Download citation
Download citation
link to html
The acidity of the amine H atoms and the consequent salt formation ability of ethyl­enedinitramine (EDNA) were analyzed in an attempt to improve the thermal stability of EDNA. Two short-chain alkanedi­amine bases, namely propane-1,3-di­amine and butane-1,4-di­amine, were chosen for this purpose. The resulting salts, namely propane-1,3-diaminium N,N′-di­nitro­ethyl­enedi­aza­nide, C3H12N22+·C2H4N4O42−, and butane-1,4-diaminium N,N′-di­nitro­ethyl­enedi­aza­nide, C4H14N22+·C2H4N4O42−, crystallize in the ortho­rhom­bic space group Pbca and the monoclinic space group P21/n, respectively. The resulting salts display extensive hydrogen-bonding networks because of the presence of ammonium and diazenide ions in the crystal lattice. This results in an enhanced thermal stability and raises the thermal decomposition temperatures to 202 and 221 °C compared to 180 °C for EDNA. The extensive hydrogen bonding present also plays a crucial role in lowering the sensitivity to impact of these energetic salts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618017588/wq3142sup1.cif
Contains datablocks mo_17ca_grcc5a_0ma, mo_17ca_grcc6_0m, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc5a_0masup2.hkl
Contains datablock mo_17ca_grcc5a_0ma

mol

MDL mol file https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc5a_0masup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc6_0msup3.hkl
Contains datablock mo_17ca_grcc6_0m

mol

MDL mol file https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc6_0msup5.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc5a_0masup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618017588/wq3142mo_17ca_grcc6_0msup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618017588/wq3142sup8.pdf
PXRD patterns and additional geometry and experimental details

CCDC references: 1884498; 1884497

Computing details top

Data collection: APEX2 (Bruker, 2016) for mo_17ca_grcc5a_0ma; APEX2 (Bruker, 2015) for mo_17ca_grcc6_0m. Cell refinement: SAINT (Bruker, 2016) for mo_17ca_grcc5a_0ma; SAINT (Bruker, 2015) for mo_17ca_grcc6_0m. Data reduction: SAINT (Bruker, 2016) for mo_17ca_grcc5a_0ma; SAINT (Bruker, 2015) for mo_17ca_grcc6_0m. For both structures, program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Propane-1,3-diaminium (ethane-1,2-diyl)bis(nitroazanide) (mo_17ca_grcc5a_0ma) top
Crystal data top
C3H12N22+·C2H4N4O42Dx = 1.428 Mg m3
Mr = 224.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2241 reflections
a = 12.3448 (14) Åθ = 2.4–24.2°
b = 9.9435 (13) ŵ = 0.12 mm1
c = 16.9904 (19) ÅT = 100 K
V = 2085.6 (4) Å3Block, clear colourless
Z = 80.26 × 0.17 × 0.08 mm
F(000) = 960
Data collection top
Bruker APEXII CCD
diffractometer
1827 reflections with I > 2σ(I)
φ and ω scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.656, Tmax = 0.746h = 1616
18809 measured reflectionsk = 913
2591 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6333P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2591 reflectionsΔρmax = 0.24 e Å3
160 parametersΔρmin = 0.25 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52445 (10)0.84025 (13)0.72260 (7)0.0297 (3)
O20.62676 (11)0.85073 (13)0.61563 (7)0.0370 (4)
O30.56105 (9)0.18981 (13)0.55971 (6)0.0261 (3)
O40.67822 (10)0.19857 (13)0.46112 (7)0.0297 (3)
N10.56838 (11)0.78109 (16)0.66152 (8)0.0256 (3)
N20.55013 (11)0.65589 (15)0.65373 (8)0.0239 (3)
N30.64024 (11)0.38529 (15)0.52363 (7)0.0230 (3)
N40.62552 (11)0.25971 (15)0.51576 (7)0.0232 (3)
N50.64848 (11)0.07170 (16)0.44556 (8)0.0218 (3)
H5A0.7032 (13)0.111 (2)0.4714 (10)0.035 (5)*
H5B0.5844 (12)0.1040 (19)0.4607 (10)0.031 (5)*
H5C0.6522 (16)0.0172 (14)0.4549 (11)0.035 (6)*
N60.89704 (11)0.10009 (17)0.21727 (8)0.0224 (3)
H6A0.9411 (15)0.149 (2)0.2470 (11)0.041 (6)*
H6B0.9196 (16)0.0147 (14)0.2187 (11)0.035 (6)*
H6C0.9024 (16)0.129 (2)0.1678 (8)0.035 (5)*
C10.60335 (14)0.59631 (18)0.58573 (9)0.0232 (4)
H1A0.6823720.6128590.5879600.028*
H1B0.5747040.6360470.5365220.028*
C20.58044 (13)0.44706 (18)0.58800 (9)0.0242 (4)
H2A0.6040220.4087070.6389700.029*
H2B0.5018520.4303370.5817510.029*
C30.65865 (12)0.09557 (18)0.35959 (9)0.0223 (4)
H3A0.6076380.0361080.3311280.027*
H3B0.6388300.1898750.3476970.027*
C40.77355 (12)0.06866 (18)0.33093 (9)0.0215 (4)
H4A0.7906410.0281150.3366660.026*
H4B0.8257330.1204590.3631560.026*
C50.78367 (13)0.10960 (19)0.24521 (9)0.0246 (4)
H5D0.7577430.2031870.2388370.030*
H5E0.7371930.0506220.2126000.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (7)0.0338 (8)0.0232 (6)0.0002 (6)0.0068 (5)0.0004 (5)
O20.0510 (8)0.0317 (8)0.0282 (7)0.0132 (6)0.0154 (6)0.0016 (5)
O30.0217 (6)0.0323 (8)0.0243 (6)0.0079 (5)0.0001 (5)0.0081 (5)
O40.0286 (7)0.0291 (7)0.0315 (6)0.0004 (5)0.0067 (5)0.0016 (5)
N10.0232 (7)0.0334 (9)0.0202 (7)0.0021 (6)0.0000 (5)0.0041 (6)
N20.0204 (7)0.0291 (9)0.0223 (7)0.0039 (6)0.0004 (5)0.0028 (6)
N30.0209 (7)0.0270 (8)0.0211 (7)0.0052 (6)0.0002 (5)0.0013 (6)
N40.0182 (7)0.0298 (9)0.0217 (7)0.0040 (6)0.0017 (5)0.0050 (6)
N50.0163 (7)0.0264 (9)0.0225 (7)0.0010 (6)0.0019 (5)0.0036 (6)
N60.0192 (7)0.0305 (9)0.0175 (6)0.0014 (6)0.0006 (6)0.0028 (6)
C10.0209 (8)0.0309 (10)0.0179 (7)0.0047 (7)0.0015 (6)0.0028 (7)
C20.0215 (8)0.0322 (10)0.0189 (7)0.0074 (7)0.0007 (6)0.0010 (7)
C30.0172 (8)0.0285 (10)0.0213 (7)0.0013 (7)0.0004 (6)0.0027 (7)
C40.0170 (8)0.0293 (10)0.0183 (7)0.0019 (7)0.0006 (6)0.0023 (6)
C50.0186 (8)0.0317 (10)0.0236 (8)0.0022 (7)0.0001 (6)0.0030 (7)
Geometric parameters (Å, º) top
O1—N11.3103 (18)N6—C51.481 (2)
O2—N11.2676 (18)C1—H1A0.9900
O3—N41.2939 (17)C1—H1B0.9900
O4—N41.2863 (18)C1—C21.511 (2)
N1—N21.272 (2)C2—H2A0.9900
N2—C11.455 (2)C2—H2B0.9900
N3—N41.269 (2)C3—H3A0.9900
N3—C21.455 (2)C3—H3B0.9900
N5—H5A0.894 (13)C3—C41.523 (2)
N5—H5B0.892 (12)C4—H4A0.9900
N5—H5C0.899 (13)C4—H4B0.9900
N5—C31.485 (2)C4—C51.517 (2)
N6—H6A0.887 (13)C5—H5D0.9900
N6—H6B0.894 (13)C5—H5E0.9900
N6—H6C0.889 (12)
O2—N1—O1118.50 (15)C2—C1—H1B110.3
O2—N1—N2124.85 (14)N3—C2—C1107.47 (13)
N2—N1—O1116.64 (13)N3—C2—H2A110.2
N1—N2—C1113.65 (13)N3—C2—H2B110.2
N4—N3—C2114.95 (13)C1—C2—H2A110.2
O4—N4—O3118.28 (14)C1—C2—H2B110.2
N3—N4—O3123.77 (14)H2A—C2—H2B108.5
N3—N4—O4117.95 (13)N5—C3—H3A109.3
H5A—N5—H5B111.8 (18)N5—C3—H3B109.3
H5A—N5—H5C107.6 (18)N5—C3—C4111.42 (13)
H5B—N5—H5C110.4 (18)H3A—C3—H3B108.0
C3—N5—H5A110.4 (12)C4—C3—H3A109.3
C3—N5—H5B107.5 (12)C4—C3—H3B109.3
C3—N5—H5C109.1 (12)C3—C4—H4A109.7
H6A—N6—H6B108.2 (19)C3—C4—H4B109.7
H6A—N6—H6C108.6 (19)H4A—C4—H4B108.2
H6B—N6—H6C107.8 (18)C5—C4—C3109.66 (13)
C5—N6—H6A111.2 (14)C5—C4—H4A109.7
C5—N6—H6B110.3 (13)C5—C4—H4B109.7
C5—N6—H6C110.7 (13)N6—C5—C4111.62 (13)
N2—C1—H1A110.3N6—C5—H5D109.3
N2—C1—H1B110.3N6—C5—H5E109.3
N2—C1—C2107.16 (13)C4—C5—H5D109.3
H1A—C1—H1B108.5C4—C5—H5E109.3
C2—C1—H1A110.3H5D—C5—H5E108.0
O1—N1—N2—C1178.69 (13)N5—C3—C4—C5173.46 (14)
O2—N1—N2—C10.1 (2)C2—N3—N4—O31.4 (2)
N1—N2—C1—C2176.08 (13)C2—N3—N4—O4178.29 (13)
N2—C1—C2—N3175.71 (12)C3—C4—C5—N6173.42 (15)
N4—N3—C2—C1177.19 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O3i0.89 (1)2.02 (1)2.8421 (18)153 (2)
N5—H5C···O40.90 (1)1.84 (1)2.725 (2)170 (2)
N6—H6B···O1ii0.89 (1)1.87 (1)2.761 (2)177 (2)
N6—H6C···O3iii0.89 (1)1.99 (1)2.8687 (18)171 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y, z1/2.
Butane-1,4-diaminium (ethane-1,2-diyl)bis(nitroazanide) (mo_17ca_grcc6_0m) top
Crystal data top
C4H14N22+·C2H4N4O42F(000) = 256
Mr = 238.26Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.408 (3) ÅCell parameters from 6899 reflections
b = 7.203 (4) Åθ = 2.9–28.6°
c = 14.288 (8) ŵ = 0.12 mm1
β = 98.03 (3)°T = 100 K
V = 551.0 (5) Å3Block, colourless
Z = 20.44 × 0.41 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
1258 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.697, Tmax = 0.746h = 77
11975 measured reflectionsk = 99
1371 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.1942P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1371 reflectionsΔρmax = 0.42 e Å3
85 parametersΔρmin = 0.22 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57312 (12)0.50962 (10)0.36574 (5)0.01429 (17)
O20.69613 (12)0.32306 (10)0.25666 (5)0.01567 (18)
N20.98232 (14)0.42748 (11)0.37090 (5)0.01234 (19)
N30.75026 (14)0.42316 (10)0.33261 (5)0.01133 (18)
C31.03227 (16)0.54830 (13)0.45476 (6)0.0120 (2)
H3A0.9323250.6633460.4435750.014*
H3B1.2109350.5836550.4643690.014*
N10.26171 (14)0.13317 (11)0.29615 (5)0.01154 (18)
H1A0.406 (2)0.1838 (18)0.2778 (10)0.023 (3)*
H1B0.174 (2)0.2286 (17)0.3205 (9)0.019 (3)*
H1C0.164 (2)0.0814 (19)0.2444 (9)0.026 (4)*
C10.32151 (18)0.01024 (13)0.37207 (6)0.0145 (2)
H1D0.4112050.1149880.3471030.017*
H1E0.1641980.0589940.3906080.017*
C20.48284 (17)0.07085 (12)0.45915 (6)0.0130 (2)
H2A0.4025800.1844280.4797720.016*
H2B0.6483000.1058250.4425020.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0104 (3)0.0184 (4)0.0143 (3)0.0033 (2)0.0024 (2)0.0007 (2)
O20.0150 (3)0.0199 (4)0.0115 (3)0.0031 (3)0.0001 (2)0.0043 (3)
N20.0094 (3)0.0152 (4)0.0119 (4)0.0003 (3)0.0003 (3)0.0013 (3)
N30.0108 (3)0.0123 (4)0.0109 (3)0.0008 (3)0.0015 (3)0.0012 (3)
C30.0113 (4)0.0132 (4)0.0114 (4)0.0021 (3)0.0011 (3)0.0015 (3)
N10.0111 (3)0.0123 (4)0.0107 (4)0.0000 (3)0.0004 (3)0.0006 (3)
C10.0182 (4)0.0121 (4)0.0117 (4)0.0011 (3)0.0032 (3)0.0017 (3)
C20.0148 (4)0.0121 (4)0.0111 (4)0.0009 (3)0.0015 (3)0.0005 (3)
Geometric parameters (Å, º) top
O1—N31.2869 (11)N1—H1C0.924 (11)
O2—N31.3017 (11)N1—C11.5000 (12)
N2—N31.2974 (12)C1—H1D0.9900
N2—C31.4749 (12)C1—H1E0.9900
C3—C3i1.5503 (18)C1—C21.5320 (13)
C3—H3A0.9900C2—C2ii1.5420 (18)
C3—H3B0.9900C2—H2A0.9900
N1—H1A0.931 (11)C2—H2B0.9900
N1—H1B0.931 (10)
N3—N2—C3114.41 (8)C1—N1—H1B107.9 (8)
O1—N3—O2118.84 (8)C1—N1—H1C110.0 (9)
O1—N3—N2124.00 (8)N1—C1—H1D109.3
N2—N3—O2117.16 (8)N1—C1—H1E109.3
N2—C3—C3i112.06 (10)N1—C1—C2111.44 (8)
N2—C3—H3A109.2H1D—C1—H1E108.0
N2—C3—H3B109.2C2—C1—H1D109.3
C3i—C3—H3A109.2C2—C1—H1E109.3
C3i—C3—H3B109.2C1—C2—C2ii110.92 (10)
H3A—C3—H3B107.9C1—C2—H2A109.5
H1A—N1—H1B108.0 (12)C1—C2—H2B109.5
H1A—N1—H1C109.8 (13)C2ii—C2—H2A109.5
H1B—N1—H1C109.5 (12)C2ii—C2—H2B109.5
C1—N1—H1A111.6 (8)H2A—C2—H2B108.0
N3—N2—C3—C3i81.04 (11)C3—N2—N3—O2178.03 (7)
C3—N2—N3—O12.72 (12)N1—C1—C2—C2ii173.34 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.93 (1)1.92 (1)2.8422 (15)170 (1)
N1—H1B···N2iii0.93 (1)1.96 (1)2.8927 (15)179 (1)
N1—H1C···O1iv0.92 (1)1.96 (1)2.8723 (16)171 (1)
Symmetry codes: (iii) x1, y, z; (iv) x+1/2, y1/2, z+1/2.
Thermal properties of I and II top
CompoundMelting point (°C)Energy Released (kJ mol-1)
EDNA174.5208.97
I198.1252.90
II217.4207.29
Nitrogen equivalent indices for some detonation products top
Detonation ProductN2H2OCOCO2CH2
Nitrogen equivalent index10.540.781.350.150.29
Detonation properties of organic salts as compared to EDNA top
CompoundΣNDensity (Mg m-3)aVelocity of Detonation (m s-1)Detonation Pressure (GPa)Oxygen Balance (%)
EDNA3.011.7678 25030.34-31.98
TEGXUY3.421.598 66732.71-52.29
I3.151.4287 39821.56-99.89
II2.651.4366 23915.22-114.16
Note: (a) low-temperature densities were calculated by SC-XRD.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds