 (15)H14A—C14—H14B109.5
C24—C25—H25118.7H14A—C14—H14C109.5
N3—C25—C24122.57 (14)H14B—C14—H14C109.5
N3—C25—H25118.7C15—C17—H17A109.5
C22—C33—C35A108.26 (17)C15—C17—H17B109.5
C22—C33—C34B109.7 (2)C15—C17—H17C109.5
C34A—C33—C22107.78 (17)H17A—C17—H17B109.5
C34A—C33—C35A107.4 (2)H17A—C17—H17C109.5
C36A—C33—C22113.46 (17)H17B—C17—H17C109.5
C36A—C33—C34A110.3 (2)C11—C13—H13A109.5
C36A—C33—C35A109.4 (2)C11—C13—H13B109.5
C36B—C33—C22115.0 (2)C11—C13—H13C109.5
C36B—C33—C34B105.7 (3)H13A—C13—H13B109.5
C36B—C33—C35B111.5 (3)H13A—C13—H13C109.5
C35B—C33—C22108.5 (2)H13B—C13—H13C109.5
C35B—C33—C34B106.0 (3)C11—C12—H12A109.5
N3—C26—C27130.88 (15)C11—C12—H12B109.5
N4—C26—N3116.92 (14)C11—C12—H12C109.5
N4—C26—C27112.19 (14)H12A—C12—H12B109.5
C32—C29—C20112.13 (13)H12A—C12—H12C109.5
C32—C29—C31107.71 (14)H12B—C12—H12C109.5
C32—C29—C30106.86 (13)C1—O1—H1105.1 (14)
C31—C29—C20109.32 (13)C7—N1—C8117.91 (14)
C31—C29—C30110.55 (14)C8—N2—O2105.03 (12)
C30—C29—C20110.24 (13)C25—N3—C26118.67 (13)
C29—C32—H32A109.5C19—O3—H3106.6 (16)
C29—C32—H32B109.5C28—O4—N4108.24 (12)
C29—C32—H32C109.5C10—O2—N2108.06 (12)
H32A—C32—H32B109.5C8—C9—H9128.1
H32A—C32—H32C109.5C10—C9—C8103.75 (14)
H32B—C32—H32C109.5C10—C9—H9128.1
C29—C31—H31A109.5C26—N4—O4105.04 (12)
C29—C31—H31B109.5C26—C27—H27128.3
C29—C31—H31C109.5C28—C27—C26103.47 (15)
H31A—C31—H31B109.5C28—C27—H27128.3
H31A—C31—H31C109.5O2—C10—H10124.4
H31B—C31—H31C109.5C9—C10—O2111.16 (15)
C29—C30—H30A109.5C9—C10—H10124.4
C29—C30—H30B109.5O4—C28—H28124.5
C29—C30—H30C109.5C27—C28—O4111.05 (15)
H30A—C30—H30B109.5C27—C28—H28124.5
H30A—C30—H30C109.5C33—C34A—H34A109.5
H30B—C30—H30C109.5C33—C34A—H34B109.5
C3—C2—C11121.46 (14)C33—C34A—H34C109.5
C1—C2—C3116.96 (14)H34A—C34A—H34B109.5
C1—C2—C11121.55 (13)H34A—C34A—H34C109.5
C2—C3—H3A117.9H34B—C34A—H34C109.5
C4—C3—C2124.17 (15)C33—C35A—H35A109.5
C4—C3—H3A117.9C33—C35A—H35B109.5
C2—C1—C6120.53 (13)C33—C35A—H35C109.5
O1—C1—C2119.87 (14)H35A—C35A—H35B109.5
O1—C1—C6119.60 (14)H35A—C35A—H35C109.5
C1—C6—C7122.93 (14)H35B—C35A—H35C109.5
C5—C6—C1119.57 (15)C33—C36A—H36A109.5
C5—C6—C7117.50 (14)C33—C36A—H36B109.5
C3—C4—C15123.42 (14)C33—C36A—H36C109.5
C5—C4—C3117.17 (14)H36A—C36A—H36B109.5
C5—C4—C15119.38 (14)H36A—C36A—H36C109.5
C6—C5—H5119.2H36B—C36A—H36C109.5
C4—C5—C6121.57 (15)C33—C34B—H34D109.5
C4—C5—H5119.2C33—C34B—H34E109.5
C14—C11—C2112.03 (13)C33—C34B—H34F109.5
C14—C11—C13108.30 (15)H34D—C34B—H34E109.5
C14—C11—C12106.86 (14)H34D—C34B—H34F109.5
C13—C11—C2109.14 (14)H34E—C34B—H34F109.5
C12—C11—C2110.24 (14)C33—C36B—H36D109.5
C12—C11—C13110.23 (14)C33—C36B—H36E109.5
C16—C15—C4109.40 (13)C33—C36B—H36F109.5
C16—C15—C17109.46 (14)H36D—C36B—H36E109.5
C18—C15—C4112.18 (13)H36D—C36B—H36F109.5
C18—C15—C16108.16 (13)H36E—C36B—H36F109.5
C18—C15—C17108.75 (14)C33—C35B—H35D109.5
C17—C15—C4108.86 (13)C33—C35B—H35E109.5
C6—C7—H7118.7C33—C35B—H35F109.5
N1—C7—C6122.63 (15)H35D—C35B—H35E109.5
N1—C7—H7118.7H35D—C35B—H35F109.5
N1—C8—C9131.15 (14)H35E—C35B—H35F109.5
C24—C23—C22—C211.1 (2)C3—C2—C1—O1178.44 (15)
C24—C23—C22—C33178.44 (15)C3—C2—C11—C146.4 (2)
C24—C25—N3—C26177.95 (14)C3—C2—C11—C13113.56 (17)
C20—C21—C22—C230.2 (2)C3—C2—C11—C12125.23 (17)
C20—C21—C22—C33179.33 (15)C3—C4—C5—C60.3 (2)
C19—C24—C23—C220.7 (2)C3—C4—C15—C16132.25 (17)
C19—C24—C25—N30.7 (3)C3—C4—C15—C1812.2 (2)
C19—C20—C21—C221.0 (2)C3—C4—C15—C17108.18 (18)
C19—C20—C29—C32177.90 (15)C1—C2—C3—C40.0 (2)
C19—C20—C29—C3162.7 (2)C1—C2—C11—C14175.85 (15)
C19—C20—C29—C3059.0 (2)C1—C2—C11—C1364.2 (2)
C23—C24—C19—C200.6 (2)C1—C2—C11—C1257.0 (2)
C23—C24—C19—O3179.18 (14)C1—C6—C5—C41.1 (3)
C23—C24—C25—N3177.16 (15)C1—C6—C7—N10.1 (3)
C23—C22—C33—C34A59.7 (2)C6—C7—N1—C8178.61 (15)
C23—C22—C33—C35A56.2 (3)C5—C6—C7—N1178.96 (16)
C23—C22—C33—C36A177.8 (2)C5—C4—C15—C1649.8 (2)
C23—C22—C33—C34B129.6 (3)C5—C4—C15—C18169.79 (15)
C23—C22—C33—C36B10.6 (4)C5—C4—C15—C1769.81 (19)
C23—C22—C33—C35B115.1 (3)C11—C2—C3—C4177.87 (15)
C21—C20—C19—C241.4 (2)C11—C2—C1—C6179.33 (15)
C21—C20—C19—O3178.37 (14)C11—C2—C1—O10.6 (2)
C21—C20—C29—C323.7 (2)C15—C4—C5—C6177.81 (15)
C21—C20—C29—C31115.72 (17)C7—C6—C5—C4179.82 (15)
C21—C20—C29—C30122.57 (17)C8—N2—O2—C100.86 (17)
C21—C22—C33—C34A120.8 (2)C8—C9—C10—O20.3 (2)
C21—C22—C33—C35A123.3 (2)O1—C1—C6—C5177.88 (15)
C21—C22—C33—C36A1.7 (3)O1—C1—C6—C71.1 (3)
C21—C22—C33—C34B50.9 (3)N1—C8—N2—O2178.97 (13)
C21—C22—C33—C36B169.8 (3)N1—C8—C9—C10179.32 (17)
C21—C22—C33—C35B64.5 (3)N2—C8—N1—C7172.51 (15)
C25—C24—C19—C20178.43 (14)N2—C8—C9—C100.3 (2)
C25—C24—C19—O31.4 (2)N2—O2—C10—C90.7 (2)
C25—C24—C23—C22177.18 (15)N3—C26—N4—O4179.42 (12)
C26—C27—C28—O40.20 (19)N3—C26—C27—C28179.46 (16)
C29—C20—C19—C24179.95 (14)C9—C8—N1—C77.1 (3)
C29—C20—C19—O30.1 (2)C9—C8—N2—O20.71 (19)
C29—C20—C21—C22179.55 (15)N4—C26—N3—C25167.66 (15)
C2—C3—C4—C50.9 (3)N4—C26—C27—C280.46 (19)
C2—C3—C4—C15177.16 (15)N4—O4—C28—C270.10 (19)
C2—C1—C6—C52.0 (3)C27—C26—N3—C2512.3 (3)
C2—C1—C6—C7178.96 (15)C27—C26—N4—O40.52 (18)
C3—C2—C1—C61.5 (2)C28—O4—N4—C260.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O2i0.952.603.5232 (19)165
C25—H25···N2i0.952.703.637 (2)169
C5—H5···O4ii0.952.663.538 (2)155
C7—H7···N4ii0.952.823.708 (2)156
C18—H18B···N2iii0.982.673.559 (2)152
O1—H1···N10.92 (2)1.76 (2)2.6207 (18)153 (2)
O3—H3···N30.91 (3)1.77 (2)2.6062 (17)151 (2)
C10—H10···O3ii0.952.533.187 (2)127
C28—H28···O1i0.952.693.3370 (19)126
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z.
 

Footnotes

Died 6th December 2019

Acknowledgements

HEM is grateful to the EPSRC and Durham University for funding and Professor Jonathan Steed, Durham University, for useful discussions.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, O., Ulusoy, M., Tas, E. & Ide, S. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x185–x186.  Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationCorne, V., Sarotti, A. M., Ramirez de Arellano, C., Spanevello, R. A. & Suárez, A. G. (2016). Beilstein J. Org. Chem. 12, 1616–1623.  CSD CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationKargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A. & Tahir, M. N. (2020). J. Mol. Struct. 1205, article No. 127642.  CSD CrossRef Google Scholar
First citationKumari, S., Das, B. & Ray, S. (2019). Dalton Trans. 48, 15942–15954.  CrossRef PubMed Google Scholar
First citationMighani, H. (2020). J. Polym. Res. 27, article No. 168.  CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParveen, S. (2020). Appl. Organomet. Chem. 2020, article No. e5687.  Google Scholar
First citationRobert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327–4342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, article No. 119633.  CSD CrossRef Google Scholar
First citationSenier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943–1955.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, R. G., Lu, J. & Li, J. K. (2008). Acta Cryst. E64, o499.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds