Download citation
Download citation
link to html
The self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have attracted great inter­est, but it is still a challenge to predict and control the compositions and structures of the complexes. Employing multidentate organic ligands and suitable metal ions to construct inorganic-organic hybrid materials through metal-ligand coordination and hydrogen-bonding inter­actions has become a major strategy. Recently, imidazole-containing multidentate ligands that contain an aromatic core have received much attention. A new three-dimensional MnII coordination polymer based on 1,3,5-tris­[(1H-imidazol-1-yl)meth­yl]benzene, namely poly[(ethane-1,2-diol-[kappa]O)([mu]-sulfato-[kappa]2O:O'){[mu]3-1,3,5-tris­[(1H-imidazol-1-yl)meth­yl]benzene-[kappa]3N:N':N''}manganese(II)], [Mn(SO4)(C18H18N6)(C2H6O2)]n, was syn­thesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Crystal structural analysis shows that there are two kinds of crystallographically independent MnII centres, each lying on a centrosymmetric position and having a similar six-coordinated octa­hedral structure. One is coordinated by four N atoms from four 1,3,5-tris­[(1H-imidazol-1-yl)meth­yl]benzene (timb) ligands and two O atoms from two different bridging sulfate anions. The second is surrounded by two timb N atoms and four O atoms, two from sulfate anions and two from two ethane-1,2-diol ligands. The tripodal timb ligand bridges neighbouring MnII centres to generate a two-dimensional layered structure running parallel to the ab plane. Adjacent layers are further bridged by sulfate anions, resulting in a three-dimensional structure with 3,4,6-c topology. Thermogravimetric analysis of the title polymer shows that it is stable up to 533 K. The first weight loss between 533 and 573 K corresponds to the release of coordinated ethane-1,2-diol mol­ecules, and further decomposition occurred at 648 K.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616015965/wq3123sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616015965/wq3123Isup2.hkl
Contains datablock I

CCDC reference: 1508951

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[(ethane-1,2-diol-κO)(µ-sulfato-κ2O:O'){µ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N':N''}manganese(II)] top
Crystal data top
[Mn(SO4)(C18H18N6)(C2H6O2)]Z = 2
Mr = 531.45F(000) = 550
Triclinic, P1Dx = 1.569 Mg m3
a = 8.8547 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9689 (7) ÅCell parameters from 3024 reflections
c = 12.9721 (10) Åθ = 2.3–28.1°
α = 97.005 (1)°µ = 0.73 mm1
β = 97.885 (1)°T = 223 K
γ = 90.929 (1)°Block, yellow
V = 1125.14 (14) Å30.32 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
5541 independent reflections
Radiation source: fine-focus sealed tube4514 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.018
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 117
Tmin = 0.839, Tmax = 0.896k = 1213
8239 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.3728P]
where P = (Fo2 + 2Fc2)/3
5541 reflections(Δ/σ)max = 0.008
340 parametersΔρmax = 0.39 e Å3
40 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.00001.00001.00000.02196 (10)
Mn20.00001.00000.50000.02554 (11)
S10.06771 (5)1.10138 (5)0.74667 (3)0.02478 (11)
O10.01176 (18)1.04605 (15)0.83903 (11)0.0377 (4)
O20.03052 (16)1.08503 (14)0.66267 (10)0.0321 (3)
O30.21174 (18)1.02169 (17)0.70940 (12)0.0429 (4)
O40.09813 (18)1.24321 (15)0.77319 (12)0.0382 (4)
O50.24625 (18)1.05849 (17)0.49149 (12)0.0437 (4)
H5A0.25951.03210.43110.066*
O60.4896 (15)1.1931 (12)0.4058 (6)0.113 (5)0.468 (3)
H6B0.49281.11230.38480.169*0.468 (3)
O6'0.5072 (16)1.0929 (15)0.6390 (11)0.077 (4)0.157 (3)
H6'0.44641.02840.63220.115*0.157 (3)
O6"0.5223 (12)1.1536 (12)0.4203 (6)0.056 (2)0.375 (3)
H6"A0.50431.07180.41130.084*0.375 (3)
N10.09987 (19)1.20592 (16)1.07083 (13)0.0291 (4)
N20.21868 (18)1.38017 (16)1.17216 (13)0.0270 (3)
N30.23886 (19)0.91907 (17)1.00046 (14)0.0302 (4)
N40.46679 (19)0.85378 (17)1.06180 (14)0.0310 (4)
N50.0784 (2)0.80422 (17)0.54590 (14)0.0334 (4)
N60.12064 (19)0.63507 (17)0.63905 (14)0.0302 (4)
C10.4517 (2)1.52098 (19)1.24236 (15)0.0261 (4)
C20.4543 (2)1.6423 (2)1.19962 (17)0.0315 (4)
H2A0.36391.68671.18420.038*
C30.5909 (2)1.6977 (2)1.17973 (17)0.0312 (4)
C40.7252 (2)1.63167 (19)1.20523 (16)0.0285 (4)
H4A0.81721.66881.19310.034*
C50.7244 (2)1.51111 (19)1.24858 (15)0.0260 (4)
C60.5874 (2)1.45535 (19)1.26609 (15)0.0272 (4)
H6A0.58591.37371.29380.033*
C70.3027 (2)1.4623 (2)1.26397 (16)0.0300 (4)
H7A0.32311.40691.32050.036*
H7B0.23961.53551.28710.036*
C80.5990 (2)0.8327 (2)1.1378 (2)0.0432 (6)
H8A0.60670.90471.19590.052*
H8B0.69050.83771.10480.052*
C90.1243 (2)0.5544 (2)0.72605 (18)0.0335 (5)
H9A0.04430.48440.70870.040*
H9B0.10300.61200.78790.040*
C100.1553 (3)1.4263 (2)1.08107 (18)0.0385 (5)
H10A0.16061.51451.06490.046*
C110.0835 (2)1.3183 (2)1.01938 (17)0.0359 (5)
H11A0.03111.31990.95230.043*
C120.1819 (2)1.24667 (19)1.16208 (16)0.0274 (4)
H12A0.21091.19071.21320.033*
C130.4396 (3)0.8017 (3)0.9588 (2)0.0465 (6)
H13A0.50400.74840.92140.056*
C140.3003 (3)0.8430 (2)0.92168 (19)0.0439 (5)
H14A0.25280.82290.85280.053*
C150.3435 (2)0.9231 (2)1.08285 (16)0.0304 (4)
H15A0.33350.96871.14840.036*
C160.1536 (3)0.5920 (2)0.54021 (18)0.0381 (5)
H16A0.18760.50750.51660.046*
C170.1268 (3)0.6968 (2)0.48396 (17)0.0370 (5)
H17A0.13920.69610.41390.044*
C180.0770 (2)0.7629 (2)0.63876 (17)0.0332 (4)
H18A0.04920.81610.69670.040*
C190.3079 (3)1.1928 (3)0.5203 (3)0.0624 (8)
H19A0.29101.22280.59170.075*
H19B0.25221.25140.47520.075*
C200.4726 (6)1.2096 (5)0.5138 (4)0.0694 (12)0.468 (3)
H20A0.51031.29870.54660.083*0.468 (3)
H20B0.52961.14230.54950.083*0.468 (3)
C20'0.471 (3)1.170 (2)0.5558 (15)0.052 (5)0.157 (3)
H20C0.51431.12690.49600.063*0.157 (3)
H20D0.52231.25800.57600.063*0.157 (3)
C20"0.4726 (6)1.2096 (5)0.5138 (4)0.0694 (12)0.375 (3)
H20E0.49891.30550.52460.083*0.375 (3)
H20F0.52911.16960.57130.083*0.375 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0221 (2)0.02152 (19)0.0215 (2)0.00093 (14)0.00086 (15)0.00388 (15)
Mn20.0317 (2)0.0247 (2)0.0220 (2)0.00689 (16)0.00537 (16)0.00740 (16)
S10.0296 (2)0.0271 (2)0.0179 (2)0.00167 (18)0.00301 (17)0.00406 (17)
O10.0464 (9)0.0459 (9)0.0230 (7)0.0097 (7)0.0036 (6)0.0136 (6)
O20.0362 (8)0.0391 (8)0.0221 (7)0.0021 (6)0.0081 (6)0.0030 (6)
O30.0412 (9)0.0556 (10)0.0300 (8)0.0160 (7)0.0063 (7)0.0012 (7)
O40.0451 (9)0.0316 (8)0.0380 (8)0.0094 (6)0.0068 (7)0.0029 (6)
O50.0443 (9)0.0524 (10)0.0327 (8)0.0091 (8)0.0090 (7)0.0045 (7)
O60.150 (10)0.085 (7)0.111 (7)0.045 (6)0.060 (6)0.002 (4)
O6'0.067 (8)0.078 (9)0.081 (9)0.009 (7)0.003 (7)0.003 (7)
O6"0.045 (3)0.064 (6)0.057 (4)0.016 (3)0.018 (3)0.007 (3)
N10.0305 (9)0.0244 (8)0.0314 (9)0.0008 (6)0.0023 (7)0.0022 (7)
N20.0250 (8)0.0257 (8)0.0299 (9)0.0030 (6)0.0025 (7)0.0037 (7)
N30.0273 (9)0.0310 (9)0.0323 (9)0.0050 (7)0.0013 (7)0.0073 (7)
N40.0250 (8)0.0293 (8)0.0411 (10)0.0053 (7)0.0037 (7)0.0148 (7)
N50.0436 (10)0.0291 (9)0.0289 (9)0.0108 (7)0.0045 (8)0.0085 (7)
N60.0292 (9)0.0280 (8)0.0351 (9)0.0068 (7)0.0021 (7)0.0130 (7)
C10.0248 (9)0.0247 (9)0.0276 (10)0.0031 (7)0.0020 (7)0.0010 (7)
C20.0212 (9)0.0283 (10)0.0447 (12)0.0022 (7)0.0005 (8)0.0092 (9)
C30.0258 (10)0.0277 (10)0.0411 (12)0.0006 (8)0.0009 (8)0.0145 (9)
C40.0221 (9)0.0293 (10)0.0355 (11)0.0008 (7)0.0015 (8)0.0131 (8)
C50.0236 (9)0.0273 (9)0.0279 (10)0.0037 (7)0.0016 (7)0.0082 (8)
C60.0276 (10)0.0237 (9)0.0312 (10)0.0007 (7)0.0032 (8)0.0089 (8)
C70.0278 (10)0.0324 (10)0.0289 (10)0.0057 (8)0.0054 (8)0.0000 (8)
C80.0272 (11)0.0362 (12)0.0680 (17)0.0000 (9)0.0057 (10)0.0281 (11)
C90.0265 (10)0.0354 (11)0.0434 (12)0.0078 (8)0.0060 (9)0.0214 (9)
C100.0473 (13)0.0278 (10)0.0391 (12)0.0042 (9)0.0062 (10)0.0136 (9)
C110.0403 (12)0.0325 (11)0.0333 (11)0.0012 (9)0.0042 (9)0.0089 (9)
C120.0279 (10)0.0248 (9)0.0299 (10)0.0006 (7)0.0032 (8)0.0056 (8)
C130.0437 (14)0.0489 (14)0.0477 (14)0.0144 (11)0.0146 (11)0.0016 (11)
C140.0445 (13)0.0492 (14)0.0348 (12)0.0061 (11)0.0016 (10)0.0041 (10)
C150.0293 (10)0.0328 (10)0.0304 (10)0.0075 (8)0.0042 (8)0.0083 (8)
C160.0495 (13)0.0279 (10)0.0374 (12)0.0113 (9)0.0065 (10)0.0049 (9)
C170.0483 (13)0.0339 (11)0.0291 (11)0.0095 (9)0.0041 (9)0.0053 (9)
C180.0375 (11)0.0313 (10)0.0328 (11)0.0113 (9)0.0053 (9)0.0103 (8)
C190.0546 (17)0.0564 (17)0.070 (2)0.0079 (13)0.0071 (15)0.0127 (15)
C200.062 (2)0.068 (3)0.074 (3)0.022 (2)0.011 (2)0.007 (2)
C20'0.050 (8)0.051 (8)0.051 (9)0.002 (7)0.003 (7)0.007 (7)
C20"0.062 (2)0.068 (3)0.074 (3)0.022 (2)0.011 (2)0.007 (2)
Geometric parameters (Å, º) top
Mn1—O12.2076 (14)C1—C71.509 (3)
Mn1—O1i2.2077 (14)C2—C31.391 (3)
Mn1—N1i2.2579 (16)C2—H2A0.9300
Mn1—N12.2579 (16)C3—C41.389 (3)
Mn1—N32.2753 (16)C3—C8iii1.516 (3)
Mn1—N3i2.2754 (16)C4—C51.388 (3)
Mn2—O22.1551 (13)C4—H4A0.9300
Mn2—O2ii2.1551 (13)C5—C61.385 (3)
Mn2—N5ii2.2045 (16)C5—C9iv1.513 (3)
Mn2—N52.2045 (16)C6—H6A0.9300
Mn2—O5ii2.2687 (16)C7—H7A0.9700
Mn2—O52.2687 (16)C7—H7B0.9700
S1—O41.4523 (15)C8—C3v1.516 (3)
S1—O11.4756 (14)C8—H8A0.9700
S1—O21.4804 (14)C8—H8B0.9700
S1—O31.4818 (16)C9—C5iv1.513 (3)
O5—C191.424 (3)C9—H9A0.9700
O5—H5A0.8200C9—H9B0.9700
O6—C201.421 (7)C10—C111.354 (3)
O6—H6B0.8200C10—H10A0.9300
O6'—C20'1.405 (9)C11—H11A0.9300
O6'—H6'0.8200C12—H12A0.9300
O6"—C20"1.402 (7)C13—C141.351 (3)
O6"—H6"A0.8200C13—H13A0.9300
N1—C121.316 (3)C14—H14A0.9300
N1—C111.372 (3)C15—H15A0.9300
N2—C121.351 (2)C16—C171.351 (3)
N2—C101.372 (3)C16—H16A0.9300
N2—C71.464 (3)C17—H17A0.9300
N3—C151.311 (3)C18—H18A0.9300
N3—C141.376 (3)C19—C20"1.480 (5)
N4—C151.343 (3)C19—C201.480 (5)
N4—C131.361 (3)C19—C20'1.48 (2)
N4—C81.459 (3)C19—H19A0.9700
N5—C181.321 (3)C19—H19B0.9700
N5—C171.369 (3)C20—H20A0.9700
N6—C181.338 (2)C20—H20B0.9700
N6—C161.373 (3)C20'—H20C0.9700
N6—C91.461 (2)C20'—H20D0.9700
C1—C21.392 (3)C20"—H20E0.9700
C1—C61.392 (3)C20"—H20F0.9700
O1—Mn1—O1i180.0C4—C5—C9iv117.71 (17)
O1—Mn1—N1i87.90 (6)C5—C6—C1120.33 (17)
O1i—Mn1—N1i92.10 (6)C5—C6—H6A119.8
O1—Mn1—N192.10 (6)C1—C6—H6A119.8
O1i—Mn1—N187.90 (6)N2—C7—C1112.88 (16)
N1i—Mn1—N1180.0N2—C7—H7A109.0
O1—Mn1—N387.45 (6)C1—C7—H7A109.0
O1i—Mn1—N392.55 (6)N2—C7—H7B109.0
N1i—Mn1—N389.81 (6)C1—C7—H7B109.0
N1—Mn1—N390.19 (6)H7A—C7—H7B107.8
O1—Mn1—N3i92.55 (6)N4—C8—C3v112.87 (17)
O1i—Mn1—N3i87.45 (6)N4—C8—H8A109.0
N1i—Mn1—N3i90.19 (6)C3v—C8—H8A109.0
N1—Mn1—N3i89.81 (6)N4—C8—H8B109.0
N3—Mn1—N3i180.0C3v—C8—H8B109.0
O2—Mn2—O2ii180.0H8A—C8—H8B107.8
O2—Mn2—N5ii90.08 (6)N6—C9—C5iv113.21 (16)
O2ii—Mn2—N5ii89.92 (6)N6—C9—H9A108.9
O2—Mn2—N589.92 (6)C5iv—C9—H9A108.9
O2ii—Mn2—N590.08 (6)N6—C9—H9B108.9
N5ii—Mn2—N5180.0C5iv—C9—H9B108.9
O2—Mn2—O5ii90.61 (5)H9A—C9—H9B107.7
O2ii—Mn2—O5ii89.39 (5)C11—C10—N2106.47 (18)
N5ii—Mn2—O5ii88.43 (7)C11—C10—H10A126.8
N5—Mn2—O5ii91.57 (7)N2—C10—H10A126.8
O2—Mn2—O589.39 (5)C10—C11—N1109.63 (19)
O2ii—Mn2—O590.61 (5)C10—C11—H11A125.2
N5ii—Mn2—O591.57 (7)N1—C11—H11A125.2
N5—Mn2—O588.43 (7)N1—C12—N2111.43 (17)
O5ii—Mn2—O5180.0N1—C12—H12A124.3
O4—S1—O1110.43 (9)N2—C12—H12A124.3
O4—S1—O2110.33 (9)C14—C13—N4106.2 (2)
O1—S1—O2108.17 (9)C14—C13—H13A126.9
O4—S1—O3110.72 (10)N4—C13—H13A126.9
O1—S1—O3108.70 (10)C13—C14—N3110.2 (2)
O2—S1—O3108.43 (9)C13—C14—H14A124.9
S1—O1—Mn1146.27 (10)N3—C14—H14A124.9
S1—O2—Mn2135.37 (9)N3—C15—N4112.28 (19)
C19—O5—Mn2123.12 (15)N3—C15—H15A123.9
C19—O5—H5A109.5N4—C15—H15A123.9
Mn2—O5—H5A105.1C17—C16—N6106.42 (18)
C20—O6—H6B109.5C17—C16—H16A126.8
C20'—O6'—H6'109.5N6—C16—H16A126.8
C20"—O6"—H6"A109.5C16—C17—N5109.62 (19)
C12—N1—C11105.78 (16)C16—C17—H17A125.2
C12—N1—Mn1131.20 (13)N5—C17—H17A125.2
C11—N1—Mn1123.01 (14)N5—C18—N6111.60 (19)
C12—N2—C10106.68 (17)N5—C18—H18A124.2
C12—N2—C7127.16 (17)N6—C18—H18A124.2
C10—N2—C7126.09 (17)O5—C19—C20"115.1 (3)
C15—N3—C14104.56 (18)O5—C19—C20115.1 (3)
C15—N3—Mn1125.64 (14)O5—C19—C20'102.4 (8)
C14—N3—Mn1129.39 (15)O5—C19—H19A108.5
C15—N4—C13106.81 (18)C20—C19—H19A108.5
C15—N4—C8125.7 (2)O5—C19—H19B108.5
C13—N4—C8127.4 (2)C20—C19—H19B108.5
C18—N5—C17105.53 (17)H19A—C19—H19B107.5
C18—N5—Mn2126.19 (14)O6—C20—C19107.2 (6)
C17—N5—Mn2128.10 (14)O6—C20—H20A110.3
C18—N6—C16106.83 (17)C19—C20—H20A110.3
C18—N6—C9126.53 (18)O6—C20—H20B110.3
C16—N6—C9126.56 (17)C19—C20—H20B110.3
C2—C1—C6119.60 (17)H20A—C20—H20B108.5
C2—C1—C7119.96 (18)O6'—C20'—C19118.4 (16)
C6—C1—C7120.44 (17)O6'—C20'—H20C107.7
C3—C2—C1120.52 (18)C19—C20'—H20C107.7
C3—C2—H2A119.7O6'—C20'—H20D107.7
C1—C2—H2A119.7C19—C20'—H20D107.7
C4—C3—C2119.01 (18)H20C—C20'—H20D107.1
C4—C3—C8iii118.93 (17)O6"—C20"—C19116.6 (5)
C2—C3—C8iii121.93 (18)O6"—C20"—H20E108.1
C5—C4—C3121.05 (17)C19—C20"—H20E108.1
C5—C4—H4A119.5O6"—C20"—H20F108.1
C3—C4—H4A119.5C19—C20"—H20F108.1
C6—C5—C4119.47 (17)H20E—C20"—H20F107.3
C6—C5—C9iv122.81 (17)
O4—S1—O1—Mn162.5 (2)Mn1—N1—C11—C10179.97 (15)
O2—S1—O1—Mn1176.66 (15)C11—N1—C12—N20.3 (2)
O3—S1—O1—Mn159.1 (2)Mn1—N1—C12—N2179.67 (12)
O4—S1—O2—Mn2111.07 (13)C10—N2—C12—N10.0 (2)
O1—S1—O2—Mn2128.04 (12)C7—N2—C12—N1177.12 (17)
O3—S1—O2—Mn210.33 (16)C15—N4—C13—C140.4 (3)
C6—C1—C2—C30.5 (3)C8—N4—C13—C14176.8 (2)
C7—C1—C2—C3179.74 (19)N4—C13—C14—N30.7 (3)
C1—C2—C3—C41.4 (3)C15—N3—C14—C130.7 (3)
C1—C2—C3—C8iii177.2 (2)Mn1—N3—C14—C13172.10 (16)
C2—C3—C4—C50.9 (3)C14—N3—C15—N40.5 (2)
C8iii—C3—C4—C5176.9 (2)Mn1—N3—C15—N4172.70 (12)
C3—C4—C5—C60.4 (3)C13—N4—C15—N30.1 (2)
C3—C4—C5—C9iv179.9 (2)C8—N4—C15—N3176.46 (17)
C4—C5—C6—C11.3 (3)C18—N6—C16—C170.5 (3)
C9iv—C5—C6—C1179.23 (19)C9—N6—C16—C17176.40 (19)
C2—C1—C6—C50.8 (3)N6—C16—C17—N50.2 (3)
C7—C1—C6—C5178.41 (17)C18—N5—C17—C160.1 (3)
C12—N2—C7—C1117.3 (2)Mn2—N5—C17—C16175.17 (16)
C10—N2—C7—C166.2 (3)C17—N5—C18—N60.5 (3)
C2—C1—C7—N285.4 (2)Mn2—N5—C18—N6174.96 (14)
C6—C1—C7—N295.4 (2)C16—N6—C18—N50.6 (3)
C15—N4—C8—C3v96.8 (3)C9—N6—C18—N5176.29 (18)
C13—N4—C8—C3v79.0 (3)Mn2—O5—C19—C20"177.4 (3)
C18—N6—C9—C5iv129.0 (2)Mn2—O5—C19—C20177.4 (3)
C16—N6—C9—C5iv54.7 (3)Mn2—O5—C19—C20'151.2 (8)
C12—N2—C10—C110.4 (2)O5—C19—C20—O670.5 (6)
C7—N2—C10—C11177.49 (18)O5—C19—C20'—O6'58.6 (17)
N2—C10—C11—N10.6 (3)O5—C19—C20"—O6"49.5 (8)
C12—N1—C11—C100.5 (2)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+2; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.821.832.606 (2)159
O6—H6B···O3ii0.822.853.303 (13)117
Symmetry code: (ii) x, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds