Download citation
Download citation
link to html
The chemistry of organically templated metal sulfates has attracted inter­est from the materials science community and the development of synthetic strategies for the preparation of organic-inorganic hybrid materials with novel structures and special properties is of current inter­est. Sulfur-oxygen-metal linkages provide the possibility of using sulfate tetra­hedra as building units to form new solid-state materials. A series of novel organically tem­plated metal sulfates of 2-amino­pyridinium (2ap) with aluminium(III), cobalt(II), magnesium(II), nickel(II) and zinc(II) were obtained from the respective aqueous solutions and studied by single-crystal X-ray diffraction. The compounds crystallize in centrosymmetric triclinic unit cells in three structure types: type 1 for 2-amino­pyridinium hexa­aqua­aluminium(III) bis­(sulfate) tetra­hydrate, (C5H7N2)[Al(H2O)6](SO4)2·4H2O, (I); type 2 for bis­(2-amino­pyri­din­ium) tris­[hexa­aqua­cobalt(II)] tetra­kis­(sulfate) dihydrate, (C5H7N2)2[Co(H2O)6]3(SO4)4·2H2O, (II), and bis­(2-amino­pyridinium) tris­[hexa­aqua­mag­nes­ium(II)] tetra­kis­(sulfate) dihydrate, (C5H7N2)2[Mg(H2O)6]3(SO4)4·2H2O, (III); and type 3 for bis­(2-amino­pyri­din­ium) hexa­aqua­nickel(II) bis­(sulfate), (C5H7N2)2[Ni(H2O)6](SO4)2, (IV), and bis­(2-amino­pyri­din­ium) hexa­aqua­zinc(II) bis­(sulfate), (C5H7N2)2[Zn(H2O)6](SO4)2, (V). The templating role of the 2ap cation in all of the reported crystalline substances is governed by the formation of characteristic charge-assisted hydrogen-bonded pairs with sulfate anions and the presence of [pi]-[pi] inter­actions between the cations. Additionally, both coordinated and uncoordinated water mol­ecules are involved in hydrogen-bond formation. As a consequence, extensive three-dimensional hydrogen-bonding patterns are formed in the reported crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616006458/wq3112sup1.cif
Contains datablocks I, II, III, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616006458/wq3112Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616006458/wq3112IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616006458/wq3112IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616006458/wq3112IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616006458/wq3112Vsup6.hkl
Contains datablock V

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616006458/wq3112sup7.pdf
Selected geometry tables and fingerprint plots for salts (I)-(V)

CCDC references: 1474849; 1474848; 1474847; 1474846; 1474845

Introduction top

The chemistry of organically templated metal sulfates (OTMS) has attracted extensive inter­est of the materials science community. Recently, increasing attention has been paid to the development of synthetic strategies for the preparation of organic–inorganic hybrid materials with novel structures and special properties. Sulfur–oxygen–metal (S—O—M) linkages provide the possibility of using SO42- tetra­hedra as a building unit to form new solid-state materials with novel topological structures and inter­esting physical properties (Rao et al., 2006).

The 2-amino­pyridinium (2ap) cation has received little attention as a template agent in OTMS. In the case of double metal and 2ap sulfates, only one representative is known up to now (Lukianova et al., 2015). The crystal structure of bis­(2-amino­pyridinium) sulfate has also been reported (Jebas et al., 2006a). In the literature, there are reports where simple inorganic–organic hybrids with the 2ap cation and various halogen salts characterized by inter­esting supra­molecular networks (Luque et al., 1997; Su et al., 2002; Kumar et al., 2005; Jebas et al., 2006b; Zhang et al., 2006; Fun et al., 2008; Gelmboldt et al., 2009; Cai & Fu, 2010; Jin et al., 2011; Rao et al., 2011; Mhadhbi et al., 2016) and dielectric properties are discussed (Kulicka et al., 2004).

In general, protonated amino­pyridinium cations act mainly as template agents as they directly contribute to the dimensionality of the hydrogen-bonding network in the crystal structures of hybrid organic–inorganic materials. The presence of electrostatic inter­actions, i.e. weak inter­actions such as C—H···O and ππ inter­actions, in these solids suggests that these weak inter­actions play a significant role in shaping the resultant supra­molecular assemblies and stabilization of these organic–inorganic hybrid materials.

In this paper, we have directed our efforts towards the synthesis and crystal structure determination, complemented by Hirshfeld surface analysis, of five new 2-amino­pyridinium metal sulfates, namely (2ap)[Al(H2O)6](SO4)2·4H2O, (I), (2ap)2[Co(H2O)6]3(SO4)4·2H2O, (II), (2ap)2[Mg(H2O)6]3(SO4)4·2H2O, (III), (2ap)2[Ni(H2O)6](SO4)2, (IV), and (2ap)2[Zn(H2O)6](SO4)2, (V), along with the previously reported copper analogue, (VI) (Lukianova et al., 2015).

Experimental top

Synthesis and crystallization top

The title compounds were synthesized according to the previously described method of Lukianova et al. (2015). An aqueous solution (4 ml) of 2-amino­pyridine (0.19 g, 2.0 mmol), the pH of which was adjusted to 2.5 by admixing 30% sulfuric acid, was added slowly to an aqueous solution (3 ml) containing the appropriate metal sulfate [2.0 mmol for (I), 3.0 mmol for (II), 3.0 mmol for (III), 1.0 mmol for (IV) and 1.0 mmol for (V)]. Single crystals of a suitable size were obtained by slow solvent evaporation under ambient conditions for a period of several weeks.

Hirshfeld surface analysis and fingerprint plots top

The three-dimensional Hirshfeld surfaces (HSs) and two-dimensional fingerprint plots of (I), (II), (IV) and the copper analogue were generated using the CrystalExplorer software (Wolff et al., 2012).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The positions of the amine H atoms were located initially in difference Fourier maps but were subsequently allowed to ride in the refinement, with C—H = 0.96 Å and N—H = 0.91 Å. The isotropic atomic displacement parameters of the H atoms were evaluated as 1.2Ueq of the parent atom. Water H atoms were located firstly in a difference Fourier map and then fixed, with O—H = 0.840 (2) Å and Uiso(H) = 1.5Ueq(O).

Results and discussion top

\ Structure of (2ap)[Al(H\\\~2\\\Õ)\\\~6\\\~](SO\\\~4\\\~)\ \\\~2\\\~\\\\\\\·4H\\\~2\\\Õ, (I) top

Compound (I) crystallizes in the triclinic P1 space group. The asymmetric unit is composed of two halves of two crystallographically independent AlIII cations, both lying on special positions, one protonated 2-amino­pyridinium cation, two isolated sulfate anions and four noncoordinated water molecules. As shown in Fig. 1, two metal ions occupy inversion centres, both of them are hexacoordinated by six water molecules, adopting a slightly distorted o­cta­hedral coordination geometry. Selected bond lengths and angles are presented below in Table S1 (see Supporting information). The lengths of the Al1—OW and Al2—OW bonds vary from 1.8739 (14) to 1.8896 (15) Å and from 1.8760 (13) to 1.8930 (14) Å, respectively. The values of cis-OW—Al—OW angles are in the range 89.07 (6)–90.93 (6)° in the Al1 o­cta­hedron and 89.63 (6)–90.37 (6)° in the Al2 o­cta­hedron. These values are comparable with those reported for AlIII complexes with a six-coordinated o­cta­hedral geometry (Bataille, 2003). Each centrosymmetric [Al(H2O)6]3+ cation donates ten hydrogen bonds to eight sulfate anions and two hydrogen bonds to two uncoordinated water molecules (Fig. 2). The first sulfate anion accepts a total of nine hydrogen bonds, i.e. five from four hexa­aqua­aluminium complex cations, three from three solvent water molecules and one N—H···O hydrogen bond from one 2ap cation. The second sulfate anion accepts eight hydrogen bonds, i.e. five from five [Al(H2O)6]3+ cations, one from a free water molecule and two from one 2ap cation. The 2ap cation donates three N—H···O hydrogen bonds to the O atoms of two sulfate anions. One of the carbon-bound H atoms is involved in a weak hydrogen-bond inter­action with an O atom of a solvent water molecule. Four free water molecules, namely O1W, O2W, O3W and O4W, are involved in 14 multidirectional O—H···O hydrogen bonds between coordinated water molecules of the [Al(H2O)6]3+ cations, sulfate O atoms and uncoordinated water molecules, forming an inorganic network parallel to the ab plane (Fig. 3a). The O1W molecule donates one hydrogen bond to O2W and one bond to a sulfate anion, and accepts one bond from the O22W atom. O2W donates two hydrogen bonds, i.e. one to O3W and another to a sulfate anion, and accepts two bonds from two solvation water molecules (O2W and O4W). O3W donates two hydrogen bonds to two sulfate anions and accepts two hydrogen bonds from two free water molecules (O4W and O2W). O4W donates two hydrogen bonds to two uncoordinated water molecules (O3W and O2W) and accepts one bond from the O11W atom.

In the crystal structure of (I), a three-dimensional supra­molecular network is built from N—H···O, O—H···O and weak C—H···O hydrogen bonds involving the inorganic and organic parts of the structure (Table 2). Organic layers are built of ππ inter­acting stacks of 2ap cations (Table 3) connected to inorganic layers through N—H···O and C—H···O hydrogen bonds (Table 2 and Figs. 3b/c). The planes of all the 2ap rings are perpendicular to the [100] direction.

\ Structures of (2ap)\\\~2\\\~[Co(H\\\~2\\\Õ)\\\~6\\\~]\ \\\~3\\\~(SO\\\~4\\\~)\ \\\~4\\\~\\\\\\\·2H\\\~2\\\Õ, (II), (2ap)\\\~2\\\~[Mg(H\\\~2\\\Õ)\\\~6\\\~]\ \\\~3\\\~(SO\\\~4\\\~)\ \\\~4\\\~\\\\\\\·2H\\\~2\\\Õ, (III) top

Isostructural compounds (II) and (III) (structure type 2) crystallize in the triclinic P1 space group. The asymmetric part of the unit cell contains two hexa­aqua-coordinated MII ions (one of them lies on a centre of inversion with half occupancy), one protonated amine group which is disordered over two sites, two sulfate anions and one solvent water molecule (Fig. 4). Each MII atom is located at the centre of a distorted o­cta­hedron formed by six O atoms from six water molecules. The M—OW bond lengths are in the ranges 2.0343 (18)–2.1852 (17), 2.0513 (18)–2.1074 (17), 2.0178 (19)–2.1321 (18) and 2.0391 (17)–2.0961 (19) Å for Co1—OW, Co2—OW, Mg1—OW and Mg2—OW, respectively. The cis- and trans-OWM—OW angles are 81.14 (7)–94.50 (7) and 172.42 (7)–178.16 (6)°, respectively, in the Co1 o­cta­hedron, 89.61 (8)–90.39 (8) and 180° in the Co2 o­cta­hedron, 85.29 (8)–98.30 (7) and 172.81 (9)–174.89 (8)° in the Mg1 o­cta­hedron, and 89.59 (8)–90.41 (8) and 180° (due to inversion symmetry) in the Mg2 o­cta­hedron Significant distortions in the coordination polyhedra of (II) and (III) are clearly evident (see Tables S2 and S3 in the Supporting information) and the most considerable distortions are observed in the case of the M1 environment, which does not lie on a centre of inversion.

The M1 o­cta­hedron donates eleven hydrogen bonds to six sulfate anions, donates one hydrogen bond to the O13W atom and accepts one hydrogen bond from the O11W water molecule (Fig. 5a), while the M2 o­cta­hedron donates eight hydrogen bonds to six sulfate anions and four hydrogen bonds to four solvent water molecules (Fig. 5b). The 2ap cations donate three N—H···O hydrogen bonds to O atoms in the main disordered part and three N—H···O hydrogen bonds in minor disordered part also. The orientationally disordered NH2 group has the minor disordered part attached to the C6 atom, instead of to C2. Reorientation from the first to the second position appears to be impossible due to the environment of the 2ap cation, and most likely is a result of incorrect alignment during the growth of the crystal. The NH2 groups are distributed between two positions with site occupancies equal to 0.121 (5) in the minor part of both (II) and (III).

Uncoordinated water molecule O1W donates two hydrogen bonds to two crystallographically independent sulfate anions and accepts two hydrogen bonds from two [MII(H2O)6]2+ cations. The first sulfate anion accepts ten hydrogen bonds, i.e. seven from four hexa­aqua complexes, one from a free water molecule and two N—H···O hydrogen bonds from one 2ap cation. The second sulfate anion accepts eleven hydrogen bonds, i.e. eight from five [MII(H2O)6]2+ cations, one from a free water molecule and two from two 2ap cations. As a result, an inorganic network is formed through O—H···O hydrogen bonds between water molecules, sulfate anions and inorganic cations, and lies parallel to the ac plane (Tables 4 and 5, and Fig. 6a). Significant parallel ππ inter­actions between pairs of pyridinium rings (Table 3) assist in the formation of a supra­molecular association along the a-axis direction and make the overall framework more stable (Fig. 6b). C—H···O hydrogen bonds are not observed in structure type 2.

\ Structures (2ap)\\\~2\\\~[Ni(H\\\~2\\\Õ)\\\~6\\\~]\ (SO\\\~4\\\~)\\\~2\\\~, (IV), and (2ap)\\\~2\\\~[Zn(H\\\~2\\\Õ)\\\~6\\\~]\ (SO\\\~4\\\~)\\\~2\\\~, (V) top

Isostructural compounds (IV) and (V) crystallize in the triclinic P1 space group. In contrast to compounds (I)–(III), type 3, is characterized by the absence of noncoordinated water molecules. One half of an [M(H2O)6]2+ cation (located on an inversion centre), one sulfate anion and one 2ap cation form the asymmetric unit (see Fig. 7). The MII atom occupies the centre of a slightly distorted o­cta­hedron built by the coordination of six water molecules. The crystal packing reveals a layered arrangement of the inorganic and organic parts of the structure.

The M—OW bond lengths (see Tables S4 and S5 in the Supporting information) are 2.0503 (13)–2.0590 (17) and 2.0813 (19)–2.0996 (18) Å for salts (IV) and (V), respectively. The cis bond angles around the MII centres range from 86.63 (6) to 93.37 (6)° for (IV), and from 86.88 (8) to 93.12 (8)° for (IV). The trans angles are all equal to 180°. Geometric parameters are in accord with those reported for other Ni and Zn analogs (Fleck et al., 2004).

The [M(H2O)6]2+ cation donates twelve hydrogen bonds to six sulfate anions (see Fig. 8a). The SO42- anion accepts nine hydrogen bonds, i.e. six from three hexa­aqua complexes and three N—H···O hydrogen bonds from two 2ap cations. The [M(H2O)6]2+ cation in salts (IV) and (V) are connected via hydrogen bonds from water molecules to sulfate anions, forming inorganic networks parallel to the ab plane (Fig. 8b). As inferred in Fig. 9, the crystal structure is represented by a series of successive layers: inorganic layers of [M(H2O)6]2+ cations connected to sulfate anions by hydrogen bonds and organic layers of 2ap cations, both being parallel to bc plane. The organic and inorganic layers are linked to each other by two types of hydrogen bonding, i.e. N—H···O and weak C—H···O, present in the crystal structure (Tables 5 and 6, and Fig. 9). This hydrogen-bonding inter­action directs the infinite condensation of the respective building units. The crystal packings are further extended via ππ inter­actions between the 2ap rings in the a-axis direction (Table 3). Moreover, the C—H···O inter­actions result in the final three-dimensional supra­molecular arrangement in type 3.

Hirshfeld surface analysis top

Hirshfeld surfaces (with dnorm mapped) and fingerprints (de versus di) were generated using Crystal Explorer for the 2ap cations in all of the reported structures along with the earlier studied copper-containing analog (VI) (Lukianova et al., 2015). Analysis of the Hirshfeld surfaces (Fig. 10) reveals several common features of the 2ap cations and highlights their roles in the crystal packing organization. The cation is characterized by the presence of three strong hydrogen-bond donors, while its planar structure provides the possibility for the existence of ππ inter­actions. The closest [immediate?] environment of the 2ap cation in all the structures is constructed in a similar manner. The cations are involved in strong double hydrogen-bond formation with the sulfate anion in order to produce a charge-assisted pair of composition [2ap···SO4]-. The pair is formed by two H atoms of the pyridinium ring (N1—H) and the amino group (N2—H) hydrogen bonded to two O atoms of the same sulfate anion. The fitted image reveals the distribution of sufate anions with respect to the 2ap cations (Fig. 11). It is worth noting that the remaining H atom of the amino group is hydrogen bonded to another sulfate anion in all of the reported structures. Thus, in hydrogen bonds of the N—H···O type, the role of the acceptor is played by the sulfate O atoms only. The weakest hydrogen bonds formed by the 2ap cations are of the C—H···O type, in which the acceptor O atoms belong to all possible oxygen-containing groups, viz. sulfate anions and coordinated and noncoordinated water molecules.

Another common feature of all the 2ap cations is their involvement in the formation of ππ inter­acting columns (Table 3) composed of anti­parallel oriented cations. In all the structures, these columns propagate along the a axis. The mutual arrangement of these columns results in two different types of crystal packing. In structure types 1 [observed for Al analog (I)] and 2 [observed for Co analog (II) and Mg analog (III)], the columns are isolated and surrounded by inorganic sublattices (Figs. 3b/c and 6b). The second type of crystal packing is governed by the presence of ππ stacked columns aggregated into layers (Fig. 9) and is seen in structure types 3 [observed for Ni analog (IV) and Zn analog (V)] and 4 [observed for Cu analog (VI)]. As a result, alternating organic and inorganic layers are formed.

The fingerprint plots of the 2ap cations are all similar in shape (see Figs. S1–S4 in the Supporting information). They are characterized by the presence of spike pointing at around (di = 0.7, de = 1.1), which corresponds to hydrogen bonds of the N—H···O type. In all the plots, the contacts of inner H atoms dominate the surface area, with around 30% of the area corresponding to H···O contacts, around 40% to H···H contacts and 10–15% to ππ inter­actions. The strongest of the ππ inter­actions is illustrated by a presence of a red dot in the fingerprint plot of structure (VI) (Table 3).

Summary top

In the current work, the results of structural studies of 2-amino­pyridinium-templated metal (Al, Co, Mg, Ni and Zn) sulfate hydrates are reported for the first time. The templating role of 2ap is governed by the formation of characteristic charge-assisted hydrogen-bond pairs with sulfate anions and the presence of ππ inter­actions between the cations. In all of the studied compounds, as well as in the previously reported Cu analog, ππ inter­actions between the 2ap cations lead to the formation of columns with an anti­parallel orientation of the cations. Another common feature of the compounds is the presence of hexa­aqua-coordinated metal centres. Sulfate anions do not coordinate to the metal centres and are incorporated in diverse three-dimentional hydrogen-bonding networks, together with hexa­aqua­metal o­cta­hedra and uncoordinated water molecules (if present). The mutual arrangement of ππ-inter­acting columns results in the formation of two modes of crystal packing, i.e. the first with isolated organic columns surrounded by the inorganic counterpart (structural types 1 and 2) and the second characterized by alternate organic–inorganic layers (structural types 3 and 4).

Structure description top

The chemistry of organically templated metal sulfates (OTMS) has attracted extensive inter­est of the materials science community. Recently, increasing attention has been paid to the development of synthetic strategies for the preparation of organic–inorganic hybrid materials with novel structures and special properties. Sulfur–oxygen–metal (S—O—M) linkages provide the possibility of using SO42- tetra­hedra as a building unit to form new solid-state materials with novel topological structures and inter­esting physical properties (Rao et al., 2006).

The 2-amino­pyridinium (2ap) cation has received little attention as a template agent in OTMS. In the case of double metal and 2ap sulfates, only one representative is known up to now (Lukianova et al., 2015). The crystal structure of bis­(2-amino­pyridinium) sulfate has also been reported (Jebas et al., 2006a). In the literature, there are reports where simple inorganic–organic hybrids with the 2ap cation and various halogen salts characterized by inter­esting supra­molecular networks (Luque et al., 1997; Su et al., 2002; Kumar et al., 2005; Jebas et al., 2006b; Zhang et al., 2006; Fun et al., 2008; Gelmboldt et al., 2009; Cai & Fu, 2010; Jin et al., 2011; Rao et al., 2011; Mhadhbi et al., 2016) and dielectric properties are discussed (Kulicka et al., 2004).

In general, protonated amino­pyridinium cations act mainly as template agents as they directly contribute to the dimensionality of the hydrogen-bonding network in the crystal structures of hybrid organic–inorganic materials. The presence of electrostatic inter­actions, i.e. weak inter­actions such as C—H···O and ππ inter­actions, in these solids suggests that these weak inter­actions play a significant role in shaping the resultant supra­molecular assemblies and stabilization of these organic–inorganic hybrid materials.

In this paper, we have directed our efforts towards the synthesis and crystal structure determination, complemented by Hirshfeld surface analysis, of five new 2-amino­pyridinium metal sulfates, namely (2ap)[Al(H2O)6](SO4)2·4H2O, (I), (2ap)2[Co(H2O)6]3(SO4)4·2H2O, (II), (2ap)2[Mg(H2O)6]3(SO4)4·2H2O, (III), (2ap)2[Ni(H2O)6](SO4)2, (IV), and (2ap)2[Zn(H2O)6](SO4)2, (V), along with the previously reported copper analogue, (VI) (Lukianova et al., 2015).

The three-dimensional Hirshfeld surfaces (HSs) and two-dimensional fingerprint plots of (I), (II), (IV) and the copper analogue were generated using the CrystalExplorer software (Wolff et al., 2012).

Compound (I) crystallizes in the triclinic P1 space group. The asymmetric unit is composed of two halves of two crystallographically independent AlIII cations, both lying on special positions, one protonated 2-amino­pyridinium cation, two isolated sulfate anions and four noncoordinated water molecules. As shown in Fig. 1, two metal ions occupy inversion centres, both of them are hexacoordinated by six water molecules, adopting a slightly distorted o­cta­hedral coordination geometry. Selected bond lengths and angles are presented below in Table S1 (see Supporting information). The lengths of the Al1—OW and Al2—OW bonds vary from 1.8739 (14) to 1.8896 (15) Å and from 1.8760 (13) to 1.8930 (14) Å, respectively. The values of cis-OW—Al—OW angles are in the range 89.07 (6)–90.93 (6)° in the Al1 o­cta­hedron and 89.63 (6)–90.37 (6)° in the Al2 o­cta­hedron. These values are comparable with those reported for AlIII complexes with a six-coordinated o­cta­hedral geometry (Bataille, 2003). Each centrosymmetric [Al(H2O)6]3+ cation donates ten hydrogen bonds to eight sulfate anions and two hydrogen bonds to two uncoordinated water molecules (Fig. 2). The first sulfate anion accepts a total of nine hydrogen bonds, i.e. five from four hexa­aqua­aluminium complex cations, three from three solvent water molecules and one N—H···O hydrogen bond from one 2ap cation. The second sulfate anion accepts eight hydrogen bonds, i.e. five from five [Al(H2O)6]3+ cations, one from a free water molecule and two from one 2ap cation. The 2ap cation donates three N—H···O hydrogen bonds to the O atoms of two sulfate anions. One of the carbon-bound H atoms is involved in a weak hydrogen-bond inter­action with an O atom of a solvent water molecule. Four free water molecules, namely O1W, O2W, O3W and O4W, are involved in 14 multidirectional O—H···O hydrogen bonds between coordinated water molecules of the [Al(H2O)6]3+ cations, sulfate O atoms and uncoordinated water molecules, forming an inorganic network parallel to the ab plane (Fig. 3a). The O1W molecule donates one hydrogen bond to O2W and one bond to a sulfate anion, and accepts one bond from the O22W atom. O2W donates two hydrogen bonds, i.e. one to O3W and another to a sulfate anion, and accepts two bonds from two solvation water molecules (O2W and O4W). O3W donates two hydrogen bonds to two sulfate anions and accepts two hydrogen bonds from two free water molecules (O4W and O2W). O4W donates two hydrogen bonds to two uncoordinated water molecules (O3W and O2W) and accepts one bond from the O11W atom.

In the crystal structure of (I), a three-dimensional supra­molecular network is built from N—H···O, O—H···O and weak C—H···O hydrogen bonds involving the inorganic and organic parts of the structure (Table 2). Organic layers are built of ππ inter­acting stacks of 2ap cations (Table 3) connected to inorganic layers through N—H···O and C—H···O hydrogen bonds (Table 2 and Figs. 3b/c). The planes of all the 2ap rings are perpendicular to the [100] direction.

Isostructural compounds (II) and (III) (structure type 2) crystallize in the triclinic P1 space group. The asymmetric part of the unit cell contains two hexa­aqua-coordinated MII ions (one of them lies on a centre of inversion with half occupancy), one protonated amine group which is disordered over two sites, two sulfate anions and one solvent water molecule (Fig. 4). Each MII atom is located at the centre of a distorted o­cta­hedron formed by six O atoms from six water molecules. The M—OW bond lengths are in the ranges 2.0343 (18)–2.1852 (17), 2.0513 (18)–2.1074 (17), 2.0178 (19)–2.1321 (18) and 2.0391 (17)–2.0961 (19) Å for Co1—OW, Co2—OW, Mg1—OW and Mg2—OW, respectively. The cis- and trans-OWM—OW angles are 81.14 (7)–94.50 (7) and 172.42 (7)–178.16 (6)°, respectively, in the Co1 o­cta­hedron, 89.61 (8)–90.39 (8) and 180° in the Co2 o­cta­hedron, 85.29 (8)–98.30 (7) and 172.81 (9)–174.89 (8)° in the Mg1 o­cta­hedron, and 89.59 (8)–90.41 (8) and 180° (due to inversion symmetry) in the Mg2 o­cta­hedron Significant distortions in the coordination polyhedra of (II) and (III) are clearly evident (see Tables S2 and S3 in the Supporting information) and the most considerable distortions are observed in the case of the M1 environment, which does not lie on a centre of inversion.

The M1 o­cta­hedron donates eleven hydrogen bonds to six sulfate anions, donates one hydrogen bond to the O13W atom and accepts one hydrogen bond from the O11W water molecule (Fig. 5a), while the M2 o­cta­hedron donates eight hydrogen bonds to six sulfate anions and four hydrogen bonds to four solvent water molecules (Fig. 5b). The 2ap cations donate three N—H···O hydrogen bonds to O atoms in the main disordered part and three N—H···O hydrogen bonds in minor disordered part also. The orientationally disordered NH2 group has the minor disordered part attached to the C6 atom, instead of to C2. Reorientation from the first to the second position appears to be impossible due to the environment of the 2ap cation, and most likely is a result of incorrect alignment during the growth of the crystal. The NH2 groups are distributed between two positions with site occupancies equal to 0.121 (5) in the minor part of both (II) and (III).

Uncoordinated water molecule O1W donates two hydrogen bonds to two crystallographically independent sulfate anions and accepts two hydrogen bonds from two [MII(H2O)6]2+ cations. The first sulfate anion accepts ten hydrogen bonds, i.e. seven from four hexa­aqua complexes, one from a free water molecule and two N—H···O hydrogen bonds from one 2ap cation. The second sulfate anion accepts eleven hydrogen bonds, i.e. eight from five [MII(H2O)6]2+ cations, one from a free water molecule and two from two 2ap cations. As a result, an inorganic network is formed through O—H···O hydrogen bonds between water molecules, sulfate anions and inorganic cations, and lies parallel to the ac plane (Tables 4 and 5, and Fig. 6a). Significant parallel ππ inter­actions between pairs of pyridinium rings (Table 3) assist in the formation of a supra­molecular association along the a-axis direction and make the overall framework more stable (Fig. 6b). C—H···O hydrogen bonds are not observed in structure type 2.

Isostructural compounds (IV) and (V) crystallize in the triclinic P1 space group. In contrast to compounds (I)–(III), type 3, is characterized by the absence of noncoordinated water molecules. One half of an [M(H2O)6]2+ cation (located on an inversion centre), one sulfate anion and one 2ap cation form the asymmetric unit (see Fig. 7). The MII atom occupies the centre of a slightly distorted o­cta­hedron built by the coordination of six water molecules. The crystal packing reveals a layered arrangement of the inorganic and organic parts of the structure.

The M—OW bond lengths (see Tables S4 and S5 in the Supporting information) are 2.0503 (13)–2.0590 (17) and 2.0813 (19)–2.0996 (18) Å for salts (IV) and (V), respectively. The cis bond angles around the MII centres range from 86.63 (6) to 93.37 (6)° for (IV), and from 86.88 (8) to 93.12 (8)° for (IV). The trans angles are all equal to 180°. Geometric parameters are in accord with those reported for other Ni and Zn analogs (Fleck et al., 2004).

The [M(H2O)6]2+ cation donates twelve hydrogen bonds to six sulfate anions (see Fig. 8a). The SO42- anion accepts nine hydrogen bonds, i.e. six from three hexa­aqua complexes and three N—H···O hydrogen bonds from two 2ap cations. The [M(H2O)6]2+ cation in salts (IV) and (V) are connected via hydrogen bonds from water molecules to sulfate anions, forming inorganic networks parallel to the ab plane (Fig. 8b). As inferred in Fig. 9, the crystal structure is represented by a series of successive layers: inorganic layers of [M(H2O)6]2+ cations connected to sulfate anions by hydrogen bonds and organic layers of 2ap cations, both being parallel to bc plane. The organic and inorganic layers are linked to each other by two types of hydrogen bonding, i.e. N—H···O and weak C—H···O, present in the crystal structure (Tables 5 and 6, and Fig. 9). This hydrogen-bonding inter­action directs the infinite condensation of the respective building units. The crystal packings are further extended via ππ inter­actions between the 2ap rings in the a-axis direction (Table 3). Moreover, the C—H···O inter­actions result in the final three-dimensional supra­molecular arrangement in type 3.

Hirshfeld surfaces (with dnorm mapped) and fingerprints (de versus di) were generated using Crystal Explorer for the 2ap cations in all of the reported structures along with the earlier studied copper-containing analog (VI) (Lukianova et al., 2015). Analysis of the Hirshfeld surfaces (Fig. 10) reveals several common features of the 2ap cations and highlights their roles in the crystal packing organization. The cation is characterized by the presence of three strong hydrogen-bond donors, while its planar structure provides the possibility for the existence of ππ inter­actions. The closest [immediate?] environment of the 2ap cation in all the structures is constructed in a similar manner. The cations are involved in strong double hydrogen-bond formation with the sulfate anion in order to produce a charge-assisted pair of composition [2ap···SO4]-. The pair is formed by two H atoms of the pyridinium ring (N1—H) and the amino group (N2—H) hydrogen bonded to two O atoms of the same sulfate anion. The fitted image reveals the distribution of sufate anions with respect to the 2ap cations (Fig. 11). It is worth noting that the remaining H atom of the amino group is hydrogen bonded to another sulfate anion in all of the reported structures. Thus, in hydrogen bonds of the N—H···O type, the role of the acceptor is played by the sulfate O atoms only. The weakest hydrogen bonds formed by the 2ap cations are of the C—H···O type, in which the acceptor O atoms belong to all possible oxygen-containing groups, viz. sulfate anions and coordinated and noncoordinated water molecules.

Another common feature of all the 2ap cations is their involvement in the formation of ππ inter­acting columns (Table 3) composed of anti­parallel oriented cations. In all the structures, these columns propagate along the a axis. The mutual arrangement of these columns results in two different types of crystal packing. In structure types 1 [observed for Al analog (I)] and 2 [observed for Co analog (II) and Mg analog (III)], the columns are isolated and surrounded by inorganic sublattices (Figs. 3b/c and 6b). The second type of crystal packing is governed by the presence of ππ stacked columns aggregated into layers (Fig. 9) and is seen in structure types 3 [observed for Ni analog (IV) and Zn analog (V)] and 4 [observed for Cu analog (VI)]. As a result, alternating organic and inorganic layers are formed.

The fingerprint plots of the 2ap cations are all similar in shape (see Figs. S1–S4 in the Supporting information). They are characterized by the presence of spike pointing at around (di = 0.7, de = 1.1), which corresponds to hydrogen bonds of the N—H···O type. In all the plots, the contacts of inner H atoms dominate the surface area, with around 30% of the area corresponding to H···O contacts, around 40% to H···H contacts and 10–15% to ππ inter­actions. The strongest of the ππ inter­actions is illustrated by a presence of a red dot in the fingerprint plot of structure (VI) (Table 3).

In the current work, the results of structural studies of 2-amino­pyridinium-templated metal (Al, Co, Mg, Ni and Zn) sulfate hydrates are reported for the first time. The templating role of 2ap is governed by the formation of characteristic charge-assisted hydrogen-bond pairs with sulfate anions and the presence of ππ inter­actions between the cations. In all of the studied compounds, as well as in the previously reported Cu analog, ππ inter­actions between the 2ap cations lead to the formation of columns with an anti­parallel orientation of the cations. Another common feature of the compounds is the presence of hexa­aqua-coordinated metal centres. Sulfate anions do not coordinate to the metal centres and are incorporated in diverse three-dimentional hydrogen-bonding networks, together with hexa­aqua­metal o­cta­hedra and uncoordinated water molecules (if present). The mutual arrangement of ππ-inter­acting columns results in the formation of two modes of crystal packing, i.e. the first with isolated organic columns surrounded by the inorganic counterpart (structural types 1 and 2) and the second characterized by alternate organic–inorganic layers (structural types 3 and 4).

Synthesis and crystallization top

The title compounds were synthesized according to the previously described method of Lukianova et al. (2015). An aqueous solution (4 ml) of 2-amino­pyridine (0.19 g, 2.0 mmol), the pH of which was adjusted to 2.5 by admixing 30% sulfuric acid, was added slowly to an aqueous solution (3 ml) containing the appropriate metal sulfate [2.0 mmol for (I), 3.0 mmol for (II), 3.0 mmol for (III), 1.0 mmol for (IV) and 1.0 mmol for (V)]. Single crystals of a suitable size were obtained by slow solvent evaporation under ambient conditions for a period of several weeks.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The positions of the amine H atoms were located initially in difference Fourier maps but were subsequently allowed to ride in the refinement, with C—H = 0.96 Å and N—H = 0.91 Å. The isotropic atomic displacement parameters of the H atoms were evaluated as 1.2Ueq of the parent atom. Water H atoms were located firstly in a difference Fourier map and then fixed, with O—H = 0.840 (2) Å and Uiso(H) = 1.5Ueq(O).

Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I), (III), (IV); SHELXS97 (Sheldrick, 2008) for (II), (V). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the compound (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are denoted by orange dashed lines. [Symmetry codes: (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Sulfate ions and water molecules in the environment of (a) the first and (b) the second [Al(H2O)6]3+ cations in compound (I). [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 1, -z + 1.]
[Figure 3] Fig. 3. (a) View of inorganic network parallel to yx plane and the molecular arrangement in the compound (I) viewed along (b) [100] and (c) [010]. Dashed lines represent hydrogen bonds. C—H···O hydrogen bonds and H atoms not involved in interactions have been omitted for clarity.
[Figure 4] Fig. 4. The molecular entities of the compounds (II)–(III), showing the atom-numbering scheme (on the example of compound with Co). Minor part of the disordered over two sites protonated amine is shown with dashed bonds. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Hydrogen bonds are denoted by orange dashed lines. [Symmetry code: (vii) -x + 2, -y + 1, -z].
[Figure 5] Fig. 5. Sulfates and water molecules in the environment of the compounds (II)–(III) of (a) the Me1 octahedron and (b) the Me2 octahedron (on the example of compound with Co). [Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 2, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z; (vii) -x + 2, -y + 1, -z.]
[Figure 6] Fig. 6. (a) A view of inorganic network in structure type 2 parallel to the zx plane and (b) packing diagram for (II)–(III) (on the example of compound with Co), showing the three-dimensional hydrogen-bonded network (orange dashed lines). H atoms not involved in interactions have been omitted for clarity.
[Figure 7] Fig. 7. The structural unit of the compounds (IV)–(V) (on the example of compound with Ni), showing the atom-numbering scheme and hydrogen-bonding interactions (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iii) -x + 1, -y + 2, -z.]
[Figure 8] Fig. 8. (a) Sulfates in the environment of [Me(H2O)6]2+ cation in type 3 (on the example of compound with Ni). [Symmetry codes: (i) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 2, -z; (iv) -x + 2, -y + 1, -z.]. (b) View of inorganic networks in type 3 parallel to the yx plane. Dashed lines indicate the hydrogen bonds.
[Figure 9] Fig. 9. Crystal packing for (IV)–(V) (on the example of compound with Ni) viewed along [100]. Dashed lines indicate the hydrogen bonds. C—H···O hydrogen bonds and H atoms not involved in interactions have been omitted for clarity.
[Figure 10] Fig. 10. Hirshfeld surface of 2ap cation in (a) compound (I), (b) compound (II), (c) compound (IV) and (d) compound (VI).
[Figure 11] Fig. 11. The distribution of sufate anions in respect to the 2ap cations in four structural types.
(I) 2-Aminopyridinium hexaaquaaluminium(III) bis(sulfate) tetrahydrate top
Crystal data top
(C5H7N2)[Al(H2O)6](SO4)2·4H2OZ = 2
Mr = 494.38F(000) = 520
Triclinic, P1Dx = 1.668 Mg m3
a = 6.667 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.160 (4) ÅCell parameters from 5322 reflections
c = 12.911 (4) Åθ = 2.2–29.5°
α = 72.30 (3)°µ = 0.41 mm1
β = 81.03 (3)°T = 100 K
γ = 85.57 (3)°Block, colourless
V = 984.5 (7) Å30.50 × 0.33 × 0.20 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4751 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.6249 pixels mm-1θmax = 29.4°, θmin = 2.8°
ω scansh = 98
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.869, Tmax = 0.930l = 1717
14826 measured reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.042P)2 + 0.452P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4751 reflectionsΔρmax = 0.32 e Å3
316 parametersΔρmin = 0.62 e Å3
Crystal data top
(C5H7N2)[Al(H2O)6](SO4)2·4H2Oγ = 85.57 (3)°
Mr = 494.38V = 984.5 (7) Å3
Triclinic, P1Z = 2
a = 6.667 (3) ÅMo Kα radiation
b = 12.160 (4) ŵ = 0.41 mm1
c = 12.911 (4) ÅT = 100 K
α = 72.30 (3)°0.50 × 0.33 × 0.20 mm
β = 81.03 (3)°
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4751 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
3685 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.930Rint = 0.027
14826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03620 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
4751 reflectionsΔρmin = 0.62 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.50000.00000.50000.00796 (16)
O11W0.64761 (18)0.08727 (10)0.36697 (11)0.0105 (3)
H11A0.640 (3)0.0781 (18)0.3073 (14)0.016*
H11B0.762 (2)0.1150 (17)0.3618 (17)0.016*
O12W0.38678 (18)0.13785 (10)0.52461 (11)0.0105 (3)
H12A0.284 (3)0.1365 (18)0.5739 (15)0.016*
H12B0.361 (3)0.1918 (15)0.4703 (15)0.016*
O13W0.71181 (18)0.00732 (10)0.57732 (11)0.0105 (3)
H13A0.812 (3)0.0391 (16)0.5869 (17)0.016*
H13B0.726 (3)0.0623 (16)0.6018 (17)0.016*
Al20.50000.50000.50000.00801 (16)
O21W0.62866 (18)0.36833 (10)0.46954 (11)0.0105 (3)
H21A0.651 (3)0.3090 (15)0.5199 (15)0.016*
H21B0.729 (3)0.3711 (18)0.4194 (15)0.016*
O22W0.65215 (18)0.59526 (11)0.37401 (11)0.0118 (3)
H22A0.613 (3)0.6341 (17)0.3134 (14)0.018*
H22B0.762 (3)0.6215 (17)0.3759 (18)0.018*
O23W0.70379 (18)0.50546 (11)0.58517 (11)0.0114 (3)
H23A0.801 (3)0.4575 (16)0.5978 (17)0.017*
H23B0.718 (3)0.5610 (16)0.6071 (18)0.017*
S10.91029 (6)0.20997 (3)0.68614 (4)0.00876 (11)
O110.84308 (18)0.20057 (10)0.80334 (10)0.0121 (3)
O120.98659 (18)0.32749 (10)0.62760 (11)0.0129 (3)
O130.73407 (18)0.19311 (10)0.63619 (10)0.0116 (3)
O141.06889 (18)0.12046 (10)0.67919 (11)0.0139 (3)
S20.09053 (6)0.28132 (3)0.31390 (4)0.00884 (11)
O210.00743 (17)0.16827 (10)0.38119 (10)0.0124 (3)
O220.27136 (18)0.30327 (10)0.35807 (10)0.0120 (3)
O230.06040 (18)0.37597 (10)0.31594 (11)0.0142 (3)
O240.15050 (19)0.27888 (10)0.19974 (10)0.0139 (3)
N10.2134 (2)0.47940 (12)0.03559 (13)0.0134 (3)
H10.16940.41960.08750.016*
C20.1898 (3)0.58361 (15)0.05441 (15)0.0131 (4)
N20.0992 (2)0.58848 (13)0.15262 (13)0.0173 (3)
H2A0.05740.52640.20210.021*
H2B0.08250.65370.16650.021*
C30.2632 (3)0.68047 (15)0.03180 (16)0.0155 (4)
H30.25040.75350.02200.019*
C40.3527 (3)0.66674 (16)0.12932 (17)0.0180 (4)
H40.40090.73090.18600.022*
C50.3737 (3)0.55711 (17)0.14604 (16)0.0174 (4)
H50.43410.54810.21310.021*
C60.3037 (3)0.46511 (16)0.06194 (16)0.0150 (4)
H60.31730.39170.07070.018*
O1W0.4378 (2)0.27903 (11)0.81670 (11)0.0156 (3)
H1WA0.555 (3)0.2484 (18)0.8117 (19)0.023*
H1WB0.360 (3)0.2229 (16)0.8478 (18)0.023*
O2W0.1749 (2)0.10078 (12)0.92133 (12)0.0181 (3)
H2WA0.061 (3)0.1135 (19)0.9014 (19)0.027*
H2WB0.164 (4)0.091 (2)0.9861 (14)0.027*
O3W0.1666 (2)0.07501 (12)0.14593 (12)0.0180 (3)
H3WA0.089 (3)0.0290 (17)0.1929 (16)0.027*
H3WB0.141 (3)0.1356 (16)0.1639 (19)0.027*
O4W0.5926 (2)0.05318 (12)0.18214 (12)0.0189 (3)
H4WA0.471 (3)0.0479 (19)0.1738 (19)0.028*
H4WB0.665 (3)0.0103 (18)0.1544 (19)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0075 (3)0.0073 (3)0.0095 (4)0.0004 (3)0.0019 (3)0.0027 (3)
O11W0.0096 (6)0.0129 (6)0.0095 (7)0.0033 (5)0.0007 (5)0.0038 (5)
O12W0.0113 (6)0.0093 (6)0.0098 (7)0.0009 (5)0.0012 (5)0.0016 (5)
O13W0.0103 (6)0.0084 (6)0.0155 (7)0.0014 (5)0.0055 (5)0.0060 (5)
Al20.0078 (3)0.0071 (3)0.0089 (4)0.0005 (3)0.0018 (3)0.0017 (3)
O21W0.0112 (6)0.0088 (6)0.0107 (7)0.0010 (5)0.0013 (5)0.0019 (5)
O22W0.0095 (6)0.0127 (6)0.0120 (7)0.0026 (5)0.0026 (5)0.0011 (5)
O23W0.0118 (6)0.0088 (6)0.0159 (7)0.0011 (5)0.0052 (5)0.0059 (5)
S10.0083 (2)0.0082 (2)0.0099 (2)0.00001 (15)0.00166 (16)0.00276 (17)
O110.0130 (6)0.0146 (6)0.0095 (6)0.0005 (5)0.0013 (5)0.0049 (5)
O120.0112 (6)0.0090 (6)0.0165 (7)0.0023 (5)0.0036 (5)0.0003 (5)
O130.0120 (6)0.0108 (6)0.0134 (7)0.0013 (5)0.0039 (5)0.0045 (5)
O140.0128 (6)0.0128 (6)0.0141 (7)0.0041 (5)0.0007 (5)0.0031 (5)
S20.0086 (2)0.0083 (2)0.0096 (2)0.00033 (15)0.00152 (16)0.00245 (17)
O210.0103 (6)0.0098 (6)0.0157 (7)0.0020 (5)0.0022 (5)0.0009 (5)
O220.0123 (6)0.0097 (6)0.0143 (7)0.0024 (5)0.0037 (5)0.0025 (5)
O230.0134 (6)0.0120 (6)0.0147 (7)0.0029 (5)0.0006 (5)0.0018 (5)
O240.0187 (6)0.0131 (6)0.0105 (7)0.0003 (5)0.0011 (5)0.0048 (5)
N10.0142 (7)0.0108 (7)0.0150 (8)0.0015 (6)0.0031 (6)0.0025 (6)
C20.0100 (8)0.0147 (9)0.0160 (10)0.0004 (7)0.0049 (7)0.0050 (8)
N20.0261 (9)0.0110 (7)0.0157 (9)0.0030 (6)0.0005 (7)0.0059 (7)
C30.0156 (9)0.0108 (8)0.0196 (10)0.0002 (7)0.0058 (8)0.0024 (8)
C40.0142 (9)0.0177 (9)0.0168 (10)0.0016 (7)0.0038 (8)0.0038 (8)
C50.0135 (9)0.0252 (10)0.0134 (10)0.0014 (7)0.0036 (7)0.0051 (8)
C60.0119 (8)0.0184 (9)0.0178 (10)0.0025 (7)0.0052 (7)0.0091 (8)
O1W0.0119 (6)0.0159 (7)0.0168 (7)0.0010 (5)0.0001 (6)0.0032 (6)
O2W0.0168 (7)0.0233 (7)0.0145 (7)0.0002 (6)0.0040 (6)0.0050 (6)
O3W0.0265 (7)0.0128 (7)0.0153 (8)0.0023 (5)0.0023 (6)0.0049 (6)
O4W0.0195 (7)0.0206 (7)0.0196 (8)0.0015 (6)0.0043 (6)0.0098 (6)
Geometric parameters (Å, º) top
Al1—O11Wi1.8896 (15)S1—O141.4707 (13)
Al1—O11W1.8896 (15)S2—O211.4808 (14)
Al1—O12Wi1.8799 (13)S2—O221.4855 (13)
Al1—O12W1.8799 (13)S2—O231.4728 (13)
Al1—O13Wi1.8739 (14)S2—O241.4745 (14)
Al1—O13W1.8740 (14)N1—H10.8600
O11W—H11A0.821 (15)N1—C21.354 (2)
O11W—H11B0.841 (15)N1—C61.363 (2)
O12W—H12A0.859 (15)C2—N21.333 (2)
O12W—H12B0.833 (15)C2—C31.410 (3)
O13W—H13A0.842 (15)N2—H2A0.8600
O13W—H13B0.839 (15)N2—H2B0.8600
Al2—O21Wii1.8760 (13)C3—H30.9300
Al2—O21W1.8760 (13)C3—C41.359 (3)
Al2—O22Wii1.8810 (16)C4—H40.9300
Al2—O22W1.8810 (16)C4—C51.407 (3)
Al2—O23Wii1.8930 (14)C5—H50.9300
Al2—O23W1.8930 (14)C5—C61.354 (3)
O21W—H21A0.833 (15)C6—H60.9300
O21W—H21B0.852 (15)O1W—H1WA0.841 (15)
O22W—H22A0.850 (15)O1W—H1WB0.849 (16)
O22W—H22B0.830 (15)O2W—H2WA0.825 (16)
O23W—H23A0.837 (15)O2W—H2WB0.800 (16)
O23W—H23B0.825 (15)O3W—H3WA0.831 (16)
S1—O111.4815 (14)O3W—H3WB0.836 (16)
S1—O121.4859 (14)O4W—H4WA0.845 (16)
S1—O131.4806 (13)O4W—H4WB0.808 (16)
O11Wi—Al1—O11W180.0Al2—O22W—H22B122.3 (15)
O12W—Al1—O11W89.45 (6)H22A—O22W—H22B107 (2)
O12Wi—Al1—O11Wi89.45 (6)Al2—O23W—H23A125.2 (14)
O12Wi—Al1—O11W90.54 (6)Al2—O23W—H23B123.8 (15)
O12W—Al1—O11Wi90.55 (6)H23A—O23W—H23B110 (2)
O12Wi—Al1—O12W180.0O11—S1—O12109.44 (8)
O13W—Al1—O11Wi89.07 (6)O13—S1—O11108.96 (8)
O13W—Al1—O11W90.93 (6)O13—S1—O12108.18 (8)
O13Wi—Al1—O11Wi90.93 (6)O14—S1—O11108.71 (8)
O13Wi—Al1—O11W89.07 (6)O14—S1—O12111.37 (8)
O13W—Al1—O12W89.22 (6)O14—S1—O13110.15 (7)
O13Wi—Al1—O12W90.78 (6)O21—S2—O22109.45 (8)
O13W—Al1—O12Wi90.78 (6)O23—S2—O21111.23 (8)
O13Wi—Al1—O12Wi89.22 (6)O23—S2—O22108.31 (7)
O13Wi—Al1—O13W180.0O23—S2—O24109.38 (8)
Al1—O11W—H11A123.1 (15)O24—S2—O21109.05 (8)
Al1—O11W—H11B124.4 (15)O24—S2—O22109.40 (8)
H11A—O11W—H11B107 (2)C2—N1—H1118.5
Al1—O12W—H12A120.6 (14)C2—N1—C6122.95 (16)
Al1—O12W—H12B117.7 (14)C6—N1—H1118.5
H12A—O12W—H12B105 (2)N1—C2—C3117.53 (16)
Al1—O13W—H13A126.0 (14)N2—C2—N1118.35 (17)
Al1—O13W—H13B123.9 (14)N2—C2—C3124.12 (16)
H13A—O13W—H13B109.8 (19)C2—N2—H2A120.0
O21Wii—Al2—O21W180.00 (4)C2—N2—H2B120.0
O21Wii—Al2—O22W89.68 (6)H2A—N2—H2B120.0
O21W—Al2—O22Wii89.68 (6)C2—C3—H3120.1
O21Wii—Al2—O22Wii90.32 (6)C4—C3—C2119.75 (16)
O21W—Al2—O22W90.32 (6)C4—C3—H3120.1
O21Wii—Al2—O23Wii90.26 (6)C3—C4—H4119.4
O21W—Al2—O23W90.26 (6)C3—C4—C5121.12 (18)
O21Wii—Al2—O23W89.74 (6)C5—C4—H4119.4
O21W—Al2—O23Wii89.74 (6)C4—C5—H5120.9
O22W—Al2—O22Wii180.0C6—C5—C4118.21 (18)
O22W—Al2—O23Wii89.63 (6)C6—C5—H5120.9
O22Wii—Al2—O23Wii90.37 (6)N1—C6—H6119.8
O22W—Al2—O23W90.37 (6)C5—C6—N1120.44 (16)
O22Wii—Al2—O23W89.63 (6)C5—C6—H6119.8
O23Wii—Al2—O23W180.0H1WA—O1W—H1WB105 (2)
Al2—O21W—H21A121.2 (14)H2WA—O2W—H2WB109 (2)
Al2—O21W—H21B123.4 (14)H3WA—O3W—H3WB102 (2)
H21A—O21W—H21B105 (2)H4WA—O4W—H4WB109 (2)
Al2—O22W—H22A128.9 (15)
N1—C2—C3—C40.3 (3)C3—C4—C5—C60.5 (3)
C2—N1—C6—C50.5 (3)C4—C5—C6—N10.8 (3)
C2—C3—C4—C50.0 (3)C6—N1—C2—N2179.93 (16)
N2—C2—C3—C4179.69 (17)C6—N1—C2—C30.1 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O4W0.82 (2)1.81 (2)2.626 (2)173 (2)
O11W—H11B···O21iii0.84 (2)1.89 (2)2.715 (2)168 (2)
O12W—H12A···O14iv0.86 (2)1.79 (2)2.648 (2)175 (2)
O12W—H12B···O220.83 (2)1.80 (2)2.628 (2)173 (2)
O13W—H13A···O21i0.84 (2)1.88 (2)2.711 (2)167 (2)
O13W—H13B···O130.84 (2)1.78 (2)2.6144 (18)171 (2)
O21W—H21A···O130.83 (2)1.84 (2)2.667 (2)170 (2)
O21W—H21B···O23iii0.85 (2)1.77 (2)2.622 (2)180 (3)
O22W—H22A···O1Wii0.85 (2)1.76 (2)2.606 (2)173 (2)
O22W—H22B···O12v0.83 (2)1.82 (2)2.647 (2)175 (2)
O23W—H23A···O120.84 (2)1.91 (2)2.740 (2)169 (2)
O23W—H23B···O22ii0.83 (2)1.85 (2)2.6660 (18)172 (2)
N1—H1···O240.861.872.711 (2)164
N2—H2A···O230.862.092.944 (2)176
N2—H2B···O11ii0.862.042.856 (2)159
C6—H6···O1Wvi0.932.303.127 (2)147
O1W—H1WA···O110.84 (2)1.96 (2)2.792 (2)170 (2)
O1W—H1WB···O2W0.85 (2)1.92 (2)2.768 (2)177 (2)
O2W—H2WA···O11iv0.83 (2)2.09 (2)2.864 (2)156 (2)
O2W—H2WB···O3Wvii0.80 (2)2.02 (2)2.812 (2)173 (2)
O3W—H3WA···O14i0.83 (2)2.25 (2)3.069 (2)169 (2)
O3W—H3WB···O240.84 (2)1.94 (2)2.7609 (19)166 (2)
O4W—H4WA···O3W0.85 (2)2.10 (2)2.929 (2)167 (2)
O4W—H4WB···O2Wi0.81 (2)2.04 (2)2.849 (2)175 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x, y, z1; (vii) x, y, z+1.
(II) Bis(2-aminopyridinium) tris[hexaaquacobalt(II)] tetrakis(sulfate) dihydrate top
Crystal data top
(C5H7N2)2[Co(H2O)6]3(SO4)4·2H2OZ = 1
Mr = 1111.60F(000) = 575
Triclinic, P1Dx = 1.812 Mg m3
a = 6.640 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.710 (4) ÅCell parameters from 5917 reflections
c = 14.294 (4) Åθ = 3.1–29.1°
α = 67.97 (3)°µ = 1.53 mm1
β = 81.57 (3)°T = 100 K
γ = 85.39 (3)°Plate, red
V = 1018.8 (7) Å30.42 × 0.27 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4878 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.6249 pixels mm-1θmax = 29.6°, θmin = 2.8°
ω scansh = 88
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.609, Tmax = 0.891l = 1819
14070 measured reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.024P)2 + 0.719P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4878 reflectionsΔρmax = 0.42 e Å3
321 parametersΔρmin = 0.44 e Å3
Crystal data top
(C5H7N2)2[Co(H2O)6]3(SO4)4·2H2Oγ = 85.39 (3)°
Mr = 1111.60V = 1018.8 (7) Å3
Triclinic, P1Z = 1
a = 6.640 (3) ÅMo Kα radiation
b = 11.710 (4) ŵ = 1.53 mm1
c = 14.294 (4) ÅT = 100 K
α = 67.97 (3)°0.42 × 0.27 × 0.08 mm
β = 81.57 (3)°
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4878 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
4072 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.891Rint = 0.025
14070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03120 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
4878 reflectionsΔρmin = 0.44 e Å3
321 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.81730 (4)0.24175 (2)0.48940 (2)0.01270 (8)
O11W1.0930 (2)0.15648 (15)0.54025 (13)0.0193 (3)
H11A1.117 (4)0.0828 (16)0.550 (2)0.029*
H11B1.148 (4)0.173 (2)0.5808 (17)0.029*
O12W0.5454 (2)0.33969 (14)0.44448 (12)0.0163 (3)
H12A0.482 (3)0.327 (2)0.4027 (16)0.024*
H12B0.557 (4)0.4142 (16)0.4194 (19)0.024*
O13W0.8355 (2)0.11152 (13)0.41171 (12)0.0154 (3)
H13A0.928 (3)0.133 (2)0.3645 (16)0.023*
H13B0.736 (3)0.117 (2)0.3823 (18)0.023*
O14W0.8099 (2)0.36353 (15)0.56340 (13)0.0213 (4)
H14A0.905 (3)0.370 (2)0.5927 (19)0.032*
H14B0.701 (3)0.373 (2)0.5938 (19)0.032*
O15W0.6390 (2)0.12358 (14)0.60913 (12)0.0195 (3)
H15A0.618 (4)0.0507 (16)0.621 (2)0.029*
H15B0.530 (3)0.151 (2)0.6307 (19)0.029*
O16W0.9640 (2)0.36329 (14)0.35903 (13)0.0235 (4)
H16A1.089 (3)0.356 (3)0.341 (2)0.035*
H16B0.950 (4)0.4385 (17)0.350 (2)0.035*
Co21.00000.50000.00000.01264 (10)
O21W1.0568 (2)0.57791 (18)0.09997 (14)0.0279 (4)
H21A0.968 (4)0.614 (3)0.126 (2)0.042*
H21B1.163 (3)0.578 (3)0.122 (2)0.042*
O22W0.8877 (3)0.34331 (17)0.12342 (14)0.0354 (5)
H22A0.946 (4)0.314 (3)0.1730 (18)0.053*
H22B0.766 (3)0.322 (3)0.139 (2)0.053*
O23W0.7093 (2)0.57899 (16)0.00391 (12)0.0239 (4)
H23A0.626 (4)0.563 (2)0.0473 (16)0.036*
H23B0.661 (4)0.625 (2)0.0543 (16)0.036*
S10.26050 (7)0.32185 (5)0.71193 (4)0.01344 (11)
O110.2389 (2)0.28812 (14)0.82416 (11)0.0227 (4)
O120.4429 (2)0.39702 (14)0.66754 (13)0.0240 (4)
O130.0779 (2)0.39364 (13)0.67393 (12)0.0199 (3)
O140.2811 (2)0.20808 (13)0.68886 (11)0.0158 (3)
S20.37373 (7)0.21252 (5)0.26165 (4)0.01285 (11)
O210.3555 (2)0.31783 (13)0.29681 (11)0.0160 (3)
O220.4874 (2)0.11002 (13)0.33098 (11)0.0181 (3)
O230.1693 (2)0.17496 (14)0.25939 (11)0.0175 (3)
O240.4888 (2)0.25378 (13)0.15788 (11)0.0163 (3)
N10.2263 (3)0.06643 (18)0.97837 (15)0.0226 (4)
H10.22000.13540.92800.027*
C20.2830 (3)0.0361 (2)0.95853 (18)0.0218 (5)
H20.31480.03270.89200.026*0.121 (5)
N20.3252 (3)0.0250 (2)0.86323 (16)0.0204 (6)0.879 (5)
H2A0.31630.04610.81560.024*0.879 (5)
H2B0.36180.08890.84830.024*0.879 (5)
C30.2927 (3)0.1489 (2)1.04194 (19)0.0251 (5)
H30.33280.22131.03110.030*
C40.2426 (3)0.1506 (2)1.13858 (18)0.0261 (5)
H40.24740.22491.19350.031*
C50.1840 (3)0.0419 (2)1.15618 (19)0.0284 (6)
H50.14980.04321.22200.034*
C60.1785 (3)0.0660 (2)1.07421 (19)0.0257 (5)
H60.14180.13941.08400.031*0.879 (5)
O1W0.5638 (2)0.45007 (14)0.83619 (11)0.0165 (3)
H1WA0.53400.43100.78820.025*
H1WB0.57890.52790.78830.025*
N2A0.1513 (18)0.1596 (12)1.0656 (10)0.009 (4)*0.121 (5)
H2AA0.16220.21621.00580.011*0.121 (5)
H2AB0.11840.17891.11840.011*0.121 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01207 (14)0.01120 (15)0.01479 (15)0.00019 (10)0.00248 (11)0.00455 (11)
O11W0.0188 (8)0.0158 (8)0.0283 (9)0.0050 (6)0.0122 (7)0.0116 (7)
O12W0.0176 (8)0.0140 (8)0.0189 (8)0.0016 (6)0.0085 (6)0.0061 (7)
O13W0.0127 (7)0.0169 (8)0.0162 (8)0.0010 (6)0.0018 (6)0.0057 (6)
O14W0.0131 (8)0.0274 (9)0.0323 (10)0.0012 (7)0.0052 (7)0.0205 (8)
O15W0.0197 (8)0.0128 (8)0.0225 (8)0.0001 (6)0.0047 (7)0.0054 (7)
O16W0.0171 (8)0.0126 (8)0.0342 (10)0.0004 (6)0.0065 (7)0.0048 (7)
Co20.00979 (18)0.0159 (2)0.0120 (2)0.00087 (14)0.00193 (15)0.00457 (16)
O21W0.0177 (8)0.0449 (11)0.0370 (10)0.0075 (8)0.0107 (8)0.0320 (9)
O22W0.0212 (9)0.0399 (11)0.0271 (10)0.0156 (8)0.0124 (8)0.0146 (8)
O23W0.0129 (8)0.0377 (10)0.0156 (8)0.0077 (7)0.0028 (6)0.0048 (8)
S10.0124 (2)0.0121 (3)0.0173 (3)0.00063 (18)0.0042 (2)0.0064 (2)
O110.0365 (9)0.0174 (8)0.0170 (8)0.0074 (7)0.0087 (7)0.0092 (7)
O120.0168 (8)0.0189 (8)0.0397 (10)0.0058 (6)0.0030 (7)0.0161 (8)
O130.0191 (8)0.0145 (8)0.0290 (9)0.0040 (6)0.0122 (7)0.0090 (7)
O140.0169 (7)0.0129 (7)0.0195 (8)0.0003 (6)0.0029 (6)0.0079 (6)
S20.0113 (2)0.0132 (3)0.0146 (3)0.00040 (18)0.0019 (2)0.0056 (2)
O210.0166 (7)0.0138 (7)0.0190 (8)0.0005 (6)0.0033 (6)0.0075 (6)
O220.0195 (8)0.0124 (7)0.0205 (8)0.0006 (6)0.0061 (6)0.0031 (6)
O230.0130 (7)0.0229 (8)0.0202 (8)0.0039 (6)0.0010 (6)0.0116 (7)
O240.0135 (7)0.0191 (8)0.0155 (8)0.0007 (6)0.0007 (6)0.0063 (6)
N10.0182 (9)0.0191 (10)0.0247 (11)0.0016 (7)0.0063 (8)0.0001 (8)
C20.0089 (10)0.0292 (13)0.0210 (12)0.0040 (9)0.0030 (9)0.0009 (10)
N20.0238 (12)0.0161 (11)0.0208 (12)0.0019 (8)0.0013 (9)0.0073 (9)
C30.0165 (11)0.0203 (12)0.0299 (14)0.0002 (9)0.0031 (10)0.0005 (10)
C40.0187 (11)0.0288 (14)0.0211 (12)0.0044 (9)0.0039 (10)0.0030 (10)
C50.0199 (12)0.0374 (15)0.0231 (13)0.0077 (10)0.0056 (10)0.0033 (11)
C60.0208 (12)0.0300 (14)0.0268 (13)0.0058 (10)0.0065 (10)0.0087 (11)
O1W0.0183 (7)0.0168 (8)0.0166 (8)0.0018 (6)0.0043 (6)0.0075 (6)
Geometric parameters (Å, º) top
Co1—O11W2.1042 (17)O23W—H23B0.811 (17)
Co1—O12W2.1074 (17)S1—O111.4888 (17)
Co1—O13W2.1852 (17)S1—O121.4735 (17)
Co1—O14W2.0640 (17)S1—O131.4689 (16)
Co1—O15W2.0343 (18)S1—O141.4797 (16)
Co1—O16W2.0368 (19)S2—O211.4869 (16)
O11W—H11A0.827 (17)S2—O221.4744 (16)
O11W—H11B0.813 (17)S2—O231.4687 (16)
O12W—H12A0.838 (16)S2—O241.4855 (16)
O12W—H12B0.815 (16)N1—H10.8600
O13W—H13A0.819 (16)N1—C21.347 (3)
O13W—H13B0.819 (16)N1—C61.358 (3)
O14W—H14A0.828 (17)C2—H20.9300
O14W—H14B0.810 (17)C2—N21.309 (3)
O15W—H15A0.824 (17)C2—C31.414 (3)
O15W—H15B0.830 (16)N2—H2A0.8600
O16W—H16A0.840 (17)N2—H2B0.8600
O16W—H16B0.839 (17)C3—H30.9300
Co2—O21Wi2.0513 (18)C3—C41.366 (4)
Co2—O21W2.0513 (18)C4—H40.9300
Co2—O22Wi2.1073 (19)C4—C51.402 (4)
Co2—O22W2.1073 (19)C5—H50.9300
Co2—O23Wi2.0715 (17)C5—C61.365 (3)
Co2—O23W2.0715 (17)C6—H60.9300
O21W—H21A0.817 (17)C6—N2A1.060 (13)
O21W—H21B0.818 (17)O1W—H1WA0.8493
O22W—H22A0.804 (18)O1W—H1WB0.9143
O22W—H22B0.837 (17)N2A—H2AA0.8600
O23W—H23A0.819 (17)N2A—H2AB0.8600
O11W—Co1—O12W174.53 (6)Co2—O21W—H21B129 (2)
O11W—Co1—O13W84.79 (6)H21A—O21W—H21B109 (3)
O12W—Co1—O13W100.63 (6)Co2—O22W—H22A121 (2)
O14W—Co1—O11W93.44 (7)Co2—O22W—H22B126 (2)
O14W—Co1—O12W81.14 (7)H22A—O22W—H22B109 (3)
O14W—Co1—O13W178.16 (6)Co2—O23W—H23A121.8 (19)
O15W—Co1—O11W94.50 (7)Co2—O23W—H23B126 (2)
O15W—Co1—O12W86.37 (7)H23A—O23W—H23B112 (3)
O15W—Co1—O13W89.76 (7)O12—S1—O11107.67 (10)
O15W—Co1—O14W90.88 (7)O12—S1—O14110.99 (9)
O15W—Co1—O16W172.42 (7)O13—S1—O11108.34 (10)
O16W—Co1—O11W92.29 (7)O13—S1—O12110.29 (10)
O16W—Co1—O12W87.18 (7)O13—S1—O14110.26 (9)
O16W—Co1—O13W87.52 (7)O14—S1—O11109.22 (9)
O16W—Co1—O14W92.06 (7)O22—S2—O21109.09 (9)
Co1—O11W—H11A120.5 (18)O22—S2—O24109.28 (9)
Co1—O11W—H11B123.0 (19)O23—S2—O21109.29 (9)
H11A—O11W—H11B108 (3)O23—S2—O22110.95 (9)
Co1—O12W—H12A121.8 (17)O23—S2—O24110.13 (9)
Co1—O12W—H12B113.8 (18)O24—S2—O21108.03 (9)
H12A—O12W—H12B102 (2)C2—N1—H1118.5
Co1—O13W—H13A107.7 (18)C2—N1—C6123.1 (2)
Co1—O13W—H13B112.8 (18)C6—N1—H1118.5
H13A—O13W—H13B102 (2)N1—C2—H2121.0
Co1—O14W—H14A123.3 (19)N1—C2—C3118.0 (2)
Co1—O14W—H14B116 (2)N2—C2—N1118.0 (2)
H14A—O14W—H14B111 (3)N2—C2—C3124.1 (2)
Co1—O15W—H15A128.3 (19)C3—C2—H2121.0
Co1—O15W—H15B118.3 (19)C2—N2—H2A120.0
H15A—O15W—H15B105 (3)C2—N2—H2B120.0
Co1—O16W—H16A122.2 (19)H2A—N2—H2B120.0
Co1—O16W—H16B117.5 (19)C2—C3—H3120.3
H16A—O16W—H16B102 (3)C4—C3—C2119.4 (2)
O21W—Co2—O21Wi180.0C4—C3—H3120.3
O21W—Co2—O22W89.77 (9)C3—C4—H4119.5
O21Wi—Co2—O22W90.23 (9)C3—C4—C5121.0 (2)
O21W—Co2—O22Wi90.23 (9)C5—C4—H4119.5
O21Wi—Co2—O22Wi89.77 (9)C4—C5—H5120.8
O21W—Co2—O23W90.11 (7)C6—C5—C4118.3 (2)
O21W—Co2—O23Wi89.89 (7)C6—C5—H5120.8
O21Wi—Co2—O23Wi90.11 (7)N1—C6—C5120.3 (2)
O21Wi—Co2—O23W89.89 (7)N1—C6—H6119.9
O22W—Co2—O22Wi180.00 (10)C5—C6—H6119.9
O23W—Co2—O22Wi90.39 (8)N2A—C6—N1105.6 (8)
O23Wi—Co2—O22W90.39 (8)N2A—C6—C5134.0 (8)
O23Wi—Co2—O22Wi89.61 (8)H1WA—O1W—H1WB85.4
O23W—Co2—O22W89.61 (8)C6—N2A—H2AA120.0
O23W—Co2—O23Wi180.0C6—N2A—H2AB120.0
Co2—O21W—H21A122 (2)H2AA—N2A—H2AB120.0
N1—C2—C3—C40.8 (3)C3—C4—C5—C60.1 (3)
C2—N1—C6—C50.8 (3)C4—C5—C6—N10.9 (3)
C2—N1—C6—N2A175.9 (7)C4—C5—C6—N2A174.7 (10)
C2—C3—C4—C50.7 (3)C6—N1—C2—N2179.8 (2)
N2—C2—C3—C4179.1 (2)C6—N1—C2—C30.0 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O13Wii0.83 (2)2.14 (2)2.964 (2)175 (3)
O11W—H11B···O14iii0.81 (2)2.07 (2)2.881 (2)178 (3)
O12W—H12A···O210.84 (2)1.88 (2)2.711 (2)173 (3)
O12W—H12B···O12iv0.82 (2)2.09 (2)2.894 (3)169 (3)
O13W—H13A···O23iii0.82 (2)1.98 (2)2.800 (2)175 (2)
O13W—H13B···O220.82 (2)1.92 (2)2.735 (2)172 (3)
O14W—H14A···O13iii0.83 (2)1.85 (2)2.671 (2)169 (3)
O14W—H14B···O120.81 (2)1.93 (2)2.744 (2)179 (3)
O15W—H15A···O22v0.82 (2)1.90 (2)2.706 (2)166 (3)
O15W—H15B···O140.83 (2)1.93 (2)2.756 (2)177 (3)
O16W—H16A···O21iii0.84 (2)1.87 (2)2.699 (2)171 (3)
O16W—H16B···O13iv0.84 (2)1.86 (2)2.703 (2)179 (3)
O21W—H21A···O11iv0.82 (2)1.95 (2)2.766 (2)175 (3)
O21W—H21B···O1Wvi0.82 (2)1.95 (2)2.758 (2)168 (3)
O22W—H22A···O23iii0.80 (2)2.24 (2)2.959 (3)150 (3)
O22W—H22B···O240.84 (2)2.01 (2)2.835 (2)169 (3)
O23W—H23A···O1Wiv0.82 (2)1.90 (2)2.714 (2)171 (3)
O23W—H23B···O24vii0.81 (2)1.96 (2)2.759 (2)169 (3)
N1—H1···O110.861.852.701 (3)172
N2—H2A···O140.862.102.955 (3)173
N2—H2B···O24v0.862.122.959 (3)164
O1W—H1WA···O120.852.092.935 (2)175
O1W—H1WB···O21iv0.911.802.711 (2)171
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z.
(III) Bis(2-aminopyridinium) tris[hexaaquamagnesium(II)] tetrakis(sulfate) dihydrate top
Crystal data top
(C5H7N2)2[Mg(H2O)6]3(SO4)4·2H2OZ = 1
Mr = 1007.74F(000) = 530
Triclinic, P1Dx = 1.613 Mg m3
a = 6.682 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.807 (4) ÅCell parameters from 4995 reflections
c = 14.309 (4) Åθ = 2.8–29.2°
α = 68.23 (3)°µ = 0.39 mm1
β = 82.13 (3)°T = 100 K
γ = 84.76 (3)°Block, colourless
V = 1037.5 (7) Å30.43 × 0.36 × 0.23 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4884 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.6249 pixels mm-1θmax = 29.3°, θmin = 1.9°
ω scansh = 89
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1514
Tmin = 0.892, Tmax = 0.928l = 1918
11467 measured reflections
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.030P)2 + 0.790P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4884 reflectionsΔρmax = 0.45 e Å3
324 parametersΔρmin = 0.40 e Å3
Crystal data top
(C5H7N2)2[Mg(H2O)6]3(SO4)4·2H2Oγ = 84.76 (3)°
Mr = 1007.74V = 1037.5 (7) Å3
Triclinic, P1Z = 1
a = 6.682 (3) ÅMo Kα radiation
b = 11.807 (4) ŵ = 0.39 mm1
c = 14.309 (4) ÅT = 100 K
α = 68.23 (3)°0.43 × 0.36 × 0.23 mm
β = 82.13 (3)°
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
4884 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
3875 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.928Rint = 0.026
11467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04020 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
4884 reflectionsΔρmin = 0.40 e Å3
324 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.81378 (10)0.23692 (6)0.49397 (5)0.01481 (16)
O11W1.0598 (2)0.13517 (16)0.56102 (15)0.0275 (4)
H11A1.101 (4)0.0690 (19)0.560 (2)0.041*
H11B1.124 (4)0.155 (3)0.596 (2)0.041*
O12W0.5724 (2)0.35023 (14)0.43273 (13)0.0200 (3)
H12A0.508 (4)0.337 (2)0.3931 (18)0.030*
H12B0.577 (4)0.4250 (16)0.411 (2)0.030*
O13W0.8425 (2)0.12786 (14)0.40247 (12)0.0169 (3)
H13A0.937 (3)0.149 (2)0.3562 (16)0.025*
H13B0.744 (3)0.126 (2)0.3752 (18)0.025*
O14W0.7913 (2)0.32636 (17)0.59110 (15)0.0302 (4)
H14A0.883 (4)0.353 (3)0.610 (2)0.045*
H14B0.681 (3)0.350 (3)0.615 (2)0.045*
O15W0.5991 (2)0.12192 (15)0.58580 (14)0.0262 (4)
H15A0.592 (4)0.0455 (16)0.613 (2)0.039*
H15B0.507 (3)0.151 (2)0.616 (2)0.039*
O16W1.0006 (3)0.36017 (16)0.39053 (17)0.0397 (5)
H16A1.113 (3)0.346 (3)0.361 (2)0.060*
H16B0.974 (5)0.4362 (17)0.366 (2)0.060*
Mg21.00000.50000.00000.0143 (2)
O21W1.0623 (2)0.57333 (16)0.10139 (14)0.0261 (4)
H21A0.982 (4)0.613 (2)0.128 (2)0.039*
H21B1.169 (3)0.572 (3)0.123 (2)0.039*
O22W0.8941 (2)0.34472 (16)0.12053 (14)0.0303 (4)
H22A0.958 (4)0.299 (2)0.1654 (18)0.045*
H22B0.775 (3)0.321 (3)0.137 (2)0.045*
O23W0.7155 (2)0.57895 (15)0.00078 (12)0.0213 (3)
H23A0.641 (4)0.566 (2)0.0525 (15)0.032*
H23B0.661 (4)0.623 (2)0.0509 (16)0.032*
S10.24947 (7)0.31939 (5)0.71412 (4)0.01455 (12)
O110.2178 (2)0.28429 (14)0.82576 (12)0.0229 (4)
O120.4330 (2)0.39112 (14)0.67622 (13)0.0221 (4)
O130.0741 (2)0.39470 (13)0.67063 (13)0.0237 (4)
O140.2744 (2)0.20773 (13)0.68906 (11)0.0169 (3)
S20.37973 (7)0.21759 (5)0.25672 (4)0.01327 (12)
O210.3611 (2)0.31962 (13)0.29477 (11)0.0165 (3)
O220.4965 (2)0.11450 (13)0.32351 (11)0.0182 (3)
O230.1764 (2)0.18145 (13)0.25324 (11)0.0175 (3)
O240.4911 (2)0.25977 (13)0.15362 (11)0.0173 (3)
N10.2287 (3)0.06416 (17)0.97674 (16)0.0236 (4)
H10.21990.13270.92710.028*
C20.2799 (3)0.0381 (2)0.95590 (18)0.0229 (5)
H20.30550.03480.88940.027*0.121 (5)
N20.3134 (3)0.0267 (2)0.86029 (17)0.0216 (6)0.879 (5)
H2A0.30240.04400.81340.026*0.879 (5)
H2B0.34620.09010.84450.026*0.879 (5)
C30.2935 (3)0.1499 (2)1.03795 (19)0.0268 (5)
H30.32960.22191.02640.032*
C40.2530 (3)0.1514 (2)1.13463 (19)0.0284 (6)
H40.25990.22521.18880.034*
C50.2012 (3)0.0435 (2)1.15349 (19)0.0292 (6)
H50.17470.04471.21940.035*
C60.1906 (3)0.0631 (2)1.07281 (19)0.0263 (5)
H60.15700.13591.08350.032*0.879 (5)
N2A0.1625 (19)0.1588 (13)1.0646 (11)0.013 (4)*0.121 (5)
H2AA0.16790.21491.00520.015*0.121 (5)
H2AB0.13510.17811.11740.015*0.121 (5)
O1W0.5554 (2)0.45065 (14)0.83503 (12)0.0176 (3)
H1WA0.513 (4)0.425 (2)0.7954 (17)0.026*
H1WB0.570 (4)0.5230 (16)0.7977 (17)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0141 (3)0.0132 (4)0.0172 (4)0.0001 (3)0.0025 (3)0.0054 (3)
O11W0.0259 (9)0.0244 (10)0.0417 (11)0.0086 (7)0.0184 (8)0.0201 (9)
O12W0.0231 (8)0.0160 (8)0.0226 (9)0.0017 (6)0.0104 (7)0.0069 (7)
O13W0.0153 (8)0.0183 (8)0.0168 (8)0.0017 (6)0.0019 (6)0.0059 (7)
O14W0.0169 (8)0.0446 (11)0.0475 (12)0.0042 (7)0.0091 (8)0.0373 (10)
O15W0.0291 (9)0.0134 (8)0.0308 (10)0.0017 (7)0.0097 (7)0.0063 (8)
O16W0.0292 (10)0.0135 (9)0.0625 (14)0.0010 (7)0.0235 (9)0.0075 (9)
Mg20.0114 (5)0.0162 (5)0.0142 (5)0.0001 (4)0.0030 (4)0.0039 (4)
O21W0.0181 (8)0.0371 (10)0.0341 (10)0.0073 (7)0.0101 (7)0.0251 (9)
O22W0.0182 (8)0.0321 (10)0.0269 (10)0.0085 (7)0.0083 (7)0.0089 (8)
O23W0.0152 (8)0.0301 (10)0.0141 (9)0.0049 (6)0.0028 (6)0.0039 (7)
S10.0142 (2)0.0126 (3)0.0179 (3)0.00057 (17)0.0040 (2)0.0063 (2)
O110.0326 (9)0.0173 (8)0.0186 (9)0.0025 (6)0.0019 (7)0.0075 (7)
O120.0182 (8)0.0182 (8)0.0321 (10)0.0048 (6)0.0013 (7)0.0122 (7)
O130.0232 (8)0.0145 (8)0.0379 (10)0.0051 (6)0.0172 (7)0.0113 (7)
O140.0189 (7)0.0137 (8)0.0197 (8)0.0004 (5)0.0029 (6)0.0078 (6)
S20.0123 (2)0.0130 (3)0.0146 (3)0.00053 (17)0.00170 (19)0.0050 (2)
O210.0160 (7)0.0154 (8)0.0199 (8)0.0002 (5)0.0022 (6)0.0086 (7)
O220.0190 (8)0.0139 (8)0.0199 (8)0.0008 (5)0.0060 (6)0.0032 (7)
O230.0137 (7)0.0210 (8)0.0198 (8)0.0036 (6)0.0011 (6)0.0093 (7)
O240.0149 (7)0.0206 (8)0.0151 (8)0.0007 (6)0.0006 (6)0.0053 (7)
N10.0199 (10)0.0190 (10)0.0264 (11)0.0028 (7)0.0049 (8)0.0006 (9)
C20.0113 (10)0.0327 (14)0.0206 (12)0.0045 (9)0.0016 (9)0.0042 (11)
N20.0266 (12)0.0179 (12)0.0197 (12)0.0020 (8)0.0012 (9)0.0073 (10)
C30.0192 (12)0.0244 (13)0.0286 (14)0.0005 (9)0.0021 (10)0.0006 (11)
C40.0216 (12)0.0312 (14)0.0216 (13)0.0033 (9)0.0020 (10)0.0031 (11)
C50.0223 (12)0.0386 (15)0.0218 (13)0.0061 (10)0.0026 (10)0.0041 (12)
C60.0223 (12)0.0313 (15)0.0257 (14)0.0043 (9)0.0049 (10)0.0093 (11)
O1W0.0197 (8)0.0169 (8)0.0173 (9)0.0029 (6)0.0049 (6)0.0058 (7)
Geometric parameters (Å, º) top
Mg1—O11W2.069 (2)O23W—H23B0.824 (17)
Mg1—O12W2.0695 (19)S1—O111.4836 (17)
Mg1—O13W2.1321 (18)S1—O121.4774 (16)
Mg1—O14W2.0178 (19)S1—O131.4661 (16)
Mg1—O15W2.036 (2)S1—O141.4794 (15)
Mg1—O16W2.023 (2)S2—O211.4845 (15)
O11W—H11A0.808 (17)S2—O221.4735 (16)
O11W—H11B0.810 (17)S2—O231.4733 (15)
O12W—H12A0.821 (17)S2—O241.4834 (16)
O12W—H12B0.822 (17)N1—H10.8600
O13W—H13A0.831 (16)N1—C21.352 (3)
O13W—H13B0.815 (16)N1—C61.359 (3)
O14W—H14A0.830 (17)C2—H20.9300
O14W—H14B0.840 (17)C2—N21.314 (3)
O15W—H15A0.843 (17)C2—C31.409 (3)
O15W—H15B0.831 (17)N2—H2A0.8600
O16W—H16A0.845 (18)N2—H2B0.8600
O16W—H16B0.846 (18)C3—H30.9300
Mg2—O21W2.0471 (17)C3—C41.367 (4)
Mg2—O21Wi2.0471 (17)C4—H40.9300
Mg2—O22Wi2.0961 (19)C4—C51.401 (4)
Mg2—O22W2.0961 (19)C5—H50.9300
Mg2—O23Wi2.0391 (17)C5—C61.360 (4)
Mg2—O23W2.0391 (17)C6—H60.9300
O21W—H21A0.825 (17)C6—N2A1.093 (14)
O21W—H21B0.816 (17)N2A—H2AA0.8600
O22W—H22A0.813 (17)N2A—H2AB0.8600
O22W—H22B0.841 (17)O1W—H1WA0.822 (16)
O23W—H23A0.821 (17)O1W—H1WB0.829 (16)
O11W—Mg1—O12W174.72 (7)Mg2—O21W—H21B129 (2)
O11W—Mg1—O13W86.78 (7)H21A—O21W—H21B105 (3)
O12W—Mg1—O13W98.30 (7)Mg2—O22W—H22A126 (2)
O14W—Mg1—O11W89.41 (8)Mg2—O22W—H22B128 (2)
O14W—Mg1—O12W85.60 (8)H22A—O22W—H22B105 (3)
O14W—Mg1—O13W174.89 (8)Mg2—O23W—H23A120.2 (19)
O14W—Mg1—O15W89.96 (8)Mg2—O23W—H23B126.7 (19)
O14W—Mg1—O16W92.37 (9)H23A—O23W—H23B113 (3)
O15W—Mg1—O11W96.46 (9)O12—S1—O11107.82 (10)
O15W—Mg1—O12W85.29 (8)O12—S1—O14110.69 (9)
O15W—Mg1—O13W87.08 (7)O13—S1—O11108.86 (10)
O16W—Mg1—O11W90.37 (9)O13—S1—O12109.67 (10)
O16W—Mg1—O12W88.10 (8)O13—S1—O14110.53 (9)
O16W—Mg1—O13W91.06 (8)O14—S1—O11109.20 (9)
O16W—Mg1—O15W172.81 (9)O22—S2—O21109.23 (9)
Mg1—O11W—H11A126 (2)O22—S2—O24108.69 (9)
Mg1—O11W—H11B124 (2)O23—S2—O21109.36 (8)
H11A—O11W—H11B110 (3)O23—S2—O22111.04 (9)
Mg1—O12W—H12A122.0 (18)O23—S2—O24110.01 (9)
Mg1—O12W—H12B121.8 (18)O24—S2—O21108.47 (9)
H12A—O12W—H12B104 (3)C2—N1—H1118.6
Mg1—O13W—H13A111.6 (17)C2—N1—C6122.7 (2)
Mg1—O13W—H13B117.3 (18)C6—N1—H1118.6
H13A—O13W—H13B106 (2)N1—C2—H2121.0
Mg1—O14W—H14A129 (2)N1—C2—C3118.0 (2)
Mg1—O14W—H14B123 (2)N2—C2—N1117.7 (2)
H14A—O14W—H14B108 (3)N2—C2—C3124.3 (2)
Mg1—O15W—H15A135.0 (19)C3—C2—H2121.0
Mg1—O15W—H15B117 (2)C2—N2—H2A120.0
H15A—O15W—H15B106 (3)C2—N2—H2B120.0
Mg1—O16W—H16A127 (2)H2A—N2—H2B120.0
Mg1—O16W—H16B125 (2)C2—C3—H3120.3
H16A—O16W—H16B108 (3)C4—C3—C2119.4 (2)
O21Wi—Mg2—O21W180.0C4—C3—H3120.3
O21Wi—Mg2—O22Wi89.74 (8)C3—C4—H4119.4
O21Wi—Mg2—O22W90.26 (8)C3—C4—C5121.1 (2)
O21W—Mg2—O22Wi90.26 (8)C5—C4—H4119.4
O21W—Mg2—O22W89.73 (8)C4—C5—H5120.9
O22Wi—Mg2—O22W180.00 (8)C6—C5—C4118.2 (2)
O23Wi—Mg2—O21W90.06 (7)C6—C5—H5120.9
O23W—Mg2—O21Wi90.06 (7)N1—C6—C5120.6 (2)
O23W—Mg2—O21W89.94 (7)N1—C6—H6119.7
O23Wi—Mg2—O21Wi89.94 (7)C5—C6—H6119.7
O23W—Mg2—O22W89.59 (8)N2A—C6—N1105.2 (8)
O23W—Mg2—O22Wi90.41 (8)N2A—C6—C5134.1 (8)
O23Wi—Mg2—O22W90.41 (8)C6—N2A—H2AA120.0
O23Wi—Mg2—O22Wi89.59 (8)C6—N2A—H2AB120.0
O23W—Mg2—O23Wi180.0H2AA—N2A—H2AB120.0
Mg2—O21W—H21A126 (2)H1WA—O1W—H1WB99 (2)
N1—C2—C3—C40.6 (3)C3—C4—C5—C60.5 (3)
C2—N1—C6—C50.6 (3)C4—C5—C6—N10.2 (3)
C2—N1—C6—N2A176.8 (7)C4—C5—C6—N2A176.3 (10)
C2—C3—C4—C50.9 (3)C6—N1—C2—N2179.9 (2)
N2—C2—C3—C4179.2 (2)C6—N1—C2—C30.1 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O13Wii0.81 (2)2.19 (2)2.977 (2)164 (3)
O11W—H11B···O14iii0.81 (2)2.06 (2)2.873 (2)177 (3)
O12W—H12A···O210.82 (2)1.90 (2)2.722 (2)176 (3)
O12W—H12B···O12iv0.82 (2)2.07 (2)2.867 (2)165 (3)
O13W—H13A···O23iii0.83 (2)1.98 (2)2.809 (2)173 (3)
O13W—H13B···O220.82 (2)1.94 (2)2.750 (2)174 (3)
O14W—H14A···O13iii0.83 (2)1.83 (2)2.658 (2)172 (3)
O14W—H14B···O120.84 (2)1.88 (2)2.713 (2)175 (3)
O15W—H15A···O22v0.84 (2)1.88 (2)2.701 (2)165 (3)
O15W—H15B···O140.83 (2)1.96 (2)2.783 (2)174 (3)
O16W—H16A···O21iii0.85 (2)1.85 (2)2.698 (2)178 (3)
O16W—H16B···O13iv0.85 (2)1.88 (2)2.714 (2)172 (3)
O21W—H21A···O11iv0.83 (2)1.94 (2)2.758 (2)173 (3)
O21W—H21B···O1Wvi0.82 (2)1.98 (2)2.783 (2)171 (3)
O22W—H22A···O23iii0.81 (2)2.12 (2)2.912 (3)166 (3)
O22W—H22B···O240.84 (2)2.05 (2)2.876 (2)170 (3)
O23W—H23A···O1Wiv0.82 (2)1.90 (2)2.711 (2)173 (3)
O23W—H23B···O24vii0.82 (2)1.94 (2)2.752 (2)170 (3)
N1—H1···O110.861.842.697 (3)175
N2—H2A···O140.862.102.957 (3)174
N2—H2B···O24v0.862.182.999 (3)158
O1W—H1WA···O120.82 (2)2.04 (2)2.850 (2)169 (2)
O1W—H1WB···O21iv0.83 (2)1.89 (2)2.716 (2)172 (3)
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z.
(IV) Bis(2-aminopyridinium) hexaaquanickel(II) bis(sulfate) top
Crystal data top
(C5H7N2)2[Ni(H2O)6](SO4)2Z = 1
Mr = 549.18F(000) = 286
Triclinic, P1Dx = 1.710 Mg m3
a = 6.970 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.913 (3) ÅCell parameters from 6242 reflections
c = 11.391 (4) Åθ = 3.0–29.1°
α = 72.31 (3)°µ = 1.18 mm1
β = 89.57 (3)°T = 100 K
γ = 64.20 (3)°Block, light green
V = 533.2 (4) Å30.15 × 0.12 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
2662 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.6249 pixels mm-1θmax = 29.6°, θmin = 3.0°
ω scansh = 99
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1011
Tmin = 0.879, Tmax = 0.909l = 1515
11780 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.022P)2 + 0.338P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2662 reflectionsΔρmax = 0.31 e Å3
160 parametersΔρmin = 0.44 e Å3
Crystal data top
(C5H7N2)2[Ni(H2O)6](SO4)2γ = 64.20 (3)°
Mr = 549.18V = 533.2 (4) Å3
Triclinic, P1Z = 1
a = 6.970 (3) ÅMo Kα radiation
b = 7.913 (3) ŵ = 1.18 mm1
c = 11.391 (4) ÅT = 100 K
α = 72.31 (3)°0.15 × 0.12 × 0.1 mm
β = 89.57 (3)°
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
2662 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
2341 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.909Rint = 0.026
11780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
2662 reflectionsΔρmin = 0.44 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.01038 (8)
O1W0.81801 (19)0.79924 (18)0.06654 (11)0.0149 (2)
H1WA0.836 (3)0.687 (2)0.1100 (18)0.022*
H1WB0.912 (3)0.782 (3)0.0206 (18)0.022*
O2W0.40209 (19)0.78550 (17)0.07618 (11)0.0143 (2)
H2WA0.504 (3)0.674 (2)0.1164 (18)0.021*
H2WB0.323 (3)0.769 (3)0.0309 (18)0.021*
O3W0.51634 (19)0.95526 (18)0.16941 (11)0.0149 (2)
H3WA0.448 (3)0.903 (3)0.1925 (19)0.022*
H3WB0.639 (3)0.908 (3)0.1889 (19)0.022*
S10.86679 (6)0.26220 (6)0.19837 (3)0.01136 (9)
O10.78367 (19)0.46560 (17)0.20867 (11)0.0165 (2)
O20.84333 (19)0.28270 (18)0.06561 (10)0.0171 (2)
O30.74195 (18)0.16573 (17)0.26770 (11)0.0158 (2)
O41.09523 (18)0.14692 (17)0.25389 (10)0.0149 (2)
N10.7453 (2)0.5110 (2)0.43941 (13)0.0147 (3)
H10.74280.50000.36670.018*
C20.7799 (3)0.3513 (2)0.53979 (15)0.0139 (3)
N20.8077 (2)0.1831 (2)0.52350 (13)0.0176 (3)
H2A0.80350.17680.44960.021*
H2B0.82980.08060.58690.021*
C30.7865 (3)0.3701 (3)0.65929 (15)0.0172 (3)
H30.81240.26250.73050.021*
C40.7541 (3)0.5491 (3)0.66851 (17)0.0199 (4)
H40.75670.56300.74660.024*
C50.7170 (3)0.7119 (3)0.56133 (17)0.0209 (4)
H50.69490.83320.56790.025*
C60.7140 (3)0.6890 (3)0.44846 (17)0.0185 (3)
H60.69060.79500.37670.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01129 (15)0.01018 (15)0.00950 (14)0.00459 (12)0.00164 (10)0.00349 (11)
O1W0.0136 (6)0.0133 (6)0.0144 (6)0.0046 (5)0.0030 (5)0.0027 (5)
O2W0.0156 (6)0.0134 (6)0.0142 (6)0.0076 (5)0.0001 (5)0.0035 (5)
O3W0.0141 (6)0.0198 (6)0.0151 (6)0.0091 (5)0.0042 (5)0.0093 (5)
S10.01211 (19)0.01263 (19)0.00994 (18)0.00585 (16)0.00185 (14)0.00423 (14)
O10.0198 (6)0.0120 (6)0.0157 (6)0.0053 (5)0.0027 (5)0.0048 (5)
O20.0183 (6)0.0259 (7)0.0112 (5)0.0125 (5)0.0032 (4)0.0079 (5)
O30.0162 (6)0.0200 (6)0.0149 (6)0.0113 (5)0.0038 (5)0.0061 (5)
O40.0130 (6)0.0168 (6)0.0142 (5)0.0067 (5)0.0015 (4)0.0043 (5)
N10.0153 (7)0.0158 (7)0.0114 (6)0.0058 (6)0.0011 (5)0.0044 (5)
C20.0101 (7)0.0165 (8)0.0144 (7)0.0052 (6)0.0024 (6)0.0055 (6)
N20.0224 (7)0.0178 (7)0.0129 (7)0.0095 (6)0.0031 (6)0.0050 (6)
C30.0163 (8)0.0216 (9)0.0118 (7)0.0079 (7)0.0026 (6)0.0043 (7)
C40.0153 (8)0.0275 (10)0.0185 (8)0.0075 (7)0.0016 (7)0.0132 (7)
C50.0166 (8)0.0183 (9)0.0286 (9)0.0066 (7)0.0000 (7)0.0108 (7)
C60.0149 (8)0.0143 (8)0.0224 (9)0.0046 (7)0.0005 (7)0.0040 (7)
Geometric parameters (Å, º) top
Ni1—O1W2.0590 (17)S1—O41.4722 (14)
Ni1—O1Wi2.0590 (17)N1—H10.8600
Ni1—O2Wi2.0503 (14)N1—C21.350 (2)
Ni1—O2W2.0503 (13)N1—C61.365 (2)
Ni1—O3W2.0588 (13)C2—N21.331 (2)
Ni1—O3Wi2.0588 (13)C2—C31.417 (2)
O1W—H1WA0.830 (15)N2—H2A0.8600
O1W—H1WB0.825 (15)N2—H2B0.8600
O2W—H2WA0.841 (15)C3—H30.9300
O2W—H2WB0.832 (15)C3—C41.371 (3)
O3W—H3WA0.839 (15)C4—H40.9300
O3W—H3WB0.829 (15)C4—C51.406 (3)
S1—O11.4973 (13)C5—H50.9300
S1—O21.4737 (13)C5—C61.354 (3)
S1—O31.4714 (13)C6—H60.9300
O1Wi—Ni1—O1W180.0O3—S1—O2111.20 (7)
O2W—Ni1—O1W91.67 (6)O3—S1—O4109.79 (8)
O2Wi—Ni1—O1Wi91.67 (6)O4—S1—O1108.40 (7)
O2Wi—Ni1—O1W88.33 (6)O4—S1—O2110.39 (8)
O2W—Ni1—O1Wi88.33 (6)C2—N1—H1118.6
O2Wi—Ni1—O2W180.0C2—N1—C6122.79 (15)
O2W—Ni1—O3Wi87.04 (5)C6—N1—H1118.6
O2Wi—Ni1—O3W87.04 (5)N1—C2—C3118.16 (15)
O2Wi—Ni1—O3Wi92.96 (5)N2—C2—N1119.33 (15)
O2W—Ni1—O3W92.96 (5)N2—C2—C3122.50 (15)
O3W—Ni1—O1W93.37 (6)C2—N2—H2A120.0
O3Wi—Ni1—O1Wi93.37 (6)C2—N2—H2B120.0
O3W—Ni1—O1Wi86.63 (6)H2A—N2—H2B120.0
O3Wi—Ni1—O1W86.63 (6)C2—C3—H3120.4
O3Wi—Ni1—O3W180.000 (10)C4—C3—C2119.10 (16)
Ni1—O1W—H1WA113.6 (14)C4—C3—H3120.4
Ni1—O1W—H1WB122.0 (15)C3—C4—H4119.6
H1WA—O1W—H1WB107 (2)C3—C4—C5120.78 (16)
Ni1—O2W—H2WA113.4 (14)C5—C4—H4119.6
Ni1—O2W—H2WB118.8 (14)C4—C5—H5120.6
H2WA—O2W—H2WB109 (2)C6—C5—C4118.80 (17)
Ni1—O3W—H3WA122.5 (14)C6—C5—H5120.6
Ni1—O3W—H3WB115.8 (15)N1—C6—H6119.8
H3WA—O3W—H3WB108 (2)C5—C6—N1120.34 (16)
O2—S1—O1108.62 (8)C5—C6—H6119.8
O3—S1—O1108.37 (7)
N1—C2—C3—C41.1 (2)C3—C4—C5—C60.1 (3)
C2—N1—C6—C50.1 (2)C4—C5—C6—N10.4 (3)
C2—C3—C4—C50.7 (2)C6—N1—C2—N2179.58 (15)
N2—C2—C3—C4179.32 (15)C6—N1—C2—C30.8 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.83 (2)1.95 (2)2.756 (2)163 (2)
O1W—H1WB···O2ii0.83 (2)1.91 (2)2.732 (2)172 (2)
O2W—H2WA···O10.84 (2)1.95 (2)2.764 (2)162 (2)
O2W—H2WB···O2iii0.83 (2)1.85 (2)2.6834 (18)177 (2)
O3W—H3WA···O3iii0.84 (2)1.93 (2)2.7556 (18)169 (2)
O3W—H3WB···O4ii0.83 (2)1.91 (2)2.727 (2)168 (2)
N1—H1···O10.861.902.755 (2)171
N2—H2A···O30.862.153.006 (2)171
N2—H2B···O4iv0.862.002.858 (2)172
C6—H6···O3Wi0.932.513.363 (3)153
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y, z+1.
(V) Bis(2-aminopyridinium) hexaaquazinc(II) bis(sulfate) top
Crystal data top
(C5H7N2)2[Zn(H2O)6](SO4)2Z = 1
Mr = 555.84F(000) = 288
Triclinic, P1Dx = 1.715 Mg m3
a = 6.977 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.929 (3) ÅCell parameters from 3000 reflections
c = 11.441 (4) Åθ = 3.0–28.3°
α = 72.25 (3)°µ = 1.41 mm1
β = 89.53 (3)°T = 100 K
γ = 64.45 (3)°Plate, colourless
V = 538.2 (4) Å30.33 × 0.25 × 0.07 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
2563 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.6249 pixels mm-1θmax = 29.7°, θmin = 3.0°
ω scansh = 98
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1010
Tmin = 0.694, Tmax = 0.921l = 1514
7323 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.023P)2 + 0.501P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2563 reflectionsΔρmax = 0.38 e Å3
160 parametersΔρmin = 0.56 e Å3
Crystal data top
(C5H7N2)2[Zn(H2O)6](SO4)2γ = 64.45 (3)°
Mr = 555.84V = 538.2 (4) Å3
Triclinic, P1Z = 1
a = 6.977 (3) ÅMo Kα radiation
b = 7.929 (3) ŵ = 1.41 mm1
c = 11.441 (4) ÅT = 100 K
α = 72.25 (3)°0.33 × 0.25 × 0.07 mm
β = 89.53 (3)°
Data collection top
Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
2563 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
2120 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.921Rint = 0.032
7323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.38 e Å3
2563 reflectionsΔρmin = 0.56 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50001.00000.00000.01411 (12)
O1W0.8228 (3)0.7965 (3)0.06621 (16)0.0178 (4)
H1WA0.840 (5)0.684 (3)0.108 (2)0.027*
H1WB0.919 (4)0.781 (4)0.020 (2)0.027*
O2W0.4015 (3)0.7817 (3)0.07706 (16)0.0166 (4)
H2WA0.508 (4)0.678 (3)0.114 (2)0.025*
H2WB0.327 (4)0.763 (4)0.031 (2)0.025*
O3W0.5158 (3)0.9549 (3)0.17208 (16)0.0181 (4)
H3WA0.443 (4)0.913 (4)0.200 (3)0.027*
H3WB0.636 (3)0.915 (4)0.195 (3)0.027*
S10.86634 (10)0.26278 (9)0.19970 (5)0.01418 (15)
O10.7842 (3)0.4652 (3)0.21008 (16)0.0189 (4)
O20.8423 (3)0.2834 (3)0.06753 (15)0.0197 (4)
O30.7418 (3)0.1661 (3)0.26976 (15)0.0181 (4)
O41.0947 (3)0.1480 (3)0.25429 (15)0.0179 (4)
N10.7456 (3)0.5091 (3)0.44013 (19)0.0169 (4)
H10.74260.49840.36770.020*
C20.7808 (4)0.3492 (4)0.5403 (2)0.0160 (5)
N20.8090 (3)0.1814 (3)0.52404 (19)0.0188 (5)
H2A0.80470.17530.45040.023*
H2B0.83150.07900.58720.023*
C30.7865 (4)0.3698 (4)0.6584 (2)0.0187 (5)
H30.81150.26280.72950.022*
C40.7552 (4)0.5472 (4)0.6681 (2)0.0216 (6)
H40.75890.56060.74590.026*
C50.7172 (4)0.7100 (4)0.5609 (3)0.0229 (6)
H50.69440.83140.56710.027*
C60.7147 (4)0.6865 (4)0.4490 (2)0.0201 (6)
H60.69160.79210.37750.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0148 (2)0.0157 (2)0.0116 (2)0.00715 (17)0.00165 (15)0.00385 (16)
O1W0.0166 (9)0.0184 (10)0.0147 (9)0.0068 (8)0.0032 (7)0.0023 (8)
O2W0.0166 (10)0.0178 (10)0.0151 (9)0.0089 (8)0.0013 (7)0.0030 (8)
O3W0.0170 (10)0.0258 (10)0.0156 (9)0.0118 (8)0.0037 (7)0.0093 (8)
S10.0151 (3)0.0168 (3)0.0112 (3)0.0079 (3)0.0016 (2)0.0044 (2)
O10.0220 (10)0.0168 (9)0.0166 (9)0.0078 (8)0.0026 (7)0.0052 (7)
O20.0194 (9)0.0301 (11)0.0132 (9)0.0136 (8)0.0040 (7)0.0085 (8)
O30.0184 (9)0.0244 (10)0.0165 (9)0.0135 (8)0.0047 (7)0.0077 (8)
O40.0160 (9)0.0220 (10)0.0150 (9)0.0091 (8)0.0013 (7)0.0043 (7)
N10.0165 (11)0.0220 (12)0.0115 (10)0.0078 (9)0.0015 (8)0.0058 (9)
C20.0115 (12)0.0188 (13)0.0162 (12)0.0063 (10)0.0020 (9)0.0048 (10)
N20.0252 (12)0.0203 (12)0.0112 (10)0.0113 (10)0.0036 (9)0.0045 (9)
C30.0152 (13)0.0237 (14)0.0162 (13)0.0085 (11)0.0025 (10)0.0059 (11)
C40.0170 (13)0.0308 (16)0.0204 (13)0.0104 (12)0.0029 (10)0.0135 (12)
C50.0194 (14)0.0225 (15)0.0274 (15)0.0088 (12)0.0007 (11)0.0102 (12)
C60.0159 (13)0.0169 (14)0.0225 (14)0.0060 (11)0.0019 (10)0.0022 (11)
Geometric parameters (Å, º) top
Zn1—O1Wi2.097 (2)S1—O41.475 (2)
Zn1—O1W2.097 (2)N1—H10.8600
Zn1—O2W2.0813 (19)N1—C21.353 (3)
Zn1—O2Wi2.0813 (19)N1—C61.364 (3)
Zn1—O3W2.0996 (18)C2—N21.330 (3)
Zn1—O3Wi2.0996 (18)C2—C31.413 (3)
O1W—H1WA0.828 (17)N2—H2A0.8600
O1W—H1WB0.844 (17)N2—H2B0.8600
O2W—H2WA0.820 (17)C3—H30.9300
O2W—H2WB0.833 (17)C3—C41.367 (4)
O3W—H3WA0.823 (17)C4—H40.9300
O3W—H3WB0.828 (17)C4—C51.410 (4)
S1—O11.4971 (18)C5—H50.9300
S1—O21.4736 (18)C5—C61.350 (4)
S1—O31.4744 (18)C6—H60.9300
O1Wi—Zn1—O1W180.0O2—S1—O4110.26 (11)
O1W—Zn1—O3Wi86.88 (8)O3—S1—O1108.21 (10)
O1W—Zn1—O3W93.12 (8)O3—S1—O4109.74 (11)
O1Wi—Zn1—O3Wi93.12 (8)O4—S1—O1108.48 (11)
O1Wi—Zn1—O3W86.88 (8)C2—N1—H1118.5
O2W—Zn1—O1Wi88.54 (8)C2—N1—C6122.9 (2)
O2W—Zn1—O1W91.46 (8)C6—N1—H1118.5
O2Wi—Zn1—O1W88.54 (8)N1—C2—C3117.6 (2)
O2Wi—Zn1—O1Wi91.46 (8)N2—C2—N1119.4 (2)
O2W—Zn1—O2Wi180.0N2—C2—C3123.1 (2)
O2W—Zn1—O3Wi87.20 (7)C2—N2—H2A120.0
O2Wi—Zn1—O3Wi92.80 (7)C2—N2—H2B120.0
O2W—Zn1—O3W92.80 (7)H2A—N2—H2B120.0
O2Wi—Zn1—O3W87.20 (7)C2—C3—H3120.1
O3Wi—Zn1—O3W180.000 (15)C4—C3—C2119.9 (2)
Zn1—O1W—H1WA113 (2)C4—C3—H3120.1
Zn1—O1W—H1WB122 (2)C3—C4—H4119.8
H1WA—O1W—H1WB107 (3)C3—C4—C5120.4 (2)
Zn1—O2W—H2WA108 (2)C5—C4—H4119.8
Zn1—O2W—H2WB118 (2)C4—C5—H5120.6
H2WA—O2W—H2WB111 (3)C6—C5—C4118.7 (3)
Zn1—O3W—H3WA125 (2)C6—C5—H5120.6
Zn1—O3W—H3WB117 (2)N1—C6—H6119.7
H3WA—O3W—H3WB110 (3)C5—C6—N1120.5 (2)
O2—S1—O1108.64 (11)C5—C6—H6119.7
O2—S1—O3111.43 (10)
N1—C2—C3—C40.5 (4)C3—C4—C5—C60.7 (4)
C2—N1—C6—C50.3 (4)C4—C5—C6—N10.8 (4)
C2—C3—C4—C50.0 (4)C6—N1—C2—N2179.8 (2)
N2—C2—C3—C4179.7 (2)C6—N1—C2—C30.4 (3)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.83 (2)1.97 (2)2.765 (3)162 (3)
O1W—H1WB···O2ii0.84 (2)1.89 (2)2.731 (3)172 (3)
O2W—H2WA···O10.82 (2)1.97 (2)2.775 (3)169 (3)
O2W—H2WB···O2iii0.83 (2)1.85 (2)2.687 (3)178 (3)
O3W—H3WA···O3iii0.82 (2)1.93 (2)2.752 (3)176 (3)
O3W—H3WB···O4ii0.83 (2)1.91 (2)2.729 (3)174 (3)
N1—H1···O10.861.902.754 (3)171
N2—H2A···O30.862.152.997 (3)171
N2—H2B···O4iv0.862.012.860 (3)173
C6—H6···O3Wi0.932.513.370 (4)153
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula(C5H7N2)[Al(H2O)6](SO4)2·4H2O(C5H7N2)2[Co(H2O)6]3(SO4)4·2H2O(C5H7N2)2[Mg(H2O)6]3(SO4)4·2H2O
Mr494.381111.601007.74
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)100100100
a, b, c (Å)6.667 (3), 12.160 (4), 12.911 (4)6.640 (3), 11.710 (4), 14.294 (4)6.682 (3), 11.807 (4), 14.309 (4)
α, β, γ (°)72.30 (3), 81.03 (3), 85.57 (3)67.97 (3), 81.57 (3), 85.39 (3)68.23 (3), 82.13 (3), 84.76 (3)
V3)984.5 (7)1018.8 (7)1037.5 (7)
Z211
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.411.530.39
Crystal size (mm)0.50 × 0.33 × 0.200.42 × 0.27 × 0.080.43 × 0.36 × 0.23
Data collection
DiffractometerRigaku Oxford Diffraction Xcalibur AtlasRigaku Oxford Diffraction Xcalibur AtlasRigaku Oxford Diffraction Xcalibur Atlas
Absorption correctionAnalytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.869, 0.9300.609, 0.8910.892, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
14826, 4751, 3685 14070, 4878, 4072 11467, 4884, 3875
Rint0.0270.0250.026
(sin θ/λ)max1)0.6910.6950.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.02 0.031, 0.069, 1.06 0.040, 0.089, 1.03
No. of reflections475148784884
No. of parameters316321324
No. of restraints202020
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.620.42, 0.440.45, 0.40


(IV)(V)
Crystal data
Chemical formula(C5H7N2)2[Ni(H2O)6](SO4)2(C5H7N2)2[Zn(H2O)6](SO4)2
Mr549.18555.84
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)100100
a, b, c (Å)6.970 (3), 7.913 (3), 11.391 (4)6.977 (3), 7.929 (3), 11.441 (4)
α, β, γ (°)72.31 (3), 89.57 (3), 64.20 (3)72.25 (3), 89.53 (3), 64.45 (3)
V3)533.2 (4)538.2 (4)
Z11
Radiation typeMo KαMo Kα
µ (mm1)1.181.41
Crystal size (mm)0.15 × 0.12 × 0.10.33 × 0.25 × 0.07
Data collection
DiffractometerRigaku Oxford Diffraction Xcalibur AtlasRigaku Oxford Diffraction Xcalibur Atlas
Absorption correctionAnalytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.879, 0.9090.694, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
11780, 2662, 2341 7323, 2563, 2120
Rint0.0260.032
(sin θ/λ)max1)0.6950.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.060, 1.07 0.037, 0.078, 1.08
No. of reflections26622563
No. of parameters160160
No. of restraints66
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.440.38, 0.56

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXT (Sheldrick, 2015a), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1997), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O4W0.821 (15)1.810 (15)2.626 (2)173 (2)
O11W—H11B···O21iii0.841 (15)1.885 (16)2.715 (2)168 (2)
O12W—H12A···O14iv0.859 (15)1.791 (16)2.648 (2)175 (2)
O12W—H12B···O220.833 (15)1.800 (16)2.628 (2)173 (2)
O13W—H13A···O21i0.842 (15)1.884 (16)2.711 (2)167 (2)
O13W—H13B···O130.839 (15)1.783 (15)2.6144 (18)171 (2)
O21W—H21A···O130.833 (15)1.843 (16)2.667 (2)170 (2)
O21W—H21B···O23iii0.852 (15)1.770 (16)2.622 (2)180 (3)
O22W—H22A···O1Wii0.850 (15)1.760 (16)2.606 (2)173 (2)
O22W—H22B···O12v0.830 (15)1.819 (16)2.647 (2)175 (2)
O23W—H23A···O120.837 (15)1.913 (16)2.740 (2)169 (2)
O23W—H23B···O22ii0.825 (15)1.847 (16)2.6660 (18)172 (2)
N1—H1···O240.861.872.711 (2)164
N2—H2A···O230.862.092.944 (2)176
N2—H2B···O11ii0.862.042.856 (2)159
C6—H6···O1Wvi0.932.303.127 (2)147
O1W—H1WA···O110.841 (15)1.959 (16)2.792 (2)170 (2)
O1W—H1WB···O2W0.849 (16)1.920 (16)2.768 (2)177 (2)
O2W—H2WA···O11iv0.825 (16)2.089 (18)2.864 (2)156 (2)
O2W—H2WB···O3Wvii0.800 (16)2.016 (16)2.812 (2)173 (2)
O3W—H3WA···O14i0.831 (16)2.250 (17)3.069 (2)169 (2)
O3W—H3WB···O240.836 (16)1.942 (16)2.7609 (19)166 (2)
O4W—H4WA···O3W0.845 (16)2.099 (17)2.929 (2)167 (2)
O4W—H4WB···O2Wi0.808 (16)2.044 (16)2.849 (2)175 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x, y, z1; (vii) x, y, z+1.
ππ stacking interactions top
CompoundCgICgJDistance between ring centroids (Å)Perpendicular distance between rings (Å)Offset (Å)
(I)Cg1Cg1i4.130 (2)3.0792 (8)2.753
(I)Cg1Cg1ii3.454 (2)3.2134 (8)1.265
(II)Cg1Cg1iii3.634 (2)3.2118 (8)1.700
(II)Cg1Cg1iv3.706 (2)3.3228 (8)1.640
(III)Cg1Cg1iii3.677 (2)3.2564 (8)1.708
(III)Cg1Cg1iv3.666 (2)3.3574 (8)1.471
(IV)Cg1Cg1v3.955 (2)3.3426 (9)2.114
(IV)Cg1Cg1vi3.564 (2)3.3101 (9)1.321
(V)Cg1Cg1v3.950 (2)3.3531 (12)2.088
(V)Cg1Cg1vi3.569 (2)3.3166 (12)1.318
(VI)Cg1Cg1vi3.414 (3)3.4028 (15)0.276
(VI)Cg1Cg1vii3.958 (3)3.4079 (15)2.013
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z+2; (iv) -x+1, -y, -z+2; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+1, -z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O13Wii0.827 (17)2.139 (17)2.964 (2)175 (3)
O11W—H11B···O14iii0.813 (17)2.068 (17)2.881 (2)178 (3)
O12W—H12A···O210.838 (16)1.878 (17)2.711 (2)173 (3)
O12W—H12B···O12iv0.815 (16)2.090 (17)2.894 (3)169 (3)
O13W—H13A···O23iii0.819 (16)1.984 (17)2.800 (2)175 (2)
O13W—H13B···O220.819 (16)1.921 (17)2.735 (2)172 (3)
O14W—H14A···O13iii0.828 (17)1.853 (18)2.671 (2)169 (3)
O14W—H14B···O120.810 (17)1.934 (17)2.744 (2)179 (3)
O15W—H15A···O22v0.824 (17)1.899 (17)2.706 (2)166 (3)
O15W—H15B···O140.830 (16)1.928 (17)2.756 (2)177 (3)
O16W—H16A···O21iii0.840 (17)1.867 (18)2.699 (2)171 (3)
O16W—H16B···O13iv0.839 (17)1.864 (17)2.703 (2)179 (3)
O21W—H21A···O11iv0.817 (17)1.951 (18)2.766 (2)175 (3)
O21W—H21B···O1Wvi0.818 (17)1.953 (18)2.758 (2)168 (3)
O22W—H22A···O23iii0.804 (18)2.24 (2)2.959 (3)150 (3)
O22W—H22B···O240.837 (17)2.009 (19)2.835 (2)169 (3)
O23W—H23A···O1Wiv0.819 (17)1.901 (18)2.714 (2)171 (3)
O23W—H23B···O24vii0.811 (17)1.958 (18)2.759 (2)169 (3)
N1—H1···O110.861.852.701 (3)172
N2—H2A···O140.862.102.955 (3)173
N2—H2B···O24v0.862.122.959 (3)164
O1W—H1WA···O120.852.092.935 (2)175
O1W—H1WB···O21iv0.911.802.711 (2)171
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O11W—H11A···O13Wii0.808 (17)2.192 (19)2.977 (2)164 (3)
O11W—H11B···O14iii0.810 (17)2.063 (18)2.873 (2)177 (3)
O12W—H12A···O210.821 (17)1.903 (17)2.722 (2)176 (3)
O12W—H12B···O12iv0.822 (17)2.065 (18)2.867 (2)165 (3)
O13W—H13A···O23iii0.831 (16)1.982 (17)2.809 (2)173 (3)
O13W—H13B···O220.815 (16)1.938 (17)2.750 (2)174 (3)
O14W—H14A···O13iii0.830 (17)1.834 (18)2.658 (2)172 (3)
O14W—H14B···O120.840 (17)1.875 (18)2.713 (2)175 (3)
O15W—H15A···O22v0.843 (17)1.877 (18)2.701 (2)165 (3)
O15W—H15B···O140.831 (17)1.955 (17)2.783 (2)174 (3)
O16W—H16A···O21iii0.845 (18)1.853 (18)2.698 (2)178 (3)
O16W—H16B···O13iv0.846 (18)1.875 (19)2.714 (2)172 (3)
O21W—H21A···O11iv0.825 (17)1.937 (18)2.758 (2)173 (3)
O21W—H21B···O1Wvi0.816 (17)1.975 (18)2.783 (2)171 (3)
O22W—H22A···O23iii0.813 (17)2.116 (19)2.912 (3)166 (3)
O22W—H22B···O240.841 (17)2.045 (18)2.876 (2)170 (3)
O23W—H23A···O1Wiv0.821 (17)1.895 (17)2.711 (2)173 (3)
O23W—H23B···O24vii0.824 (17)1.936 (17)2.752 (2)170 (3)
N1—H1···O110.861.842.697 (3)174.9
N2—H2A···O140.862.102.957 (3)174.3
N2—H2B···O24v0.862.182.999 (3)158.2
O1W—H1WA···O120.822 (16)2.039 (17)2.850 (2)169 (2)
O1W—H1WB···O21iv0.829 (16)1.893 (17)2.716 (2)172 (3)
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.830 (15)1.953 (16)2.756 (2)163 (2)
O1W—H1WB···O2ii0.825 (15)1.913 (16)2.732 (2)172 (2)
O2W—H2WA···O10.841 (15)1.951 (16)2.764 (2)162 (2)
O2W—H2WB···O2iii0.832 (15)1.852 (16)2.6834 (18)177 (2)
O3W—H3WA···O3iii0.839 (15)1.927 (16)2.7556 (18)169 (2)
O3W—H3WB···O4ii0.829 (15)1.910 (16)2.727 (2)168 (2)
N1—H1···O10.861.902.755 (2)171.1
N2—H2A···O30.862.153.006 (2)170.8
N2—H2B···O4iv0.862.002.858 (2)172.3
C6—H6···O3Wi0.932.513.363 (3)152.8
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.828 (17)1.966 (19)2.765 (3)162 (3)
O1W—H1WB···O2ii0.844 (17)1.893 (18)2.731 (3)172 (3)
O2W—H2WA···O10.820 (17)1.966 (18)2.775 (3)169 (3)
O2W—H2WB···O2iii0.833 (17)1.854 (18)2.687 (3)178 (3)
O3W—H3WA···O3iii0.823 (17)1.930 (18)2.752 (3)176 (3)
O3W—H3WB···O4ii0.828 (17)1.905 (18)2.729 (3)174 (3)
N1—H1···O10.861.902.754 (3)171
N2—H2A···O30.862.152.997 (3)171
N2—H2B···O4iv0.862.012.860 (3)173
C6—H6···O3Wi0.932.513.370 (4)153
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds