Download citation
Download citation
link to html
The crystal structure of the title compound {(C5H14N2)2[Cd2Cl8]}n, (I), consists of hydrogen-bonded 2-methyl­piper­azine­diium (H2MPPA2+) cations in the presence of one-dimensional polymeric {[CdCl33-Cl)]2−}n anions. The CdII centres are hexa­coordinated by three terminal chlorides and three bridging chlorides and have a slightly distorted octa­hedral CdCl33-Cl)3 arrangement. The alternating CdCl6 octa­hedra form four-membered Cd2Cl2 rings by the sharing of neighbouring Cd–Cl edges to give rise to extended one-dimensional ladder-like chains parallel to the b axis, with a Cd...Cd distance of 4.094 (2) Å and a Cd...Cd...Cd angle of 91.264 (8)°. The H2MPPA2+ cations crosslink the [CdCl33-Cl)]n chains by the formation of two N—H...Cl hydrogen bonds to each chain, giving rise to one-dimensional ladder-like H2MPPA2+–Cl2 hydrogen-bonded chains [graph set R42(14)]. The [CdCl33-Cl)]n chains are inter­woven with the H2MPPA2+–Cl2 hydrogen-bonded chains, giving rise to a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961400655X/wq3059sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961400655X/wq3059Isup2.hkl
Contains datablock I

CCDC reference: 993495

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[bis[(S)-2-methylpiperazine-1,4-diium] [bis[trichloridocadmium(II)]-di-µ3-chlorido]] top
Crystal data top
(C5H14N2)[CdCl4]F(000) = 696
Mr = 356.38Dx = 1.968 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4003 reflections
a = 13.342 (7) Åθ = 2.6–27.5°
b = 5.853 (3) ŵ = 2.66 mm1
c = 15.404 (8) ÅT = 291 K
V = 1202.9 (11) Å3Block, colourless
Z = 40.36 × 0.32 × 0.30 mm
Data collection top
Rigaku Mercury2
diffractometer
2758 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD profile fitting scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.35, Tmax = 0.40l = 1919
12240 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.82 e Å3
2758 reflectionsΔρmin = 0.57 e Å3
114 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0058 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with how many Friedel pairs?
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6439 (2)0.5947 (5)0.57259 (18)0.0335 (6)
H10.67160.74410.58840.040*
C20.7118 (2)0.4106 (6)0.60808 (17)0.0354 (6)
H2A0.71670.42640.67060.042*
H2B0.68300.26200.59560.042*
C30.8107 (2)0.4090 (5)0.47352 (17)0.0354 (6)
H3A0.78610.25980.45610.043*
H3B0.87790.42730.45060.043*
C40.74363 (19)0.5910 (6)0.43714 (17)0.0337 (6)
H4A0.77200.74000.44950.040*
H4B0.73930.57410.37460.040*
C50.5386 (2)0.5758 (9)0.6091 (2)0.0599 (9)
H5A0.51130.42850.59520.090*
H5B0.49720.69280.58420.090*
H5C0.54070.59420.67100.090*
Cd10.893832 (13)0.92676 (4)0.763339 (12)0.03140 (7)
Cl10.88902 (5)0.92559 (11)0.59419 (4)0.02782 (12)
Cl20.71085 (5)0.90735 (16)0.77661 (5)0.04507 (18)
Cl30.92925 (5)0.92619 (13)0.93032 (4)0.02815 (13)
Cl41.08727 (4)0.91555 (12)0.74166 (4)0.02624 (12)
N10.64182 (16)0.5756 (5)0.47552 (14)0.0314 (5)
H1A0.61340.44440.46170.041 (8)*
H1B0.61190.67500.45750.037 (9)*
N20.81308 (16)0.4241 (4)0.56966 (13)0.0306 (4)
H2C0.84140.32010.58720.042 (10)*
H2D0.84330.55110.58420.025 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (14)0.0306 (14)0.0319 (14)0.0026 (13)0.0092 (11)0.0045 (13)
C20.0413 (15)0.0330 (14)0.0319 (14)0.0041 (14)0.0100 (11)0.0027 (14)
C30.0392 (14)0.0359 (15)0.0311 (13)0.0062 (15)0.0089 (11)0.0057 (13)
C40.0375 (14)0.0330 (14)0.0306 (13)0.0028 (14)0.0101 (11)0.0063 (13)
C50.0441 (18)0.085 (3)0.050 (2)0.004 (2)0.0037 (15)0.003 (2)
Cd10.02546 (10)0.04512 (12)0.02363 (10)0.00011 (10)0.00011 (7)0.00010 (9)
Cl10.0366 (3)0.0220 (3)0.0249 (3)0.0008 (4)0.0043 (2)0.0001 (3)
Cl20.0273 (3)0.0614 (4)0.0466 (4)0.0015 (4)0.0026 (3)0.0016 (4)
Cl30.0358 (3)0.0225 (3)0.0262 (3)0.0006 (3)0.0023 (2)0.0002 (3)
Cl40.0236 (3)0.0309 (3)0.0242 (3)0.0006 (2)0.0001 (2)0.0002 (3)
N10.0361 (11)0.0233 (10)0.0347 (12)0.0038 (11)0.0153 (9)0.0016 (11)
N20.0357 (11)0.0240 (10)0.0321 (11)0.0017 (12)0.0149 (9)0.0026 (11)
Geometric parameters (Å, º) top
C1—N11.500 (3)C5—H5A0.9600
C1—C21.510 (4)C5—H5B0.9600
C1—C51.517 (4)C5—H5C0.9600
C1—H10.9800Cd1—Cl22.4525 (15)
C2—N21.477 (4)Cd1—Cl42.6032 (14)
C2—H2A0.9700Cd1—Cl12.6064 (15)
C2—H2B0.9700Cd1—Cl32.6152 (15)
C3—N21.484 (3)Cd1—Cl4i2.8730 (16)
C3—C41.500 (4)Cl4—Cd1ii2.8730 (16)
C3—H3A0.9700N1—H1A0.8825
C3—H3B0.9700N1—H1B0.7586
C4—N11.484 (3)N2—H2C0.7656
C4—H4A0.9700N2—H2D0.8743
C4—H4B0.9700
N1—C1—C2108.6 (2)C1—C5—H5C109.5
N1—C1—C5110.3 (2)H5A—C5—H5C109.5
C2—C1—C5111.7 (3)H5B—C5—H5C109.5
N1—C1—H1108.8Cl2—Cd1—Cl4175.15 (3)
C2—C1—H1108.7Cl2—Cd1—Cl193.36 (2)
C5—C1—H1108.8Cl4—Cd1—Cl184.04 (2)
N2—C2—C1111.4 (2)Cl2—Cd1—Cl395.61 (3)
N2—C2—H2A109.4Cl4—Cd1—Cl386.96 (2)
C1—C2—H2A109.4Cl1—Cd1—Cl3171.00 (2)
N2—C2—H2B109.4Cl2—Cd1—Cl4i97.80 (3)
C1—C2—H2B109.3Cl4—Cd1—Cl4i86.253 (18)
H2A—C2—H2B108.0Cl1—Cd1—Cl4i88.740 (19)
N2—C3—C4110.1 (2)Cl3—Cd1—Cl4i90.67 (2)
N2—C3—H3A109.7Cd1—Cl4—Cd1ii96.63 (2)
C4—C3—H3A109.6C4—N1—C1112.1 (2)
N2—C3—H3B109.7C4—N1—H1A110.5
C4—C3—H3B109.7C1—N1—H1A108.3
H3A—C3—H3B108.1C4—N1—H1B106.8
N1—C4—C3110.7 (2)C1—N1—H1B108.5
N1—C4—H4A109.5H1A—N1—H1B110.6
C3—C4—H4A109.4C2—N2—C3112.1 (2)
N1—C4—H4B109.6C2—N2—H2C105.5
C3—C4—H4B109.5C3—N2—H2C108.3
H4A—C4—H4B108.1C2—N2—H2D111.4
C1—C5—H5A109.5C3—N2—H2D108.4
C1—C5—H5B109.5H2C—N2—H2D111.0
H5A—C5—H5B109.5
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3iii0.882.293.164 (3)169
N1—H1B···Cl3iv0.762.433.145 (3)157
N2—H2C···Cl1v0.772.403.112 (3)156
N2—H2D···Cl10.872.283.128 (3)163
Symmetry codes: (iii) x+3/2, y+1, z1/2; (iv) x+3/2, y+2, z1/2; (v) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds