Download citation
Download citation
link to html
Intense synchrotron radiation makes time-resolved structural experiments with increasingly finer time sampling possible. On the other hand, radiation heating, radiation-induced volume change and structural disorder become more frequent. Temperature, volume change and disorder are known to be coupled with equilibrium in molecular spin complexes, balancing between two or more spin state configurations. Combining single-crystal diffraction and synchrotron radiation it is illustrated how the radiation damage and associated effects can affect the spin crossover process and may serve as yet another tool to further manipulate the spin crossover properties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252062200467X/wu5003sup1.cif
Contains datablocks 1st_257K, 1st_152K, 1st_083K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062200467X/wu50031st_257Ksup3.hkl
Contains datablock 1st_257K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062200467X/wu50031st_152Ksup4.hkl
Contains datablock 1st_152K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252062200467X/wu50031st_083Ksup5.hkl
Contains datablock 1st_083K

CCDC references: 2169944; 2169945; 2169946

Computing details top

For all structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(1st_257K) top
Crystal data top
C8.25H25.50Br1.50Fe0.75N4.50O0.75Dx = 1.612 Mg m3
Mr = 361.58Synchrotron radiation, λ = 0.78405 Å
Trigonal, R3m:HCell parameters from 1661 reflections
a = 7.3806 (2) Åθ = 2.1–32.1°
c = 31.5783 (16) ŵ = 6.11 mm1
V = 1489.71 (11) Å3T = 257 K
Z = 4Hexagonal flat prism, colourless
F(000) = 7380.24 × 0.22 × 0.16 mm
Data collection top
Abstract
diffractometer
393 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.007
ω scansθmax = 29.3°, θmin = 2.1°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 89
Tmin = 0.873, Tmax = 1.000k = 99
2292 measured reflectionsl = 3737
397 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0806P)2 + 2.6123P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.009
397 reflectionsΔρmax = 0.60 e Å3
33 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.00000.15095 (16)0.0580 (16)
H1A0.14870.07440.16130.087*
C20.00000.00000.10217 (14)0.0379 (11)
C30.1146 (3)0.1146 (3)0.08746 (9)0.0517 (7)
H3A0.24790.06040.10370.062*0.5
H3B0.02530.26960.09490.062*0.5
C40.1671 (7)0.5835 (3)0.13760 (16)0.079 (7)*0.1667
H4A0.22170.59100.10900.118*0.0833
H4B0.09470.66430.13870.118*0.0833
H4C0.06880.43730.14480.118*0.0833
O10.33330.66670.16670.164 (6)
H10.36650.57290.17280.246*0.0833
Fe10.00000.00000.00000.02883 (19)
Br10.33330.66670.03711 (2)0.04913 (15)
N10.1589 (4)0.1059 (4)0.04252 (7)0.0374 (6)0.5
H1B0.13360.23730.03390.045*0.5
H1C0.30220.01290.03970.045*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (2)0.073 (2)0.028 (2)0.0366 (12)0.0000.000
C20.0450 (15)0.0450 (15)0.0236 (18)0.0225 (8)0.0000.000
C30.0711 (7)0.0711 (7)0.0323 (11)0.0500 (9)0.0033 (6)0.0033 (6)
O10.183 (9)0.183 (9)0.126 (9)0.091 (4)0.0000.000
Fe10.0327 (2)0.0327 (2)0.0210 (3)0.01637 (12)0.0000.000
Br10.04825 (19)0.04825 (19)0.0509 (3)0.02413 (10)0.0000.000
N10.0399 (11)0.0402 (11)0.0351 (11)0.0224 (7)0.0029 (10)0.0032 (9)
Geometric parameters (Å, º) top
C1—C21.540 (7)Fe1—N1ix2.169 (3)
C2—C3i1.536 (3)Fe1—N1ii2.169 (3)
C2—C3ii1.536 (3)Fe1—N1x2.169 (3)
C2—C31.536 (3)Fe1—N1xi2.169 (3)
C3—N11.451 (4)Fe1—N1iii2.169 (3)
C3—N1iii1.451 (4)Fe1—N1xii2.169 (3)
C4—O11.404 (3)Fe1—N1xiii2.169 (3)
C4—C4iv1.841 (8)Fe1—N1xiv2.169 (3)
C4—C4v1.841 (8)Fe1—N1xv2.169 (3)
O1—C4vi1.404 (3)Fe1—N1xvi2.169 (3)
O1—C4vii1.404 (3)Fe1—N1i2.169 (3)
O1—C4iv1.404 (3)Fe1—N12.169 (3)
O1—C4v1.404 (3)N1—N1iii0.391 (5)
O1—C4viii1.405 (3)
C3i—C2—C3ii111.27 (18)N1ix—Fe1—N1xiv87.76 (13)
C3i—C2—C3111.27 (18)N1ii—Fe1—N1xiv92.24 (13)
C3ii—C2—C3111.27 (18)N1x—Fe1—N1xiv85.72 (10)
C3i—C2—C1107.60 (19)N1xi—Fe1—N1xiv94.28 (10)
C3ii—C2—C1107.60 (19)N1iii—Fe1—N1xiv85.72 (10)
C3—C2—C1107.61 (19)N1xii—Fe1—N1xiv94.28 (10)
N1—C3—N1iii15.5 (2)N1xiii—Fe1—N1xiv101.81 (14)
N1—C3—C2116.5 (3)N1ix—Fe1—N1xv92.24 (13)
N1iii—C3—C2116.5 (3)N1ii—Fe1—N1xv87.76 (13)
O1—C4—C4iv49.06 (18)N1x—Fe1—N1xv94.28 (10)
O1—C4—C4v49.06 (18)N1xi—Fe1—N1xv85.72 (10)
C4iv—C4—C4v60.001 (1)N1iii—Fe1—N1xv94.28 (10)
C4—O1—C4vi180.0N1xii—Fe1—N1xv85.72 (10)
C4—O1—C4vii98.1 (4)N1xiii—Fe1—N1xv78.19 (14)
C4vi—O1—C4vii81.9 (4)N1xiv—Fe1—N1xv180.00 (17)
C4—O1—C4iv81.9 (4)N1ix—Fe1—N1xvi85.72 (10)
C4vi—O1—C4iv98.1 (4)N1ii—Fe1—N1xvi94.28 (10)
C4vii—O1—C4iv180.0N1x—Fe1—N1xvi101.81 (14)
C4—O1—C4v81.9 (4)N1xi—Fe1—N1xvi78.19 (14)
C4vi—O1—C4v98.1 (4)N1iii—Fe1—N1xvi87.76 (13)
C4vii—O1—C4v98.1 (4)N1xii—Fe1—N1xvi92.24 (13)
C4iv—O1—C4v81.9 (4)N1xiii—Fe1—N1xvi85.72 (10)
C4—O1—C4viii98.1 (4)N1xiv—Fe1—N1xvi169.65 (13)
C4vi—O1—C4viii81.9 (4)N1xv—Fe1—N1xvi10.35 (13)
C4vii—O1—C4viii81.9 (4)N1ix—Fe1—N1i94.28 (10)
C4iv—O1—C4viii98.1 (4)N1ii—Fe1—N1i85.72 (10)
C4v—O1—C4viii180.0N1x—Fe1—N1i78.19 (14)
N1ix—Fe1—N1ii180.00 (17)N1xi—Fe1—N1i101.81 (14)
N1ix—Fe1—N1x169.65 (13)N1iii—Fe1—N1i92.24 (13)
N1ii—Fe1—N1x10.35 (13)N1xii—Fe1—N1i87.76 (13)
N1ix—Fe1—N1xi10.35 (13)N1xiii—Fe1—N1i94.28 (10)
N1ii—Fe1—N1xi169.65 (13)N1xiv—Fe1—N1i10.35 (13)
N1x—Fe1—N1xi180.00 (19)N1xv—Fe1—N1i169.65 (13)
N1ix—Fe1—N1iii101.81 (14)N1xvi—Fe1—N1i180.00 (16)
N1ii—Fe1—N1iii78.19 (14)N1ix—Fe1—N194.28 (10)
N1x—Fe1—N1iii85.72 (10)N1ii—Fe1—N185.72 (10)
N1xi—Fe1—N1iii94.28 (10)N1x—Fe1—N192.24 (13)
N1ix—Fe1—N1xii78.19 (14)N1xi—Fe1—N187.76 (13)
N1ii—Fe1—N1xii101.81 (14)N1iii—Fe1—N110.35 (13)
N1x—Fe1—N1xii94.28 (10)N1xii—Fe1—N1169.65 (13)
N1xi—Fe1—N1xii85.72 (10)N1xiii—Fe1—N1180.0
N1iii—Fe1—N1xii180.00 (16)N1xiv—Fe1—N178.19 (14)
N1ix—Fe1—N1xiii85.72 (10)N1xv—Fe1—N1101.81 (14)
N1ii—Fe1—N1xiii94.28 (10)N1xvi—Fe1—N194.28 (10)
N1x—Fe1—N1xiii87.76 (13)N1i—Fe1—N185.72 (10)
N1xi—Fe1—N1xiii92.24 (13)N1iii—N1—C382.26 (10)
N1iii—Fe1—N1xiii169.65 (13)N1iii—N1—Fe184.82 (7)
N1xii—Fe1—N1xiii10.35 (13)C3—N1—Fe1118.1 (2)
C3i—C2—C3—N153.7 (3)C4v—C4—O1—C4iv82.9 (3)
C3ii—C2—C3—N171.0 (2)C4iv—C4—O1—C4v82.9 (3)
C1—C2—C3—N1171.34 (11)C4iv—C4—O1—C4viii97.1 (3)
C3i—C2—C3—N1iii71.0 (2)C4v—C4—O1—C4viii180.001 (1)
C3ii—C2—C3—N1iii53.7 (3)C2—C3—N1—N1iii93.88 (7)
C1—C2—C3—N1iii171.34 (11)N1iii—C3—N1—Fe179.88 (14)
C4iv—C4—O1—C4vii179.995 (1)C2—C3—N1—Fe114.01 (18)
C4v—C4—O1—C4vii97.1 (3)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y, x, z; (iv) x+y, x+1, z; (v) y+1, xy+1, z; (vi) x+2/3, y+4/3, z+1/3; (vii) xy+2/3, x+1/3, z+1/3; (viii) y1/3, x+y+1/3, z+1/3; (ix) xy, x, z; (x) x+y, y, z; (xi) xy, y, z; (xii) y, x, z; (xiii) x, y, z; (xiv) x, xy, z; (xv) x, x+y, z; (xvi) y, x+y, z.
(1st_152K) top
Crystal data top
C8.25H25.50Br1.50Fe0.75N4.50O0.75Dx = 1.628 Mg m3
Mr = 361.58Synchrotron radiation, λ = 0.78405 Å
Trigonal, R3m:HCell parameters from 1210 reflections
a = 7.3869 (3) Åθ = 3.6–32.5°
c = 31.2243 (14) ŵ = 6.17 mm1
V = 1475.53 (14) Å3T = 152 K
Z = 4Hexagonal flat prism, colourless
F(000) = 7380.24 × 0.22 × 0.16 mm
Data collection top
Abstract
diffractometer
361 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.007
ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 88
Tmin = 0.833, Tmax = 1.000k = 99
2246 measured reflectionsl = 3737
391 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0871P)2 + 5.7826P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.032
391 reflectionsΔρmax = 0.76 e Å3
33 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.00000.1505 (3)0.085 (3)
H1A0.14870.07440.16090.128*
C20.00000.00000.1010 (2)0.0627 (19)
C30.1135 (4)0.1135 (4)0.08615 (13)0.0733 (11)
H3A0.24680.06040.10240.088*0.5
H3B0.02420.26960.09350.088*0.5
C40.1621 (7)0.5811 (3)0.13848 (17)0.116 (13)*0.1667
H4A0.20740.56120.11020.174*0.0833
H4B0.10640.67630.13600.174*0.0833
H4C0.05320.44590.14960.174*0.0833
O10.33330.66670.16670.199 (9)
H10.36650.57290.17280.299*0.0833
Fe10.00000.00000.00000.0432 (3)
Br10.33330.66670.03682 (3)0.0686 (2)
N10.1539 (6)0.1033 (6)0.04134 (10)0.0595 (10)0.5
H1B0.12870.23460.03270.071*0.5
H1C0.29730.01030.03850.071*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.101 (4)0.101 (4)0.053 (4)0.051 (2)0.0000.000
C20.073 (3)0.073 (3)0.043 (3)0.0363 (13)0.0000.000
C30.0899 (13)0.0899 (13)0.055 (2)0.0560 (15)0.0045 (10)0.0045 (10)
O10.227 (13)0.227 (13)0.144 (13)0.113 (6)0.0000.000
Fe10.0469 (4)0.0469 (4)0.0357 (5)0.02344 (18)0.0000.000
Br10.0680 (3)0.0680 (3)0.0697 (5)0.03399 (14)0.0000.000
N10.0616 (18)0.0672 (19)0.0546 (18)0.0359 (11)0.0017 (16)0.0050 (16)
Geometric parameters (Å, º) top
C1—C21.548 (11)Fe1—N1ix2.100 (4)
C2—C31.523 (5)Fe1—N1ii2.100 (4)
C2—C3i1.523 (5)Fe1—N1x2.100 (4)
C2—C3ii1.523 (5)Fe1—N1xi2.100 (4)
C3—N11.425 (5)Fe1—N1iii2.100 (4)
C3—N1iii1.425 (5)Fe1—N1xii2.100 (4)
C4—O11.405 (3)Fe1—N1xiii2.100 (4)
C4—C4iv1.897 (8)Fe1—N1xiv2.100 (4)
C4—C4v1.897 (8)Fe1—N1xv2.100 (4)
O1—C4v1.405 (3)Fe1—N1xvi2.100 (4)
O1—C4iv1.405 (3)Fe1—N1i2.100 (4)
O1—C4vi1.405 (3)Fe1—N12.100 (4)
O1—C4vii1.405 (3)N1—N1iii0.374 (8)
O1—C4viii1.405 (3)
C3—C2—C3i111.2 (3)N1ix—Fe1—N1xiv87.4 (2)
C3—C2—C3ii111.2 (3)N1ii—Fe1—N1xiv92.6 (2)
C3i—C2—C3ii111.2 (3)N1x—Fe1—N1xiv86.17 (15)
C3—C2—C1107.7 (3)N1xi—Fe1—N1xiv93.83 (15)
C3i—C2—C1107.7 (3)N1iii—Fe1—N1xiv86.17 (15)
C3ii—C2—C1107.7 (3)N1xii—Fe1—N1xiv93.83 (15)
N1—C3—N1iii15.1 (3)N1xiii—Fe1—N1xiv101.3 (2)
N1—C3—C2115.3 (4)N1ix—Fe1—N1xv92.6 (2)
N1iii—C3—C2115.3 (4)N1ii—Fe1—N1xv87.4 (2)
O1—C4—C4iv47.54 (18)N1x—Fe1—N1xv93.83 (15)
O1—C4—C4v47.54 (18)N1xi—Fe1—N1xv86.17 (15)
C4iv—C4—C4v60.000 (1)N1iii—Fe1—N1xv93.83 (15)
C4—O1—C4v84.9 (4)N1xii—Fe1—N1xv86.17 (15)
C4—O1—C4iv84.9 (4)N1xiii—Fe1—N1xv78.7 (2)
C4v—O1—C4iv84.9 (4)N1xiv—Fe1—N1xv180.0 (3)
C4—O1—C4vi180.0N1ix—Fe1—N1xvi86.17 (15)
C4v—O1—C4vi95.1 (4)N1ii—Fe1—N1xvi93.83 (15)
C4iv—O1—C4vi95.1 (4)N1x—Fe1—N1xvi101.3 (2)
C4—O1—C4vii95.1 (4)N1xi—Fe1—N1xvi78.7 (2)
C4v—O1—C4vii180.0N1iii—Fe1—N1xvi87.4 (2)
C4iv—O1—C4vii95.1 (4)N1xii—Fe1—N1xvi92.6 (2)
C4vi—O1—C4vii84.9 (4)N1xiii—Fe1—N1xvi86.17 (15)
C4—O1—C4viii95.1 (4)N1xiv—Fe1—N1xvi169.8 (2)
C4v—O1—C4viii95.1 (4)N1xv—Fe1—N1xvi10.2 (2)
C4iv—O1—C4viii180.0N1ix—Fe1—N1i93.83 (15)
C4vi—O1—C4viii84.9 (4)N1ii—Fe1—N1i86.17 (15)
C4vii—O1—C4viii84.9 (4)N1x—Fe1—N1i78.7 (2)
N1ix—Fe1—N1ii180.0 (3)N1xi—Fe1—N1i101.3 (2)
N1ix—Fe1—N1x169.8 (2)N1iii—Fe1—N1i92.6 (2)
N1ii—Fe1—N1x10.2 (2)N1xii—Fe1—N1i87.4 (2)
N1ix—Fe1—N1xi10.2 (2)N1xiii—Fe1—N1i93.83 (15)
N1ii—Fe1—N1xi169.8 (2)N1xiv—Fe1—N1i10.2 (2)
N1x—Fe1—N1xi180.00 (13)N1xv—Fe1—N1i169.8 (2)
N1ix—Fe1—N1iii101.3 (2)N1xvi—Fe1—N1i180.0 (2)
N1ii—Fe1—N1iii78.7 (2)N1ix—Fe1—N193.83 (15)
N1x—Fe1—N1iii86.17 (15)N1ii—Fe1—N186.17 (15)
N1xi—Fe1—N1iii93.83 (15)N1x—Fe1—N192.6 (2)
N1ix—Fe1—N1xii78.7 (2)N1xi—Fe1—N187.4 (2)
N1ii—Fe1—N1xii101.3 (2)N1iii—Fe1—N110.2 (2)
N1x—Fe1—N1xii93.83 (15)N1xii—Fe1—N1169.8 (2)
N1xi—Fe1—N1xii86.17 (15)N1xiii—Fe1—N1180.0
N1iii—Fe1—N1xii180.0 (2)N1xiv—Fe1—N178.7 (2)
N1ix—Fe1—N1xiii86.17 (15)N1xv—Fe1—N1101.3 (2)
N1ii—Fe1—N1xiii93.83 (15)N1xvi—Fe1—N193.83 (15)
N1x—Fe1—N1xiii87.4 (2)N1i—Fe1—N186.17 (15)
N1xi—Fe1—N1xiii92.6 (2)N1iii—N1—C382.47 (16)
N1iii—Fe1—N1xiii169.8 (2)N1iii—N1—Fe184.88 (10)
N1xii—Fe1—N1xiii10.2 (2)C3—N1—Fe1119.0 (3)
C3i—C2—C3—N153.9 (4)C4iv—C4—O1—C4vii94.7 (3)
C3ii—C2—C3—N170.6 (4)C4v—C4—O1—C4vii179.997 (1)
C1—C2—C3—N1171.65 (17)C4iv—C4—O1—C4viii180.001 (1)
C3i—C2—C3—N1iii70.6 (4)C4v—C4—O1—C4viii94.7 (3)
C3ii—C2—C3—N1iii53.9 (4)C2—C3—N1—N1iii93.59 (10)
C1—C2—C3—N1iii171.65 (17)N1iii—C3—N1—Fe179.8 (2)
C4iv—C4—O1—C4v85.3 (3)C2—C3—N1—Fe113.7 (3)
C4v—C4—O1—C4iv85.3 (3)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y, x, z; (iv) y+1, xy+1, z; (v) x+y, x+1, z; (vi) x+2/3, y+4/3, z+1/3; (vii) xy+2/3, x+1/3, z+1/3; (viii) y1/3, x+y+1/3, z+1/3; (ix) xy, x, z; (x) x+y, y, z; (xi) xy, y, z; (xii) y, x, z; (xiii) x, y, z; (xiv) x, xy, z; (xv) x, x+y, z; (xvi) y, x+y, z.
(1st_083K) top
Crystal data top
C8.25H25.50Br1.50Fe0.75N4.50O0.75Dx = 1.618 Mg m3
Mr = 361.58Synchrotron radiation, λ = 0.78405 Å
Trigonal, R3mCell parameters from 860 reflections
a = 7.4091 (4) Åθ = 2.2–27.7°
c = 31.216 (2) ŵ = 6.13 mm1
V = 1484.02 (19) Å3T = 83 K
Z = 4Hexagonal flat prism, colourless
F(000) = 7380.24 × 0.22 × 0.16 mm
Data collection top
Abstract
diffractometer
335 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.008
ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 89
Tmin = 0.789, Tmax = 1.000k = 99
2197 measured reflectionsl = 3737
396 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1376P)2 + 10.4317P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.403
396 reflectionsΔρmax = 1.20 e Å3
33 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.00000.1511 (5)0.118 (6)
H1A0.14870.07440.16150.177*
C20.00000.00000.0997 (4)0.090 (4)
C30.1129 (7)0.1129 (7)0.0847 (2)0.096 (2)
H3A0.24620.06040.10100.115*0.5
H3B0.02360.26960.09210.115*0.5
C40.1624 (7)0.5812 (3)0.13854 (17)0.13 (2)*0.1667
H4A0.15390.46000.12400.199*0.0833
H4B0.18010.68600.11720.199*0.0833
H4C0.03400.53800.15480.199*0.0833
O10.33330.66670.16670.254 (18)
H10.36650.57290.17280.381*0.0833
Fe10.00000.00000.00000.0589 (5)
Br10.33330.66670.03649 (5)0.0923 (5)
N10.1449 (11)0.1060 (13)0.04029 (18)0.0917 (19)0.5
H1B0.11970.23730.03170.110*0.5
H1C0.28830.01300.03740.110*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.132 (8)0.132 (8)0.090 (9)0.066 (4)0.0000.000
C20.107 (6)0.107 (6)0.058 (6)0.053 (3)0.0000.000
C30.114 (2)0.114 (2)0.077 (4)0.069 (3)0.0081 (19)0.0081 (19)
O10.28 (3)0.28 (3)0.20 (3)0.141 (13)0.0000.000
Fe10.0618 (6)0.0618 (6)0.0529 (9)0.0309 (3)0.0000.000
Br10.0895 (6)0.0895 (6)0.0979 (10)0.0447 (3)0.0000.000
N10.086 (3)0.130 (4)0.080 (4)0.070 (2)0.008 (3)0.010 (4)
Geometric parameters (Å, º) top
C1—C21.60 (2)Fe1—N12.048 (7)
C2—C3i1.522 (10)Fe1—N1ix2.048 (7)
C2—C3ii1.522 (10)Fe1—N1x2.048 (7)
C2—C31.522 (10)Fe1—N1i2.048 (7)
C3—N1iii1.404 (9)Fe1—N1xi2.048 (7)
C3—N11.404 (9)Fe1—N1ii2.048 (7)
C4—O11.405 (3)Fe1—N1xii2.048 (7)
C4—C4iv1.900 (8)Fe1—N1xiii2.048 (7)
C4—C4v1.900 (8)Fe1—N1xiv2.048 (7)
O1—C4iv1.405 (3)Fe1—N1iii2.048 (7)
O1—C4v1.405 (3)Fe1—N1xv2.048 (7)
O1—C4vi1.405 (3)Fe1—N1xvi2.048 (7)
O1—C4vii1.405 (3)N1—N1iii0.289 (15)
O1—C4viii1.405 (3)
C3i—C2—C3ii111.0 (5)N1—Fe1—N1xiii80.4 (4)
C3i—C2—C3111.0 (5)N1ix—Fe1—N1xiii86.2 (3)
C3ii—C2—C3111.0 (5)N1x—Fe1—N1xiii93.8 (3)
C3i—C2—C1107.9 (5)N1i—Fe1—N1xiii8.1 (4)
C3ii—C2—C1107.9 (5)N1xi—Fe1—N1xiii171.9 (4)
C3—C2—C1107.9 (5)N1ii—Fe1—N1xiii91.4 (4)
N1iii—C3—N111.8 (6)N1xii—Fe1—N1xiii88.6 (4)
N1iii—C3—C2114.4 (8)N1—Fe1—N1xiv99.6 (4)
N1—C3—C2114.4 (8)N1ix—Fe1—N1xiv93.8 (3)
O1—C4—C4iv47.46 (18)N1x—Fe1—N1xiv86.2 (3)
O1—C4—C4v47.46 (18)N1i—Fe1—N1xiv171.9 (4)
C4iv—C4—C4v60.0N1xi—Fe1—N1xiv8.1 (4)
C4iv—O1—C4v85.1 (4)N1ii—Fe1—N1xiv88.6 (4)
C4iv—O1—C4vi94.9 (4)N1xii—Fe1—N1xiv91.4 (4)
C4v—O1—C4vi94.9 (4)N1xiii—Fe1—N1xiv180.0 (5)
C4iv—O1—C4vii180.0N1—Fe1—N1iii8.1 (4)
C4v—O1—C4vii94.9 (4)N1ix—Fe1—N1iii86.2 (3)
C4vi—O1—C4vii85.1 (4)N1x—Fe1—N1iii93.8 (3)
C4iv—O1—C485.1 (4)N1i—Fe1—N1iii91.4 (4)
C4v—O1—C485.1 (4)N1xi—Fe1—N1iii88.6 (4)
C4vi—O1—C4180.0 (3)N1ii—Fe1—N1iii80.4 (4)
C4vii—O1—C494.9 (4)N1xii—Fe1—N1iii99.6 (4)
C4iv—O1—C4viii94.9 (4)N1xiii—Fe1—N1iii86.2 (3)
C4v—O1—C4viii180.0N1xiv—Fe1—N1iii93.8 (3)
C4vi—O1—C4viii85.1 (4)N1—Fe1—N1xv171.9 (4)
C4vii—O1—C4viii85.1 (4)N1ix—Fe1—N1xv93.8 (3)
C4—O1—C4viii94.9 (4)N1x—Fe1—N1xv86.2 (3)
N1—Fe1—N1ix91.4 (4)N1i—Fe1—N1xv88.6 (4)
N1—Fe1—N1x88.6 (4)N1xi—Fe1—N1xv91.4 (4)
N1ix—Fe1—N1x180.0 (2)N1ii—Fe1—N1xv99.6 (4)
N1—Fe1—N1i86.2 (3)N1xii—Fe1—N1xv80.4 (4)
N1ix—Fe1—N1i80.4 (4)N1xiii—Fe1—N1xv93.8 (3)
N1x—Fe1—N1i99.6 (4)N1xiv—Fe1—N1xv86.2 (3)
N1—Fe1—N1xi93.8 (3)N1iii—Fe1—N1xv180.0 (5)
N1ix—Fe1—N1xi99.6 (4)N1—Fe1—N1xvi180.0
N1x—Fe1—N1xi80.4 (4)N1ix—Fe1—N1xvi88.6 (4)
N1i—Fe1—N1xi180.0 (4)N1x—Fe1—N1xvi91.4 (4)
N1—Fe1—N1ii86.2 (3)N1i—Fe1—N1xvi93.8 (3)
N1ix—Fe1—N1ii8.1 (4)N1xi—Fe1—N1xvi86.2 (3)
N1x—Fe1—N1ii171.9 (4)N1ii—Fe1—N1xvi93.8 (3)
N1i—Fe1—N1ii86.2 (3)N1xii—Fe1—N1xvi86.2 (3)
N1xi—Fe1—N1ii93.8 (3)N1xiii—Fe1—N1xvi99.6 (4)
N1—Fe1—N1xii93.8 (3)N1xiv—Fe1—N1xvi80.4 (4)
N1ix—Fe1—N1xii171.9 (4)N1iii—Fe1—N1xvi171.9 (4)
N1x—Fe1—N1xii8.1 (4)N1xv—Fe1—N1xvi8.1 (4)
N1i—Fe1—N1xii93.8 (3)N1iii—N1—C384.1 (3)
N1xi—Fe1—N1xii86.2 (3)N1iii—N1—Fe186.0 (2)
N1ii—Fe1—N1xii180.0 (2)C3—N1—Fe1120.6 (6)
C3i—C2—C3—N1iii68.5 (7)C4iv—C4—O1—C4vii179.997 (1)
C3ii—C2—C3—N1iii55.5 (8)C4v—C4—O1—C4vii94.5 (3)
C1—C2—C3—N1iii173.5 (3)C4iv—C4—O1—C4viii94.5 (3)
C3i—C2—C3—N155.5 (8)C4v—C4—O1—C4viii180.001 (1)
C3ii—C2—C3—N168.5 (7)C2—C3—N1—N1iii92.70 (17)
C1—C2—C3—N1173.5 (3)N1iii—C3—N1—Fe181.7 (4)
C4v—C4—O1—C4iv85.5 (3)C2—C3—N1—Fe110.9 (6)
C4iv—C4—O1—C4v85.5 (3)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y, x, z; (iv) x+y, x+1, z; (v) y+1, xy+1, z; (vi) x+2/3, y+4/3, z+1/3; (vii) xy+2/3, x+1/3, z+1/3; (viii) y1/3, x+y+1/3, z+1/3; (ix) x+y, y, z; (x) xy, y, z; (xi) y, x+y, z; (xii) xy, x, z; (xiii) x, xy, z; (xiv) x, x+y, z; (xv) y, x, z; (xvi) x, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds