Download citation
Download citation
link to html
The title compound, poly[[di­aqua-1[kappa]2O-tetra­kis­([mu]3-pyridine-2,3-di­carboxyl­ato)-2:1:2'[kappa]10N,O2:O2',O3:O3';2:1:2'[kappa]8O3:O3':N,O2-diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P\overline{1}) symmetry, was prepared by the reaction of pyridine-2,3-di­carb­oxy­lic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine-2,3-di­carboxyl­ate (pydc2-) ligand exhibits [mu]3-[eta]1,[eta]1:[eta]1:[eta]1 and [mu]3-[eta]1,[eta]1:[eta]1,[eta]1:[eta]1 coordination modes, bridging two FeIII cations and one SrII cation. The SrII cation, which is located on an inversion centre, is eight-coordinated by six O atoms of four pydc2- ligands and two water mol­ecules. The coordination geometry of the SrII cation can be best described as distorted dodeca­hedral. The FeIII cation is six-coordinated by O and N atoms of four pydc2- ligands in a slightly distorted octa­hedral geometry. Each FeIII cation bridges two neighbouring FeIII cations to form a one-dimensional [Fe2(pydc)4]n chain. The chains are connected by SrII cations to form a three-dimensional framework. The topology type of this framework is tfj. The structure displays O-H...O and C-H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016617/wq3100sup1.cif
Contains datablocks 1, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016617/wq3100Isup2.hkl
Contains datablock I

CCDC reference: 773745

Introduction top

Heterometallic coordination polymers containing both transition metals and alkaline earth metals are currently being widely investigated, due to the aesthetically pleasing architectures that many such complexes possess and for their potential applications in the fields of catalysis, materials science and biochemistry (Cao et al., 2008; Fromm, 2008; Harder, 2003; Zhang et al., 2012; Lin et al., 2003). However, the construction of these heterometallic coordination polymers is a significant challenge (Chen et al., 2014). Firstly, the alkaline earth metals prefer O- to N-atom donors, while transition metals ions prefer N- to O-atom donors. Secondly, the broad span of coordination numbers of alkaline earth metals makes the topologies of the resulting coordination polymers difficult to control. Some rare examples of Fe–Sr heterometallic coordination complexes have been reported (Xu et al., 2015; Herbert et al., 2013; Samanta et al., 2006; Prodius et al., 2006), and most of them are trinuclear (Samanta et al., 2006; Prodius et al., 2006) or tetra­nuclear complexes (Herbert et al., 2013), or one-dimensional chain structures (Xu et al., 2015). Until now, no Fe–Sr heterometallic coordination polymers have been reported.

As an N-heterocyclic carboxyl­ate ligand, pyridine-2,3-di­carboxyl­ate (pydc2-) provides one N atom and two carboxyl­ate groups to coordinate to metal ions. It can therefore coordinate with either transition metals or alkaline earth metals to form coordination complexes, as exemplified by two heterometallic complexes (Co–Ca–2,3-pydc and Co–Ba–2,3-pydc) reported by the Laza­rescu group (Laza­rescu et al., 2011) and five heterometallic SrIIMII–2,3-pydc (M = Co, Ni, Zn or Cu) three-dimensional coordination polymers reported by our group (Chen et al., 2014).

In our previous work, we have reported several series of Sr–transition metal (Chen et al., 2014, 2015) and Sr–Ln (Chen, et al., 2013) heterometallic coordination polymers based on N-heterocyclic carboxyl­ate ligands. In this report, we present the synthesis and crystal structure analysis of the first three-dimensional FeIII–SrII heterometallic coordination polymer, {[Fe2Sr(pydc)4(H2O)2]·2nH2O}n, (1) (see Scheme 1), in which the coordination modes of the pydc2- ligand are different from that reported previously (Chen et al., 2014).

Experimental top

Synthesis and crystallization top

A mixture of pyridine-2,3-di­carb­oxy­lic acid (0.0331 g, 0.2 mmol), SrCl2·6H2O (0.0264 g, 0.1 mmol), Fe(OAc)2(OH) (0.0167 g, 0.087 mmol), imidazole (0.0193 g, 0.284 mmol) and H2O–C2H5OH (2 ml, 2:1 v/v) was sealed in a Pyrex bottle (8 ml) and heated at 363 K for 2 d. The bottle was then cooled to room temperature, generating light-brown block-shaped crystals of (1) (yield 0.0093 g, 23%, based on Fe). Elemental analysis, calculated for C28H20Fe2N4O20Sr: C 36.09, H 2.16, N 6.01%; found: C 36.21, H 2.15, N 6.13%.

Refinement top

H atoms on pyridine C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined with restraints of O—H = 0.86 (1) Å and Uiso(H) = 1.5Ueq(O).

Results and discussion top

The asymmetric unit of (1) consists of two pydc2- ligands, one FeIII cation, half an SrII cation, one coordinated water molecule and a solvent water molecule (Fig. 1). There are four doubly deprotonated pydc2- ligands; two display a µ3-η1:η1:η1:η1 coordination mode and two exhibit a µ3-η1:η1:η1:η1:η1 mode (see Scheme 2). Each pydc2- ligand bridges two FeIII cations and one SrII cation. The FeIII cation is six-coordinated by one O atom (O5) and one N atom (N2) in coordination mode A (see Scheme 2), one O atom (O8B) in coordination mode B, one O atom (O2D) and one N atom (N1D) in coordination mode C, and one O atom (O4C) in coordination mode D, forming a slightly distorted o­cta­hedral structure. The Fe—O bond lengths range from 1.9448 (18) to 1.9810 (19) Å, and the Fe—N1 and Fe—N2 distances are 2.146 (2) and 2.171 (2) Å, respectively (Table 2). All the Fe—O and Fe—N distances are in good agreement with reference values (Xu et al., 2008; Wang et al., 2006; Goher et al., 1993; Allen et al., 1987). Each FeIII cation is bridged to two neighbouring FeIII cations; one side is bridged by two pydc2- ligands in a µ3-η1:η1:η1:η1 coordination mode and the other side is bridged by two pydc2- ligands in a µ3-η1:η1:η1:η1:η1 coordination mode, forming a one-dimensional [Fe2(pydc)4]n chain structure (Fig. 2). The average Fe···Fe distance is 6.566(s.u.?) Å. The SrII cation, which is located on an inversion centre, is eight-coordinated by two water molecules (O9 and O9A) and six O atoms from four pydc2- ligands, in which two atoms (O7 and O7A) display a µ3-η1:η1:η1:η1 coordination mode and four atoms (O1, O3, O1A and O3A) exhibit a µ3-η1:η1:η1:η1:η1 coordination mode. The Sr—O bond lengths range from 2.5617 (19) to 2.776 (2) Å, in good agreement with reported values (Chen et al., 2014). The one-dimensional [Fe2(pydc)4]n chains are bridged by SrII cations to form a three-dimensional framework (Fig. 3).

In addition, the structure of (1) is stabilized by intra­molecular hydrogen-bond inter­actions (Table 3) between the coordinated water molecules and the carboxyl­ate groups of the pydc2- ligands (O9—H9A···O4; see Table 3 for geometric parameters and symmetry codes), or between the pyridine ring and the coordinated water molecules (C3—H3···O9viii) or the carboxyl­ate groups (inter­molecular hydrogen bonds C4—H4···O2ix, C4—H4···O8x, C5—H5···O6x and C10—H10···O3i). The free water molecules are connected to the three-dimensional framework by three inter­molecular hydrogen bonds (O10—H10A···O6v, O9—H9B···O10vi and O10—H10B···O7vii) (Fig. 4).

To better understand the three-dimensional framework of (1), a topological approach has been applied. As shown in Fig. 5, each pydc2- ligand bridges two FeIII cations and one SrII cation, which can be simplified to a 3-connected node with point symbol (4.82). The FeIII cation can be simplified to a 4-connected node with point symbol (42.84) and the SrII cation can be simplified to a 4-connected node with point symbol (84.122). The whole structure can be simplified to a 3-nodal 3,4,4-c net, with point symbol for the net (4.82)4(42.84)2(84.122). The topology type of the framework is tfj.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 2,-y + 2,-z; (ii) -x + 3, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 1; (iv) x + 1, y + 1, z + 1.]
[Figure 2] Fig. 2. The one-dimensional chain structure of [Fe2(pydc)4]n.
[Figure 3] Fig. 3. The three-dimensional framework of (1), including the hydrogen bonding (dashed lines), viewed along the b axis. H atoms which are not involved in hydrogen bonding have been omitted for clarity
[Figure 4] Fig. 4. A schematic representation of the 3-nodal topology net of (1) with the topological notation (4.82)4(42.84)2(84.122), viewed along the b axis. Light-orange balls represent the pyridine-2,3-dicarboxylate ligand.
Poly[[diaqua-1κ2O-tetrakis(µ3-pyridine-2,3-dicarboxylato)-2:1:2'κ10N,O2:O2',O3:O3';2:1:2'κ8O3:O3':N,O2-diiron(III)strontium(II)] dihydrate] top
Crystal data top
[Fe2Sr(C7H3O4)4(H2O)2]·2H2OV = 793.4 (3) Å3
Mr = 931.80Z = 1
Triclinic, P1F(000) = 466
Hall symbol: -P 1Dx = 1.950 Mg m3
a = 8.1452 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6282 (19) ŵ = 2.68 mm1
c = 11.736 (2) ÅT = 293 K
α = 105.69 (3)°Block, light-brown
β = 98.02 (3)°0.15 × 0.14 × 0.08 mm
γ = 111.68 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 109
Tmin = 0.690, Tmax = 0.814k = 1011
11276 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.3626P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe2Sr(C7H3O4)4(H2O)2]·2H2Oγ = 111.68 (3)°
Mr = 931.80V = 793.4 (3) Å3
Triclinic, P1Z = 1
a = 8.1452 (16) ÅMo Kα radiation
b = 9.6282 (19) ŵ = 2.68 mm1
c = 11.736 (2) ÅT = 293 K
α = 105.69 (3)°0.15 × 0.14 × 0.08 mm
β = 98.02 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2607 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.814Rint = 0.024
11276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
3105 reflectionsΔρmin = 0.40 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr11.00001.00000.00000.02299 (11)
Fe11.53110 (4)1.22869 (4)0.76823 (3)0.01849 (11)
O51.3100 (2)1.04567 (19)0.65193 (14)0.0239 (4)
O20.7297 (2)0.44673 (19)0.14731 (15)0.0232 (4)
O40.5482 (2)0.8478 (2)0.10123 (15)0.0279 (4)
O81.2881 (2)0.8582 (2)0.22875 (15)0.0265 (4)
O71.1399 (2)1.0079 (2)0.21988 (16)0.0282 (4)
O30.6225 (3)0.8977 (2)0.06144 (16)0.0330 (5)
O10.8093 (2)0.70237 (19)0.04546 (17)0.0301 (4)
N10.3830 (3)0.3732 (2)0.20190 (17)0.0209 (4)
O61.1454 (2)0.9051 (2)0.45821 (16)0.0341 (5)
N21.5520 (3)1.2580 (2)0.59304 (17)0.0211 (4)
C141.2676 (3)0.9857 (3)0.2677 (2)0.0215 (5)
C81.4190 (3)1.1348 (3)0.4975 (2)0.0194 (5)
C131.2782 (3)1.0171 (3)0.5355 (2)0.0215 (5)
C91.4154 (3)1.1213 (3)0.3770 (2)0.0212 (5)
O90.8715 (3)1.1438 (2)0.16180 (18)0.0414 (5)
C60.6935 (3)0.5666 (3)0.1051 (2)0.0205 (5)
C20.4184 (3)0.6334 (3)0.0895 (2)0.0209 (5)
C10.4910 (3)0.5274 (3)0.1329 (2)0.0189 (5)
C30.2291 (4)0.5775 (3)0.1174 (2)0.0290 (6)
H30.17590.64530.08720.035*
C70.5396 (3)0.8057 (3)0.0129 (2)0.0222 (5)
C40.1209 (4)0.4211 (3)0.1901 (3)0.0327 (6)
H40.00610.38310.21190.039*
C121.6822 (4)1.3723 (3)0.5706 (2)0.0309 (6)
H121.77261.45770.63640.037*
C50.2012 (3)0.3215 (3)0.2305 (2)0.0282 (6)
H50.12730.21540.27880.034*
C111.6864 (4)1.3673 (3)0.4528 (3)0.0397 (8)
H111.77831.44840.43920.048*
C101.5528 (4)1.2407 (3)0.3554 (2)0.0346 (7)
H101.55471.23520.27530.042*
O100.0825 (3)0.2537 (3)0.4079 (2)0.0533 (6)
H9A0.76661.07640.15780.080*
H10A0.00960.21780.44900.080*
H9B0.91891.18720.23970.080*
H10B0.11500.17920.38180.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02621 (18)0.01633 (17)0.02160 (18)0.00651 (13)0.00160 (14)0.00547 (13)
Fe10.02082 (19)0.01568 (18)0.01497 (18)0.00613 (14)0.00358 (14)0.00233 (13)
O50.0257 (9)0.0208 (9)0.0169 (9)0.0032 (7)0.0047 (7)0.0039 (7)
O20.0201 (8)0.0190 (9)0.0249 (9)0.0076 (7)0.0038 (7)0.0016 (7)
O40.0405 (11)0.0243 (9)0.0177 (9)0.0117 (8)0.0112 (8)0.0070 (7)
O80.0269 (9)0.0234 (9)0.0267 (9)0.0137 (8)0.0043 (8)0.0020 (7)
O70.0286 (10)0.0335 (10)0.0244 (9)0.0176 (8)0.0025 (8)0.0092 (8)
O30.0484 (12)0.0229 (9)0.0265 (10)0.0112 (9)0.0127 (9)0.0111 (8)
O10.0240 (9)0.0176 (9)0.0370 (11)0.0041 (7)0.0019 (8)0.0021 (8)
N10.0203 (10)0.0203 (10)0.0185 (10)0.0072 (8)0.0026 (8)0.0049 (8)
O60.0265 (10)0.0332 (10)0.0220 (9)0.0026 (8)0.0010 (8)0.0035 (8)
N20.0237 (10)0.0188 (10)0.0175 (10)0.0077 (8)0.0038 (8)0.0042 (8)
C140.0254 (13)0.0252 (13)0.0136 (11)0.0098 (11)0.0068 (10)0.0070 (10)
C80.0221 (12)0.0176 (12)0.0185 (12)0.0113 (10)0.0034 (10)0.0034 (9)
C130.0232 (12)0.0212 (12)0.0182 (12)0.0106 (10)0.0039 (10)0.0032 (10)
C90.0249 (13)0.0193 (12)0.0192 (12)0.0101 (10)0.0050 (10)0.0056 (10)
O90.0395 (11)0.0377 (11)0.0457 (12)0.0164 (9)0.0126 (10)0.0122 (9)
C60.0251 (12)0.0194 (12)0.0160 (12)0.0087 (10)0.0052 (10)0.0060 (10)
C20.0279 (13)0.0228 (12)0.0153 (12)0.0120 (11)0.0064 (10)0.0099 (10)
C10.0241 (12)0.0177 (12)0.0149 (12)0.0084 (10)0.0050 (10)0.0065 (9)
C30.0327 (15)0.0299 (14)0.0313 (15)0.0194 (12)0.0090 (12)0.0124 (12)
C70.0285 (13)0.0216 (12)0.0232 (13)0.0152 (11)0.0076 (11)0.0108 (10)
C40.0194 (13)0.0345 (15)0.0436 (17)0.0117 (12)0.0048 (12)0.0143 (13)
C120.0317 (14)0.0250 (14)0.0232 (13)0.0026 (11)0.0035 (11)0.0046 (11)
C50.0220 (13)0.0269 (14)0.0279 (14)0.0067 (11)0.0013 (11)0.0059 (11)
C110.0442 (17)0.0304 (15)0.0303 (15)0.0012 (13)0.0091 (13)0.0142 (12)
C100.0471 (17)0.0302 (15)0.0195 (13)0.0086 (13)0.0083 (12)0.0096 (11)
O100.0528 (14)0.0375 (12)0.0625 (15)0.0125 (10)0.0235 (12)0.0123 (11)
Geometric parameters (Å, º) top
Sr1—O1i2.5617 (19)N1—Fe1v2.146 (2)
Sr1—O12.5617 (19)O6—C131.221 (3)
Sr1—O9i2.612 (2)N2—C121.333 (3)
Sr1—O92.612 (2)N2—C81.353 (3)
Sr1—O7i2.6404 (19)C14—C91.517 (3)
Sr1—O72.6405 (19)C8—C91.380 (3)
Sr1—O32.776 (2)C8—C131.501 (3)
Sr1—O3i2.776 (2)C9—C101.387 (4)
Fe1—O8ii1.9448 (18)O9—H9A0.8469
Fe1—O4iii1.9602 (18)O9—H9B0.8577
Fe1—O51.970 (2)C6—C11.514 (3)
Fe1—O2iv1.9810 (19)C2—C11.378 (3)
Fe1—N1iv2.146 (2)C2—C31.388 (4)
Fe1—N22.171 (2)C2—C71.507 (3)
O5—C131.287 (3)C3—C41.374 (4)
O2—C61.283 (3)C3—H30.9300
O2—Fe1v1.9810 (19)C4—C51.370 (4)
O4—C71.273 (3)C4—H40.9300
O4—Fe1iii1.9602 (18)C12—C111.376 (4)
O8—C141.270 (3)C12—H120.9300
O8—Fe1ii1.9449 (18)C5—H50.9300
O7—C141.229 (3)C11—C101.377 (4)
O3—C71.226 (3)C11—H110.9300
O1—C61.224 (3)C10—H100.9300
N1—C51.334 (3)O10—H10A0.8500
N1—C11.349 (3)O10—H10B0.8500
O1i—Sr1—O1180.00 (4)C5—N1—Fe1v126.54 (17)
O1i—Sr1—O9i104.40 (7)C1—N1—Fe1v113.32 (16)
O1—Sr1—O9i75.60 (7)C12—N2—C8119.2 (2)
O1i—Sr1—O975.60 (7)C12—N2—Fe1128.33 (17)
O1—Sr1—O9104.40 (7)C8—N2—Fe1112.33 (16)
O9i—Sr1—O9180.00 (7)O7—C14—O8124.2 (2)
O1i—Sr1—O7i85.42 (7)O7—C14—C9118.2 (2)
O1—Sr1—O7i94.58 (7)O8—C14—C9117.5 (2)
O9i—Sr1—O7i70.26 (6)N2—C8—C9122.2 (2)
O9—Sr1—O7i109.74 (6)N2—C8—C13113.8 (2)
O1i—Sr1—O794.58 (7)C9—C8—C13124.0 (2)
O1—Sr1—O785.42 (7)O6—C13—O5124.9 (2)
O9i—Sr1—O7109.74 (6)O6—C13—C8120.2 (2)
O9—Sr1—O770.26 (6)O5—C13—C8114.9 (2)
O7i—Sr1—O7180.0C8—C9—C10117.8 (2)
O1i—Sr1—O3115.66 (6)C8—C9—C14123.6 (2)
O1—Sr1—O364.34 (6)C10—C9—C14118.6 (2)
O9i—Sr1—O3115.86 (7)Sr1—O9—H9A107.4
O9—Sr1—O364.14 (7)Sr1—O9—H9B127.1
O7i—Sr1—O365.72 (6)H9A—O9—H9B101.2
O7—Sr1—O3114.28 (6)O1—C6—O2124.4 (2)
O1i—Sr1—O3i64.34 (6)O1—C6—C1121.1 (2)
O1—Sr1—O3i115.66 (6)O2—C6—C1114.44 (19)
O9i—Sr1—O3i64.14 (7)C1—C2—C3118.3 (2)
O9—Sr1—O3i115.86 (7)C1—C2—C7121.5 (2)
O7i—Sr1—O3i114.28 (6)C3—C2—C7120.2 (2)
O7—Sr1—O3i65.72 (6)N1—C1—C2121.7 (2)
O3—Sr1—O3i180.0N1—C1—C6113.3 (2)
O8ii—Fe1—O4iii90.57 (8)C2—C1—C6124.9 (2)
O8ii—Fe1—O5102.46 (8)C4—C3—C2119.3 (2)
O4iii—Fe1—O587.33 (8)C4—C3—H3120.3
O8ii—Fe1—O2iv89.83 (8)C2—C3—H3120.3
O4iii—Fe1—O2iv105.84 (8)O3—C7—O4123.4 (2)
O5—Fe1—O2iv162.02 (7)O3—C7—C2119.9 (2)
O8ii—Fe1—N1iv166.42 (7)O4—C7—C2116.7 (2)
O4iii—Fe1—N1iv88.93 (8)C5—C4—C3119.6 (2)
O5—Fe1—N1iv91.07 (8)C5—C4—H4120.2
O2iv—Fe1—N1iv77.28 (7)C3—C4—H4120.2
O8ii—Fe1—N292.77 (8)N2—C12—C11121.8 (2)
O4iii—Fe1—N2164.61 (8)N2—C12—H12119.1
O5—Fe1—N277.28 (8)C11—C12—H12119.1
O2iv—Fe1—N289.19 (8)N1—C5—C4121.5 (2)
N1iv—Fe1—N291.28 (8)N1—C5—H5119.3
C13—O5—Fe1121.39 (15)C4—C5—H5119.3
C6—O2—Fe1v121.12 (15)C12—C11—C10119.1 (3)
C7—O4—Fe1iii144.33 (16)C12—C11—H11120.4
C14—O8—Fe1ii143.19 (16)C10—C11—H11120.4
C14—O7—Sr1136.49 (16)C11—C10—C9119.9 (3)
C7—O3—Sr1115.05 (17)C11—C10—H10120.0
C6—O1—Sr1156.83 (17)C9—C10—H10120.0
C5—N1—C1119.5 (2)H10A—O10—H10B102.7
O8ii—Fe1—O5—C1386.54 (19)C9—C8—C13—O63.8 (4)
O4iii—Fe1—O5—C13176.54 (19)N2—C8—C13—O53.6 (3)
O2iv—Fe1—O5—C1345.6 (3)C9—C8—C13—O5176.5 (2)
N1iv—Fe1—O5—C1394.58 (19)N2—C8—C9—C101.0 (4)
N2—Fe1—O5—C133.51 (18)C13—C8—C9—C10178.8 (2)
O1i—Sr1—O7—C1492.6 (2)N2—C8—C9—C14179.5 (2)
O1—Sr1—O7—C1487.4 (2)C13—C8—C9—C140.3 (4)
O9i—Sr1—O7—C1414.5 (2)O7—C14—C9—C897.4 (3)
O9—Sr1—O7—C14165.5 (2)O8—C14—C9—C885.3 (3)
O7i—Sr1—O7—C1436 (12)O7—C14—C9—C1081.1 (3)
O3—Sr1—O7—C14146.6 (2)O8—C14—C9—C1096.2 (3)
O3i—Sr1—O7—C1433.4 (2)Sr1—O1—C6—O2113.1 (4)
O1i—Sr1—O3—C7136.83 (16)Sr1—O1—C6—C168.1 (5)
O1—Sr1—O3—C743.17 (16)Fe1v—O2—C6—O1175.19 (18)
O9i—Sr1—O3—C7100.53 (17)Fe1v—O2—C6—C13.7 (3)
O9—Sr1—O3—C779.47 (17)C5—N1—C1—C20.8 (3)
O7i—Sr1—O3—C7151.45 (18)Fe1v—N1—C1—C2170.73 (18)
O7—Sr1—O3—C728.55 (18)C5—N1—C1—C6178.3 (2)
O3i—Sr1—O3—C770 (100)Fe1v—N1—C1—C66.7 (2)
O1i—Sr1—O1—C6124 (14)C3—C2—C1—N10.6 (4)
O9i—Sr1—O1—C672.6 (4)C7—C2—C1—N1179.8 (2)
O9—Sr1—O1—C6107.4 (4)C3—C2—C1—C6176.5 (2)
O7i—Sr1—O1—C64.3 (4)C7—C2—C1—C63.1 (4)
O7—Sr1—O1—C6175.7 (4)O1—C6—C1—N1178.6 (2)
O3—Sr1—O1—C656.0 (4)O2—C6—C1—N12.5 (3)
O3i—Sr1—O1—C6124.0 (4)O1—C6—C1—C24.1 (4)
O8ii—Fe1—N2—C1278.2 (2)O2—C6—C1—C2174.9 (2)
O4iii—Fe1—N2—C12179.5 (3)C1—C2—C3—C42.1 (4)
O5—Fe1—N2—C12179.7 (2)C7—C2—C3—C4178.3 (2)
O2iv—Fe1—N2—C1211.6 (2)Sr1—O3—C7—O470.3 (3)
N1iv—Fe1—N2—C1288.9 (2)Sr1—O3—C7—C2110.4 (2)
O8ii—Fe1—N2—C896.90 (17)Fe1iii—O4—C7—O3176.5 (2)
O4iii—Fe1—N2—C85.4 (4)Fe1iii—O4—C7—C24.1 (4)
O5—Fe1—N2—C85.25 (16)C1—C2—C7—O373.9 (3)
O2iv—Fe1—N2—C8173.32 (17)C3—C2—C7—O3106.5 (3)
N1iv—Fe1—N2—C896.07 (17)C1—C2—C7—O4106.7 (3)
Sr1—O7—C14—O856.2 (4)C3—C2—C7—O472.9 (3)
Sr1—O7—C14—C9120.9 (2)C2—C3—C4—C52.2 (4)
Fe1ii—O8—C14—O7158.5 (2)C8—N2—C12—C110.9 (4)
Fe1ii—O8—C14—C918.6 (4)Fe1—N2—C12—C11173.8 (2)
C12—N2—C8—C91.5 (4)C1—N1—C5—C40.7 (4)
Fe1—N2—C8—C9174.06 (19)Fe1v—N1—C5—C4169.6 (2)
C12—N2—C8—C13178.3 (2)C3—C4—C5—N10.8 (4)
Fe1—N2—C8—C136.1 (2)N2—C12—C11—C100.1 (5)
Fe1—O5—C13—O6179.1 (2)C12—C11—C10—C90.7 (5)
Fe1—O5—C13—C81.2 (3)C8—C9—C10—C110.1 (4)
N2—C8—C13—O6176.0 (2)C14—C9—C10—C11178.5 (3)
Symmetry codes: (i) x+2, y+2, z; (ii) x+3, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1; (v) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O40.852.112.898 (3)156
O10—H10A···O6vi0.852.042.875 (3)168
O9—H9B···O10vii0.862.012.835 (3)161
O10—H10B···O7viii0.852.242.995 (3)147
C3—H3···O9ix0.932.553.225 (3)130
C4—H4···O2x0.932.603.380 (3)142
C4—H4···O8xi0.932.533.292 (3)140
C5—H5···O6xi0.932.493.172 (3)131
C10—H10···O3i0.932.433.233 (3)145
Symmetry codes: (i) x+2, y+2, z; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x1, y1, z; (ix) x+1, y+2, z; (x) x1, y, z; (xi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe2Sr(C7H3O4)4(H2O)2]·2H2O
Mr931.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1452 (16), 9.6282 (19), 11.736 (2)
α, β, γ (°)105.69 (3), 98.02 (3), 111.68 (3)
V3)793.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.15 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.690, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
11276, 3105, 2607
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.02
No. of reflections3105
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sr1—O12.5617 (19)Fe1—O4iii1.9602 (18)
Sr1—O92.612 (2)Fe1—O51.970 (2)
Sr1—O7i2.6404 (19)Fe1—O2iv1.9810 (19)
Sr1—O72.6405 (19)Fe1—N1iv2.146 (2)
Sr1—O32.776 (2)Fe1—N22.171 (2)
Fe1—O8ii1.9448 (18)
O1i—Sr1—O1180.00 (4)O9—Sr1—O3i115.86 (7)
O1i—Sr1—O9i104.40 (7)O7i—Sr1—O3i114.28 (6)
O1—Sr1—O9i75.60 (7)O7—Sr1—O3i65.72 (6)
O1—Sr1—O9104.40 (7)O3—Sr1—O3i180.0
O9i—Sr1—O9180.00 (7)O8ii—Fe1—O4iii90.57 (8)
O1i—Sr1—O7i85.42 (7)O8ii—Fe1—O5102.46 (8)
O1—Sr1—O7i94.58 (7)O4iii—Fe1—O587.33 (8)
O9i—Sr1—O7i70.26 (6)O8ii—Fe1—O2iv89.83 (8)
O9—Sr1—O7i109.74 (6)O4iii—Fe1—O2iv105.84 (8)
O1i—Sr1—O794.58 (7)O5—Fe1—O2iv162.02 (7)
O1—Sr1—O785.42 (7)O8ii—Fe1—N1iv166.42 (7)
O9i—Sr1—O7109.74 (6)O4iii—Fe1—N1iv88.93 (8)
O9—Sr1—O770.26 (6)O5—Fe1—N1iv91.07 (8)
O7i—Sr1—O7180.0O2iv—Fe1—N1iv77.28 (7)
O1i—Sr1—O3115.66 (6)O8ii—Fe1—N292.77 (8)
O1—Sr1—O364.34 (6)O4iii—Fe1—N2164.61 (8)
O9—Sr1—O364.14 (7)O5—Fe1—N277.28 (8)
O7—Sr1—O3114.28 (6)O2iv—Fe1—N289.19 (8)
O9i—Sr1—O3i64.14 (7)N1iv—Fe1—N291.28 (8)
Symmetry codes: (i) x+2, y+2, z; (ii) x+3, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O40.852.112.898 (3)156
O10—H10A···O6v0.852.042.875 (3)168
O9—H9B···O10vi0.862.012.835 (3)161
O10—H10B···O7vii0.852.242.995 (3)147
C3—H3···O9viii0.932.553.225 (3)130
C4—H4···O2ix0.932.603.380 (3)142
C4—H4···O8x0.932.533.292 (3)140
C5—H5···O6x0.932.493.172 (3)131
C10—H10···O3i0.932.433.233 (3)145
Symmetry codes: (i) x+2, y+2, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x+1, y+2, z; (ix) x1, y, z; (x) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds