Download citation
Download citation
link to html
A two-dimensional visible synchrotron light interferometer has been developed to measure the transverse profile of an electron beam at the SPring-8 storage ring. The new interferometer enables the simultaneous measurement of beam sizes along the major and minor axes and the beam-tilt angle of an assumed elliptical Gaussian distribution. The principle of the interferometer is explained through basic formulae. To calibrate the point-spread function of the interferometer, a simple error model was assumed for disturbances in the amplitude and phase of the light; these disturbances were presumably caused by optical elements, such as mirrors and lenses. The experimental method to determine the parameters in the error model is shown. To verify the two-dimensional profiling capabilities of the interferometer, an electron beam stored in the SPring-8 storage ring operated at various working points was observed. A beam broadening from 20 to 120 µm in the vertical direction and changes in the beam-tilt angle were clearly observed at working points close to the differential resonance. However, the vertical spatial resolution is limited by the available vertical separation of the apertures of the diffracting mask because of the narrow aperture of the upstream vacuum duct.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds