Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of bis(thiourea) pyridinium iodide (T2PyI) was previously determined at 295 and 110 K [Prout, Heyes, Dobson, McDaid, Maris, Mueller & Seaman (2000). Chem. Mater. 12, 3561–3569] and the two phases were described in the space groups Cmcm and P21cn, respectively. Because differential scanning calorimetry revealed two phase transitions, at 161 and 141 K, a redetermination of the structure of T2pyI at 295, 155 and 110 K has been undertaken, and the following sequence of space groups obtained: Cmcm (I) → C2cm (II) → P21cn (III). The high- (I) and low-temperature (III) phases confirmed the results reported in the previous study. In the new intermediate phase II, the mirror plane perpendicular to the x axis vanishes and the crystal structure loses the centre of symmetry. In phases I and II the pyridinium cations are strongly dynamically disordered, while in the low-temperature phase III the cations are well ordered. In all three phases the thiourea–iodine hydrogen-bonded sublattice is very well ordered. Dielectric measurements show that the intermediate and low-temperature phases are ferroelectric and that 161 K is the Curie point of a new ferroelectric crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108018223/ws5061sup1.cif
Contains datablocks I, II, III

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018223/ws5061Isup2.fcf
Contains datablock I

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018223/ws5061IIsup3.fcf
Contains datablock II

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108018223/ws5061IIIsup4.fcf
Contains datablock III

CCDC references: 705580; 705581; 705582

Computing details top

For all compounds, data collection: KUMA KM-4; cell refinement: KUMA KM-4; data reduction: KUMA KM-4 Data reduction program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(I) bis-thiourea pyridinium iodide top
Crystal data top
C7H14IN5S2Dx = 1.587 Mg m3
Mr = 359.25Melting point: 2[SC(NH2)2] [C5H6N]+ [I]- K
Orthorhombic, CmcmMo Kαlpha radiation, λ = 0.71073 Å
a = 15.180 (3) ÅCell parameters from 34 reflections
b = 11.827 (2) Åθ = 7.0–12.5°
c = 8.375 (2) ŵ = 2.39 mm1
V = 1503.6 (5) Å3T = 295 K
Z = 4Needle, colourless
F(000) = 7040.6 × 0.1 × 0.1 mm
Data collection top
KUMA KM-4
diffractometer
965 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
ω – 2θ scansh = 021
Absorption correction: ψ scan
(North et al., 1968)
k = 1415
Tmin = 0.51, Tmax = 0.56l = 110
2244 measured reflections2 standard reflections every 100 reflections
1158 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1158 reflections(Δ/σ)max = 0.135
50 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C7H14IN5S2V = 1503.6 (5) Å3
Mr = 359.25Z = 4
Orthorhombic, CmcmMo Kαlpha radiation
a = 15.180 (3) ŵ = 2.39 mm1
b = 11.827 (2) ÅT = 295 K
c = 8.375 (2) Å0.6 × 0.1 × 0.1 mm
Data collection top
KUMA KM-4
diffractometer
1158 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
965 reflections with I > 2σ(I)
Tmin = 0.51, Tmax = 0.56Rint = 0.024
2244 measured reflections2 standard reflections every 100 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.74(Δ/σ)max = 0.135
1158 reflectionsΔρmax = 0.67 e Å3
50 parametersΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.00000.40856 (3)0.25000.03794 (14)
S10.22815 (11)0.27706 (18)0.25000.0843 (6)
C110.3118 (3)0.1785 (4)0.25000.0518 (11)
N110.3458 (2)0.1386 (3)0.1146 (3)0.0668 (10)
H11A0.32210.16740.00680.080*
H11B0.39570.07960.11720.080*
C20.435 (2)0.424 (3)0.054 (4)0.145 (13)0.50
C30.4206 (19)0.458 (3)0.032 (4)0.142 (11)0.50
C10.50000.3829 (16)0.027 (3)0.178 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03287 (18)0.0397 (2)0.0413 (2)0.0000.0000.000
S10.0916 (10)0.1316 (14)0.0297 (5)0.0793 (10)0.0000.000
C110.057 (2)0.068 (3)0.0309 (16)0.026 (2)0.0000.000
N110.080 (2)0.091 (2)0.0296 (11)0.0498 (19)0.0027 (13)0.0013 (13)
C20.17 (3)0.15 (3)0.114 (16)0.07 (2)0.02 (2)0.030 (18)
C30.116 (13)0.18 (3)0.125 (17)0.041 (16)0.001 (14)0.021 (16)
C10.26 (3)0.100 (8)0.17 (2)0.0000.0000.024 (11)
Geometric parameters (Å, º) top
S1—C111.724 (4)C2—C11.13 (4)
C11—N111.333 (3)C2—C3ii1.42 (4)
C11—N11i1.333 (3)C3—C11.58 (4)
N11—C11—N11i116.7 (4)C1—C2—C3ii122 (4)
N11—C11—S1121.7 (2)C2ii—C3—C1118 (3)
N11i—C11—S1121.7 (2)C2iii—C1—C3119 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S1iv1.032.373.403 (3)176
N11—H11B···I1v1.032.803.763 (3)156
Symmetry codes: (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z.
(II) bis-thiourea pyridinium iodide top
Crystal data top
2[SC(NH2)2][C5H6N]+[I]Dx = 1.696 Mg m3
Mr = 359.25Mo Kαlpha radiation, λ = 0.71073 Å
Orthorhombic, C2cmCell parameters from 23 reflections
a = 15.022 (3) Åθ = 7.5–14.5°
b = 11.227 (2) ŵ = 2.55 mm1
c = 8.3410 (17) ÅT = 155 K
V = 1406.7 (5) Å3Needle, colourless
Z = 40.6 × 0.1 × 0.05 mm
F(000) = 704
Data collection top
KUMA KM-4
diffractometer
920 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
ω – 2θ scansh = 190
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.55, Tmax = 0.62l = 110
1960 measured reflections2 standard reflections every 100 reflections
1010 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.148
1010 reflectionsΔρmax = 0.76 e Å3
104 parametersΔρmin = 0.69 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.35 (10)
Crystal data top
2[SC(NH2)2][C5H6N]+[I]V = 1406.7 (5) Å3
Mr = 359.25Z = 4
Orthorhombic, C2cmMo Kαlpha radiation
a = 15.022 (3) ŵ = 2.55 mm1
b = 11.227 (2) ÅT = 155 K
c = 8.3410 (17) Å0.6 × 0.1 × 0.05 mm
Data collection top
KUMA KM-4
diffractometer
1010 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
920 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.62Rint = 0.027
1960 measured reflections2 standard reflections every 100 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.058(Δ/σ)max = 0.148
S = 1.01Δρmax = 0.76 e Å3
1010 reflectionsΔρmin = 0.69 e Å3
104 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
1 restraintAbsolute structure parameter: 0.35 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.22848 (7)0.40864 (2)0.25000.01881 (10)
S10.0145 (2)0.2562 (3)0.25000.0452 (7)
S20.0319 (2)0.2031 (3)0.25000.0471 (8)
C110.0788 (7)0.1692 (11)0.25000.032 (2)
C210.0451 (8)0.3145 (10)0.25000.029 (2)
N110.1154 (5)0.1348 (7)0.1139 (7)0.0355 (17)
H11A0.08740.15920.00610.043*
H11B0.17210.08330.11570.043*
N210.0771 (6)0.3569 (7)0.1119 (7)0.0367 (16)
H21A0.05540.32100.00520.044*
H21B0.12340.42460.11150.044*
C40.268 (4)0.119 (4)0.038 (7)0.11 (2)0.50
C10.1546 (18)0.026 (3)0.051 (3)0.084 (9)0.50
C30.223 (4)0.109 (3)0.006 (5)0.085 (14)0.50
C20.172 (4)0.090 (3)0.058 (5)0.094 (17)0.50
C50.286 (5)0.068 (4)0.060 (7)0.11 (2)0.50
C60.320 (3)0.054 (3)0.028 (4)0.079 (9)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01728 (15)0.01789 (15)0.02127 (13)0.0010 (3)0.0000.000
S10.0492 (13)0.0691 (16)0.0174 (8)0.0432 (13)0.0000.000
S20.0621 (17)0.0637 (15)0.0154 (7)0.0471 (14)0.0000.000
C110.027 (4)0.046 (6)0.023 (4)0.023 (4)0.0000.000
C210.042 (5)0.035 (4)0.011 (3)0.014 (4)0.0000.000
N110.043 (3)0.049 (4)0.015 (2)0.034 (4)0.003 (2)0.002 (3)
N210.048 (4)0.046 (4)0.017 (3)0.023 (4)0.001 (3)0.002 (3)
C40.15 (5)0.06 (2)0.12 (3)0.07 (3)0.04 (3)0.00 (3)
C10.071 (13)0.10 (2)0.077 (13)0.041 (14)0.015 (9)0.035 (15)
C30.11 (3)0.043 (13)0.102 (18)0.054 (16)0.01 (2)0.010 (12)
C20.13 (4)0.08 (3)0.068 (18)0.04 (2)0.05 (2)0.041 (15)
C50.16 (5)0.06 (2)0.10 (3)0.09 (3)0.05 (3)0.03 (2)
C60.079 (18)0.075 (17)0.08 (2)0.030 (14)0.005 (14)0.010 (15)
Geometric parameters (Å, º) top
S1—C111.708 (10)C4—C21.49 (8)
S2—C211.705 (11)C4—C61.20 (7)
C11—N111.319 (7)C1—C31.47 (7)
C11—N11i1.319 (7)C1—C2ii1.33 (4)
C21—N21i1.336 (7)C3—C51.15 (10)
C21—N211.336 (7)C5—C6ii1.49 (7)
N11—C11—N11i118.8 (9)C2—C4—C6124 (5)
N11—C11—S1120.6 (4)C3—C1—C2ii120 (3)
N11i—C11—S1120.6 (4)C1—C3—C5117 (3)
N21i—C21—N21119.2 (10)C4—C2—C1ii113 (4)
N21i—C21—S2120.4 (5)C6ii—C5—C3126 (4)
N21—C21—S2120.4 (5)C5ii—C6—C4114 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S2iii1.032.343.372 (7)175
N11—H11B···I1iv1.032.713.638 (7)150
N21—H21A···S1iii1.032.333.358 (7)174
N21—H21B···I1v1.032.713.664 (8)155
Symmetry codes: (iii) x, y, z1/2; (iv) x1/2, y1/2, z; (v) x, y1, z.
(III) bis-thiourea pyridinium iodide top
Crystal data top
2[SC(NH2)2][C5H6N]+[I]Dx = 1.712 Mg m3
Mr = 359.25Mo Kαlpha radiation, λ = 0.71030 Å
Orthorhombic, P21cnCell parameters from 23 reflections
a = 14.860 (1) Åθ = 7.0–14.5°
b = 11.291 (1) ŵ = 2.58 mm1
c = 8.307 (2) ÅT = 110 K
V = 1393.8 (4) Å3Needle, colourless
Z = 40.6 × 0.1 × 0.05 mm
F(000) = 704
Data collection top
KUMA KM-4
diffractometer
1223 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 30.1°, θmin = 2.3°
ω – 2θ scansh = 020
Absorption correction: ψ scan
(North et al.1968)
k = 1415
Tmin = 0.539, Tmax = 0.596l = 110
4104 measured reflections2 standard reflections every 100 reflections
2116 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0417P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2116 reflectionsΔρmax = 2.14 e Å3
137 parametersΔρmin = 1.10 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.46 (7)
Crystal data top
2[SC(NH2)2][C5H6N]+[I]V = 1393.8 (4) Å3
Mr = 359.25Z = 4
Orthorhombic, P21cnMo Kαlpha radiation
a = 14.860 (1) ŵ = 2.58 mm1
b = 11.291 (1) ÅT = 110 K
c = 8.307 (2) Å0.6 × 0.1 × 0.05 mm
Data collection top
KUMA KM-4
diffractometer
2116 independent reflections
Absorption correction: ψ scan
(North et al.1968)
1223 reflections with I > 2σ(I)
Tmin = 0.539, Tmax = 0.596Rint = 0.036
4104 measured reflections2 standard reflections every 100 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075Δρmax = 2.14 e Å3
S = 0.99Δρmin = 1.10 e Å3
2116 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
137 parametersAbsolute structure parameter: 0.46 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.490481 (19)0.840315 (19)0.25345 (5)0.01326 (8)
S10.24542 (17)0.94624 (17)0.2493 (3)0.0309 (4)
S20.19436 (14)0.50790 (13)0.2490 (2)0.0213 (3)
N210.3328 (7)0.6158 (7)0.1108 (8)0.023 (2)
H21A0.30510.58840.00350.027*
H21B0.39160.66430.11110.027*
N220.3289 (7)0.6241 (7)0.3860 (8)0.025 (2)
H22A0.29940.60350.49470.030*
H22B0.38760.67250.38310.030*
N110.1400 (7)1.1030 (8)0.1102 (7)0.026 (2)
H11A0.16281.06810.00320.031*
H11B0.09411.17140.10970.031*
N120.1407 (7)1.1070 (9)0.3848 (8)0.029 (3)
H12A0.16501.07580.49280.035*
H12B0.09471.17540.38320.035*
C110.1701 (5)1.0596 (6)0.2448 (10)0.0223 (14)
C210.2927 (5)0.5895 (6)0.2475 (11)0.0200 (13)
C30.0067 (17)0.8555 (10)0.5030 (10)0.054 (3)
H3A0.00680.94940.50940.065*
N0.0367 (8)0.6648 (7)0.4347 (9)0.039 (2)
H0A0.08400.60660.39050.047*
C20.0576 (8)0.7814 (10)0.4435 (11)0.046 (3)
H2A0.12230.81450.40520.055*
C50.1077 (8)0.6987 (10)0.5442 (13)0.050 (3)
H5A0.17100.66460.58820.060*
C40.0872 (9)0.8179 (10)0.5506 (13)0.045 (3)
H4A0.13580.88080.59580.054*
C60.0413 (12)0.6216 (12)0.4806 (15)0.055 (3)
H6A0.05420.52810.46690.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01158 (12)0.01272 (12)0.01549 (12)0.00139 (18)0.0007 (4)0.0001 (2)
S10.0390 (8)0.0404 (8)0.0132 (5)0.0288 (8)0.0004 (11)0.0005 (13)
S20.0220 (6)0.0280 (6)0.0138 (5)0.0128 (6)0.0008 (10)0.0019 (11)
N210.023 (5)0.030 (5)0.016 (3)0.020 (4)0.006 (3)0.005 (3)
N220.028 (5)0.031 (4)0.016 (3)0.014 (4)0.000 (3)0.009 (3)
N110.040 (6)0.032 (5)0.006 (3)0.021 (4)0.008 (3)0.002 (3)
N120.033 (6)0.039 (7)0.016 (4)0.018 (5)0.009 (3)0.003 (4)
C110.028 (3)0.029 (3)0.010 (2)0.012 (3)0.009 (4)0.006 (4)
C210.018 (3)0.027 (3)0.015 (2)0.009 (2)0.013 (4)0.000 (4)
C30.083 (9)0.030 (5)0.049 (4)0.019 (8)0.007 (9)0.016 (4)
N0.047 (6)0.038 (5)0.033 (4)0.011 (4)0.014 (4)0.004 (3)
C20.034 (5)0.061 (7)0.044 (4)0.015 (5)0.000 (4)0.008 (5)
C50.041 (6)0.048 (6)0.061 (6)0.013 (5)0.019 (5)0.018 (5)
C40.046 (7)0.034 (5)0.056 (6)0.010 (5)0.002 (5)0.017 (4)
C60.078 (9)0.027 (5)0.059 (7)0.000 (6)0.018 (6)0.010 (5)
Geometric parameters (Å, º) top
S1—C111.701 (7)C3—C21.36 (2)
S2—C211.728 (7)C3—C41.33 (2)
N21—C211.316 (11)N—C61.313 (16)
N22—C211.329 (10)N—C21.354 (14)
N11—C111.300 (10)C5—C41.381 (15)
N12—C111.353 (10)C5—C61.418 (18)
N11—C11—N12118.6 (7)C2—C3—C4122.8 (11)
N11—C11—S1121.9 (6)C6—N—C2123.2 (11)
N12—C11—S1119.5 (7)C3—C2—N117.1 (11)
N21—C21—N22119.8 (6)C4—C5—C6117.3 (12)
N21—C21—S2120.6 (6)C3—C4—C5119.9 (12)
N22—C21—S2119.6 (7)N—C6—C5119.6 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···S21.032.313.318 (10)167
C3—H3A···I1i1.083.103.987 (10)140
C2—H2A···S11.082.693.723 (11)160
C6—H6A···I1ii1.082.883.754 (13)138
N11—H11A···S2iii1.032.333.350 (7)172
N11—H11B···I1iv1.032.703.661 (9)155
N12—H12A···S2v1.032.373.388 (8)170
N12—H12B···I1iv1.032.683.638 (10)156
N21—H21A···S1iii1.032.323.347 (8)172
N21—H21B···I11.032.743.649 (9)147
N22—H22B···I11.032.663.597 (9)151
N22—H22A···S1v1.032.333.358 (8)175
Symmetry codes: (i) x1/2, y+2, z+1; (ii) x1/2, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC7H14IN5S22[SC(NH2)2][C5H6N]+[I]2[SC(NH2)2][C5H6N]+[I]
Mr359.25359.25359.25
Crystal system, space groupOrthorhombic, CmcmOrthorhombic, C2cmOrthorhombic, P21cn
Temperature (K)295155110
a, b, c (Å)15.180 (3), 11.827 (2), 8.375 (2)15.022 (3), 11.227 (2), 8.3410 (17)14.860 (1), 11.291 (1), 8.307 (2)
V3)1503.6 (5)1406.7 (5)1393.8 (4)
Z444
Radiation typeMo KαlphaMo KαlphaMo Kαlpha
µ (mm1)2.392.552.58
Crystal size (mm)0.6 × 0.1 × 0.10.6 × 0.1 × 0.050.6 × 0.1 × 0.05
Data collection
DiffractometerKUMA KM-4
diffractometer
KUMA KM-4
diffractometer
KUMA KM-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al.1968)
Tmin, Tmax0.51, 0.560.55, 0.620.539, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
2244, 1158, 965 1960, 1010, 920 4104, 2116, 1223
Rint0.0240.0270.036
(sin θ/λ)max1)0.7030.7050.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.090, 0.74 0.022, 0.058, 1.01 0.027, 0.075, 0.99
No. of reflections115810102116
No. of parameters50104137
No. of restraints011
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
(Δ/σ)max0.1350.1480.001
Δρmax, Δρmin (e Å3)0.67, 0.920.76, 0.692.14, 1.10
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.35 (10)0.46 (7)

Computer programs: , KUMA KM-4 Data reduction program, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
S1—C111.724 (4)C2—C11.13 (4)
C11—N111.333 (3)C2—C3ii1.42 (4)
C11—N11i1.333 (3)C3—C11.58 (4)
N11—C11—N11i116.7 (4)C1—C2—C3ii122 (4)
N11—C11—S1121.7 (2)C2ii—C3—C1118 (3)
N11i—C11—S1121.7 (2)C2iii—C1—C3119 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S1iv1.032.373.403 (3)176.1
N11—H11B···I1v1.032.803.763 (3)156.1
Symmetry codes: (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
S1—C111.708 (10)C4—C21.49 (8)
S2—C211.705 (11)C4—C61.20 (7)
C11—N111.319 (7)C1—C31.47 (7)
C11—N11i1.319 (7)C1—C2ii1.33 (4)
C21—N21i1.336 (7)C3—C51.15 (10)
C21—N211.336 (7)C5—C6ii1.49 (7)
N11—C11—N11i118.8 (9)C2—C4—C6124 (5)
N11—C11—S1120.6 (4)C3—C1—C2ii120 (3)
N11i—C11—S1120.6 (4)C1—C3—C5117 (3)
N21i—C21—N21119.2 (10)C4—C2—C1ii113 (4)
N21i—C21—S2120.4 (5)C6ii—C5—C3126 (4)
N21—C21—S2120.4 (5)C5ii—C6—C4114 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···S2iii1.032.343.372 (7)175.1
N11—H11B···I1iv1.032.713.638 (7)150.3
N21—H21A···S1iii1.032.333.358 (7)173.9
N21—H21B···I1v1.032.713.664 (8)154.5
Symmetry codes: (iii) x, y, z1/2; (iv) x1/2, y1/2, z; (v) x, y1, z.
Selected geometric parameters (Å, º) for (III) top
S1—C111.701 (7)C3—C21.36 (2)
S2—C211.728 (7)C3—C41.33 (2)
N21—C211.316 (11)N—C61.313 (16)
N22—C211.329 (10)N—C21.354 (14)
N11—C111.300 (10)C5—C41.381 (15)
N12—C111.353 (10)C5—C61.418 (18)
N11—C11—N12118.6 (7)C2—C3—C4122.8 (11)
N11—C11—S1121.9 (6)C6—N—C2123.2 (11)
N12—C11—S1119.5 (7)C3—C2—N117.1 (11)
N21—C21—N22119.8 (6)C4—C5—C6117.3 (12)
N21—C21—S2120.6 (6)C3—C4—C5119.9 (12)
N22—C21—S2119.6 (7)N—C6—C5119.6 (12)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N—H0A···S21.032.313.318 (10)167.4
C3—H3A···I1i1.083.103.987 (10)140.3
C2—H2A···S11.082.693.723 (11)159.9
C6—H6A···I1ii1.082.883.754 (13)138.3
N11—H11A···S2iii1.032.333.350 (7)172.3
N11—H11B···I1iv1.032.703.661 (9)154.7
N12—H12A···S2v1.032.373.388 (8)169.8
N12—H12B···I1iv1.032.683.638 (10)155.6
N21—H21A···S1iii1.032.323.347 (8)171.9
N21—H21B···I11.032.743.649 (9)147.2
N22—H22B···I11.032.663.597 (9)150.8
N22—H22A···S1v1.032.333.358 (8)175.0
Symmetry codes: (i) x1/2, y+2, z+1; (ii) x1/2, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds