Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis-[Cd{Ag(CN)2}2(5,5'-dmbpy)2]·H2O, where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5'-dmbpy)2] unit and a solvent water mol­ecule. The CdII cation is coordinated by two bidentate chelate 5,5'-dmbpy ligands and two monodentate [AgI(CN)2]- anions, which are in a cis arrangement around the CdII cation, leading to an octa­hedral CdN6 geometry. The overall structure is stabilized by a combination of inter­molecular hydrogen bonding, and AgI...AgI and [pi]-[pi] inter­actions, forming a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025201/wq3049sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025201/wq3049Isup2.hkl
Contains datablock I

CCDC reference: 960684

Introduction top

The design and synthesis of supra­molecular architectures are currently attracting a great deal of attention due to the various network topologies and the potential uses of these materials in microelectronics, nonlinear optics, porous materials and other applications (Dong et al., 2003). Various inter­molecular inter­actions such as hydrogen bonding, ππ stacking and van der Waals inter­actions can greatly influence the resulting crystal structure and its dimensionality (Blake et al., 1999). The bridging ligand di­cyano­argentate(I), [AgI(CN)2]-, has frequently been employed to construct multidimensional (one-, two- and three-dimensional) coordinated and non-coordinated supra­molecular network architectures and can further stabilize the coordination framework via silver···silver attractions (argentophilic inter­actions; Jansen, 1987; Pyykkö, 1997). In the present work, a new three-dimensional supra­molecular framework of the title heterometallic CdII–AgI coordination compound, cis-[CdII(5,5'-dmbpy)2[AgI(CN)2]2].H2O, (I) (5,5'-dmbpy = 5,5'-di­methyl-2,2'-bi­pyridyl), was successfully synthesized and structurally characterized.

Experimental top

Synthesis and crystallization top

Compound (I) was synthesized by the reaction of two aqueous solutions at room temperature, one containing a mixture of Cd(NO3)2.4H2O (0.25 mmol, 77 mg) and 5,5'-dmbpy (0.5 mmol, 92 mg) in water (10 ml), and the other containing K[AgI(CN)2] (0.5 mmol, 10.6 mg) in water (5 ml). After 4 d, colourless crystals were obtained; the yield based on Cd was about 76%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were positioned geometrically, with C—H = 0.93 (aromatic) or 0.97 Å (methyl­ene), and included as riding atoms, with Uiso(H) = 1.2Ueq(C). Water H atoms were located in difference Fourier maps and refined isotropically.

Results and discussion top

Compound (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of a discrete neutral cis-[CdII(5,5'-dmbpy)2[AgI(CN)2]2] unit and a solvent water molecule, as shown in Fig. 1. The CdII cation adopts an o­cta­hedral CdN6 geometry, surrounded by four N atoms from two bidentate chelate 5,5'-dmbpy ligands and two N atoms from two monodentate [AgI(CN)2]- anions, which are in a cis arrangement around the CdII cation; selected bond distances and angles are shown in Table 2.

The molecular structure of (I) is self-assembled to form a dimeric unit (Fig. 2) via hydrogen-bonding inter­actions between the solvent water molecule and the terminal cyano group of the di­cyano­argentate ligand, as shown in Table 3. These dimeric units are connected via AgI···AgI inter­actions along the c axis, with an Ag1···Ag2 distance of 3.2575 (3) Å, and by face-to-face ππ inter­actions between the aromatic rings of 5,5'-dmbpy ligands from adjacent dimeric units, with a centroid-to-centroid distance (Cg3–Cg4) of 3.7582 (14) Å (see Table 4), an inter­planar distance of 3.271 Å and a slippage angle of 4.674°, giving a one-dimensional chain-like structure as represented in Fig. 3. The AgI···AgI distances are significantly shorter than the sum of the van der Waals radii for two AgI cations (3.44 Å; Bondi, 1964).

The one-dimensional chains are linked together via weak non-classical inter­molecular hydrogen-bonding inter­actions between a methyl group (C24—H24B) of the 5,5'-dmbpy ligand and an NC group (N8) of the di­cyano­argentate ligand, and by weaker AgI···AgI inter­actions with distances of 3.7997 (4) Å (see Table 3), generating a two-dimensional network as shown in Fig. 4. These two-dimensional layers are assembled via ππ inter­actions, with a centroid-to-centroid (Cg5–Cg5) distance of 3.8263 (16) Å and an inter­planar distance of 3.559 Å (Table 4) along the a axis, and by hydrogen-bonding inter­actions via the solvent water molecule, the C—H groups of the 5,5'-dmbpy ligand and the NC groups of the di­cyano­argentate ligands (Table 3), leading to a three-dimensional supra­molecular framework as shown in Fig. 5.

Among the successful synthetic strategies for the formation of AgI coordination polymers, the di­cyano­argentate anion, [AgI(CN)2]-, is particularly effective because it can form additional coordinate bonds through the N atoms of the cyano groups, leading it to play a variety of roles in the stabilisation of crystal structures (Černák et al., 1998). The [Ag(CN)2]- anion behaves as: (i) a discrete anion simply playing the role of counterion and space filler (Range et al., 1989; Omary et al., 1998); (ii) as a rod ligand building up multi-dimensional structures by bridging between two coordination centres (Dasna et al., 2001; Soma & Iwamoto, 1994); or (iii) as a monodentate ligand blocking some coordination sites of the central atom (Soma & Iwamoto, 1996). Examples of these different roles of the di­cyano­argentate anion have been demonstrated in the following structures. In [Ni(bpy)3]2[AgI(CN)2]3Cl.9H2O (bpy is 2,2'-bi­pyridine; Černák et al., 1994) and {[SnMe3(bpe)][AgI(CN)2].2H2O} [bpe is 1,2-bis­(4-pyridyl)­ethane; Etaiw et al., 2011], it acts as an isolated counterion in structures with ionic character. In [N(PPh3)2][ClPh3Sn(µ-NC)AgI(CN)] (Ph is phenyl), it acts as a ligand when bonded via one bridging cyano group (Carcelli et al., 1992). In {MnII(ampyz)(H2O)[Ag2I(CN)3][AgI(CN)2].ampyz}n and {[MnII(benzim)2[AgI(CN)2]2][(benzim)AgI(CN)].H2O}n (ampyz is 2-amino­pyrazine and benzim is benzimidazole), it acts as a bridging spacer between two central atoms, giving rise to polymeric two-dimensional structures (Wannarit et al., 2012), while in {KMn[AgI(CN)2]3(H2O)}n and {Mn[AgI(CN)2]2(bpy)]2}n, the three-dimensional networks are constructed entirely by coordinative linkages with all the CN groups of [AgI(CN)2]- (Dong et al., 2003). In the case of the complex [MnIII(salen)AgI(CN)2] [H2salen is N,N'-bis­(salicyl­idene)-1,2-di­amino­ethane], a one-dimensional network is constructed in which the [AgI(CN)2]- anion acts as an NC–AgI–CN bridging ligand (Panja et al., 2002). Finally, in [Cu(pn)2[AgI(CN)2]2] (pn is 1,2-di­amino­propane; Triščíková et al., 2004) and [Cu(Imidazole)4[AgI(CN)2]2] (Ahmad et al., 2012), it acts as a monodentate di­cyano­argentate ligand, with a similar coordination mode to that found in (I) but being coordinated in the axial positions of an elongated o­cta­hedron.

In summary, the monodentate di­cyano­argentate(I) ligand in the structure of the title compound has been demonstrated, with an extended three-dimensional supra­molecular structure built up via hydrogen bonds, silver···silver and ππ inter­actions, thus stabilizing the overall crystal structure.

Related literature top

For related literature, see: Ahmad et al. (2012); Blake et al. (1999); Bondi (1964); Carcelli et al. (1992); Dasna et al. (2001); Dong et al. (2003); Etaiw, -d'H, Sultan & Badr El-din (2011); Jansen (1987); Omary et al. (1998); Panja et al. (2002); Pyykkö (1997); Range et al. (1989); Soma & Iwamoto (1994, 1996); Triščíková et al. (2004); Wannarit et al. (2012); Černák et al. (1994, 1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CdII cation in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram for (I), showing intermolecular hydrogen bonding interactions between two molecules via O—H··· N interactions (dashed lines), generating the dimeric unit. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x - 1, y + 1, z.]
[Figure 3] Fig. 3. A partial packing diagram for (I), showing the one-dimensional chain-like structure via ππ interactions and AgI··· AgI interactions (dashed lines). [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (iv) -x, 1 - y, 1 - z.]
[Figure 4] Fig. 4. A partial packing diagram for (I), stabilised via hydrogen bonding and AgI··· AgI interactions (dashed lines) in the abc plane [Please clarify - a plane can only be two dimensions], giving a two-dimensional layer-like structure. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1.]
[Figure 5] Fig. 5. A view of (I), showing the intermolecular hydrogen bonding and ππ interactions (dashed lines) between layers, generating a three-dimensional supramolecular framework. [Symmetry codes: (iii) -x, -y + 1, -z; (v) -x, -y, -z.]
Di-µ-cyanido-1:3κ2C:N;2:3κ2C:N-dicyanido-1κC,2κC-bis(5,5'-dimethyl-2,2'-bipyridyl-3κ2N,N')cadmium(II)disilver(I) monohydrate top
Crystal data top
[Ag2Cd(CN)4(C12H12N2)2]·H2OZ = 2
Mr = 818.72F(000) = 800
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6964 (4) ÅCell parameters from 9313 reflections
b = 11.2487 (5) Åθ = 2.2–28.2°
c = 15.7456 (7) ŵ = 1.96 mm1
α = 109.525 (1)°T = 293 K
β = 100.572 (1)°Block, colourless
γ = 98.324 (1)°0.39 × 0.16 × 0.09 mm
V = 1551.30 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7667 independent reflections
Radiation source: sealed tube6749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1212
Tmin = 0.799, Tmax = 1.000k = 1414
21735 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.3861P]
where P = (Fo2 + 2Fc2)/3
7667 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ag2Cd(CN)4(C12H12N2)2]·H2Oγ = 98.324 (1)°
Mr = 818.72V = 1551.30 (12) Å3
Triclinic, P1Z = 2
a = 9.6964 (4) ÅMo Kα radiation
b = 11.2487 (5) ŵ = 1.96 mm1
c = 15.7456 (7) ÅT = 293 K
α = 109.525 (1)°0.39 × 0.16 × 0.09 mm
β = 100.572 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7667 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
6749 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 1.000Rint = 0.017
21735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.60 e Å3
7667 reflectionsΔρmin = 0.31 e Å3
373 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.15538 (2)0.37614 (1)0.26425 (1)0.0382 (1)
Ag10.45743 (2)0.84462 (2)0.52250 (1)0.0632 (1)
Ag20.58525 (2)0.11057 (2)0.26944 (1)0.0597 (1)
N10.04988 (19)0.45002 (17)0.30232 (12)0.0429 (5)
N20.0790 (2)0.28808 (18)0.36992 (13)0.0437 (6)
N30.0035 (2)0.23139 (18)0.12025 (12)0.0453 (6)
N40.1799 (2)0.45737 (17)0.14417 (12)0.0427 (5)
N50.3336 (2)0.2628 (2)0.25121 (15)0.0557 (7)
N60.3095 (2)0.5613 (2)0.37332 (15)0.0570 (7)
N70.8463 (3)0.0316 (3)0.2747 (2)0.0726 (10)
N80.6444 (3)1.1098 (3)0.6773 (2)0.0906 (10)
C10.1172 (3)0.5219 (2)0.26298 (16)0.0495 (7)
C20.2455 (3)0.5529 (3)0.27778 (19)0.0570 (8)
C30.3055 (3)0.5064 (3)0.3363 (2)0.0653 (10)
C40.2369 (3)0.4349 (3)0.3788 (2)0.0589 (9)
C50.1076 (2)0.4079 (2)0.36096 (15)0.0437 (6)
C60.3162 (4)0.6334 (3)0.2315 (3)0.0783 (11)
C70.0290 (2)0.3310 (2)0.40449 (15)0.0431 (6)
C80.0638 (3)0.3044 (2)0.47878 (17)0.0529 (8)
C90.0090 (3)0.2305 (2)0.51591 (17)0.0552 (8)
C100.1166 (3)0.1825 (2)0.47934 (17)0.0535 (8)
C110.1478 (3)0.2151 (2)0.40653 (17)0.0510 (8)
C120.1971 (4)0.0985 (3)0.5169 (2)0.0754 (11)
C130.0901 (3)0.1260 (2)0.11166 (17)0.0544 (8)
C140.1800 (3)0.0397 (2)0.02833 (19)0.0562 (8)
C150.1664 (3)0.0652 (3)0.04963 (19)0.0630 (8)
C160.0705 (3)0.1732 (3)0.04249 (17)0.0607 (9)
C170.0125 (2)0.2565 (2)0.04402 (15)0.0437 (7)
C180.2863 (4)0.0753 (3)0.0243 (2)0.0811 (11)
C190.1134 (3)0.3778 (2)0.05683 (15)0.0445 (7)
C200.1370 (3)0.4096 (3)0.01767 (17)0.0641 (9)
C210.2304 (3)0.5235 (3)0.00145 (19)0.0662 (10)
C220.3007 (3)0.6058 (2)0.08750 (17)0.0512 (8)
C230.2694 (3)0.5686 (2)0.15831 (16)0.0472 (7)
C240.4050 (3)0.7307 (3)0.1068 (2)0.0681 (10)
C250.4237 (3)0.2099 (3)0.25489 (18)0.0538 (8)
C260.3655 (3)0.6603 (3)0.42730 (18)0.0548 (8)
C270.7536 (3)0.0190 (3)0.2737 (2)0.0578 (9)
C280.5693 (3)1.0190 (3)0.6243 (2)0.0626 (9)
O10.0393 (4)0.7899 (3)0.2477 (2)0.0808 (10)
H10.074900.552500.223600.0590*
H30.393000.523500.347200.0780*
H40.276900.404900.419300.0710*
H6A0.402900.580700.186100.1180*
H6B0.251800.667600.201500.1180*
H6C0.339100.703500.277400.1180*
H80.136700.336800.503400.0640*
H90.014400.212800.565800.0660*
H110.221300.184300.381600.0610*
H12A0.295900.143100.544800.1130*
H12B0.192000.019100.467100.1130*
H12C0.154600.079900.562900.1130*
H130.095000.109600.165300.0650*
H150.222600.009000.107800.0760*
H160.061700.189800.095500.0730*
H18A0.374400.050400.034100.1210*
H18B0.247100.105400.071800.1210*
H18C0.305000.143200.035600.1210*
H200.090000.354400.078200.0770*
H210.246200.545200.051500.0790*
H230.313100.624000.219400.0570*
H24A0.499400.714600.105800.1020*
H24B0.407500.792000.166900.1020*
H24C0.374600.765100.060100.1020*
H1W0.114 (5)0.826 (5)0.270 (3)0.114 (19)*
H2W0.007 (4)0.844 (4)0.263 (3)0.081 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0405 (1)0.0403 (1)0.0319 (1)0.0044 (1)0.0107 (1)0.0121 (1)
Ag10.0617 (1)0.0520 (1)0.0560 (1)0.0052 (1)0.0135 (1)0.0029 (1)
Ag20.0566 (1)0.0598 (1)0.0620 (1)0.0197 (1)0.0125 (1)0.0200 (1)
N10.0425 (10)0.0429 (9)0.0398 (9)0.0068 (8)0.0114 (8)0.0116 (8)
N20.0466 (10)0.0461 (10)0.0421 (10)0.0080 (8)0.0171 (8)0.0187 (8)
N30.0483 (10)0.0421 (10)0.0380 (9)0.0001 (8)0.0095 (8)0.0103 (8)
N40.0474 (10)0.0416 (9)0.0359 (9)0.0055 (8)0.0078 (8)0.0137 (7)
N50.0536 (12)0.0586 (12)0.0559 (12)0.0179 (10)0.0163 (10)0.0189 (10)
N60.0559 (12)0.0567 (12)0.0464 (11)0.0035 (10)0.0146 (9)0.0097 (10)
N70.0700 (16)0.0769 (16)0.0861 (18)0.0267 (14)0.0258 (14)0.0416 (15)
N80.100 (2)0.0572 (15)0.0827 (19)0.0109 (15)0.0157 (16)0.0014 (14)
C10.0470 (12)0.0545 (13)0.0453 (12)0.0115 (10)0.0097 (10)0.0174 (11)
C20.0486 (13)0.0540 (14)0.0632 (16)0.0137 (11)0.0099 (12)0.0162 (12)
C30.0459 (14)0.0631 (16)0.090 (2)0.0161 (12)0.0260 (14)0.0257 (15)
C40.0518 (14)0.0571 (15)0.0726 (17)0.0093 (12)0.0290 (13)0.0243 (13)
C50.0429 (11)0.0391 (11)0.0419 (11)0.0005 (9)0.0136 (9)0.0079 (9)
C60.0664 (19)0.086 (2)0.094 (2)0.0363 (17)0.0206 (17)0.0396 (19)
C70.0437 (11)0.0391 (11)0.0422 (11)0.0003 (9)0.0156 (9)0.0110 (9)
C80.0567 (14)0.0544 (13)0.0469 (13)0.0040 (11)0.0252 (11)0.0147 (11)
C90.0672 (16)0.0546 (14)0.0434 (12)0.0001 (12)0.0218 (11)0.0189 (11)
C100.0625 (15)0.0545 (14)0.0473 (13)0.0050 (11)0.0171 (11)0.0251 (11)
C110.0541 (13)0.0571 (14)0.0509 (13)0.0125 (11)0.0214 (11)0.0271 (11)
C120.088 (2)0.092 (2)0.0743 (19)0.0295 (18)0.0332 (17)0.0555 (18)
C130.0598 (15)0.0508 (13)0.0455 (13)0.0013 (11)0.0155 (11)0.0134 (11)
C140.0539 (14)0.0432 (12)0.0565 (14)0.0016 (10)0.0110 (11)0.0064 (11)
C150.0649 (16)0.0536 (14)0.0471 (14)0.0036 (12)0.0040 (12)0.0057 (11)
C160.0751 (18)0.0551 (14)0.0399 (12)0.0002 (13)0.0030 (12)0.0147 (11)
C170.0494 (12)0.0401 (11)0.0372 (11)0.0071 (9)0.0076 (9)0.0115 (9)
C180.076 (2)0.0612 (18)0.079 (2)0.0203 (15)0.0156 (16)0.0086 (15)
C190.0516 (13)0.0433 (11)0.0368 (11)0.0079 (10)0.0084 (9)0.0152 (9)
C200.085 (2)0.0606 (15)0.0377 (12)0.0013 (14)0.0049 (12)0.0196 (11)
C210.086 (2)0.0667 (17)0.0494 (14)0.0029 (15)0.0166 (13)0.0319 (13)
C220.0547 (14)0.0504 (13)0.0533 (13)0.0072 (11)0.0109 (11)0.0283 (11)
C230.0521 (13)0.0440 (12)0.0419 (12)0.0034 (10)0.0067 (10)0.0169 (10)
C240.0747 (18)0.0619 (16)0.0696 (18)0.0022 (14)0.0112 (14)0.0376 (14)
C250.0552 (14)0.0526 (14)0.0496 (13)0.0095 (12)0.0131 (11)0.0151 (11)
C260.0505 (13)0.0563 (14)0.0466 (13)0.0048 (11)0.0147 (11)0.0108 (11)
C270.0599 (16)0.0593 (15)0.0626 (16)0.0138 (13)0.0188 (12)0.0310 (13)
C280.0722 (18)0.0495 (14)0.0569 (15)0.0020 (13)0.0160 (13)0.0130 (12)
O10.0730 (17)0.0722 (16)0.0863 (17)0.0184 (14)0.0120 (14)0.0190 (13)
Geometric parameters (Å, º) top
Cd1—N12.3654 (19)C13—C141.381 (4)
Cd1—N22.375 (2)C14—C151.375 (4)
Cd1—N32.3609 (18)C14—C181.508 (5)
Cd1—N42.3924 (19)C15—C161.377 (5)
Cd1—N52.291 (2)C16—C171.381 (3)
Cd1—N62.299 (2)C17—C191.489 (3)
Ag1—C262.059 (3)C19—C201.383 (4)
Ag1—C282.059 (3)C20—C211.374 (5)
Ag2—C252.074 (3)C21—C221.372 (4)
Ag2—C272.055 (3)C22—C231.382 (3)
O1—H2W0.72 (5)C22—C241.510 (4)
O1—H1W0.73 (5)C1—H10.9308
N1—C51.340 (3)C3—H30.9300
N1—C11.343 (3)C4—H40.9315
N2—C71.344 (3)C6—H6B0.9598
N2—C111.336 (3)C6—H6C0.9602
N3—C131.336 (3)C6—H6A0.9597
N3—C171.336 (3)C8—H80.9292
N4—C231.340 (3)C9—H90.9301
N4—C191.339 (3)C11—H110.9302
N5—C251.129 (4)C12—H12C0.9613
N6—C261.131 (4)C12—H12B0.9591
N7—C271.132 (4)C12—H12A0.9600
N8—C281.123 (4)C13—H130.9306
C1—C21.379 (4)C15—H150.9304
C2—C31.375 (4)C16—H160.9298
C2—C61.503 (5)C18—H18B0.9595
C3—C41.374 (5)C18—H18A0.9596
C4—C51.388 (4)C18—H18C0.9599
C5—C71.481 (3)C20—H200.9299
C7—C81.386 (3)C21—H210.9307
C8—C91.369 (4)C23—H230.9308
C9—C101.374 (4)C24—H24C0.9597
C10—C121.507 (4)C24—H24A0.9604
C10—C111.384 (4)C24—H24B0.9603
Ag1···C12i4.088 (4)C24···C6v3.565 (5)
Ag1···C12ii3.525 (4)C24···Ag2i4.093 (3)
Ag1···Ag1iii3.7997 (4)C24···N8iii3.431 (4)
Ag1···Ag2ii3.2575 (3)C25···Ag1ii3.762 (3)
Ag1···N8iii3.350 (3)C26···C8iv3.526 (4)
Ag1···C8iv3.934 (3)C27···C7v3.526 (4)
Ag1···C10ii4.190 (3)C27···Ag1ii4.107 (3)
Ag1···C11ii4.004 (3)C28···Ag1iii3.167 (3)
Ag1···C28iii3.167 (3)C28···Ag2ii3.014 (3)
Ag1···C25ii3.762 (3)C28···C12ii3.546 (5)
Ag1···C27ii4.107 (3)C4···H82.6587
Ag2···C28ii3.014 (3)C6···H24Axii2.8864
Ag2···C5v3.802 (2)C8···H42.6643
Ag2···Ag1ii3.2576 (3)C15···H24Cix2.9918
Ag2···N8ii3.505 (3)C16···H202.6573
Ag2···C18v4.236 (3)C20···H162.6563
Ag2···C24vi4.093 (3)C24···H6Av3.0562
Ag2···C3v4.141 (4)C25···H113.0939
Ag2···C4v3.484 (3)C25···H15vii2.8931
Ag2···C7v3.941 (2)C26···H233.0947
Ag2···C8v4.016 (3)C26···H8iv2.6456
Ag1···H4iv3.5591C26···H4iv2.9788
Ag1···H12Bi3.6084C27···H18Bv3.0133
Ag1···H12Bii3.4715C27···H13v2.7850
Ag1···H12Aii2.7920C28···H12Bii2.9511
Ag1···H8iv3.3382H1···O12.6103
Ag1···H11ii3.3145H1···H6B2.3377
Ag2···H4v3.2643H1W···N8iii2.26 (5)
Ag2···H13v3.7636H2W···N7viii2.23 (4)
Ag2···H18Av3.6627H4···H82.1231
Ag2···H24Bvi3.4267H4···Ag1iv3.5591
Ag2···H15vii3.7027H4···C26iv2.9788
O1···C13.278 (4)H4···C82.6643
O1···N7viii2.920 (5)H4···Ag2xii3.2643
O1···N8iii2.975 (5)H6A···C24xii3.0562
O1···H16ix2.5268H6A···H24Axii2.4518
O1···H20ix2.5723H6B···O12.8004
O1···H6B2.8004H6B···H12.3377
O1···H12.6103H8···H42.1231
N7···O1x2.920 (5)H8···Ag1iv3.3382
N8···Ag1iii3.350 (3)H8···C42.6587
N8···Ag2ii3.505 (3)H8···C26iv2.6456
N8···C24iii3.431 (4)H8···N6iv2.8551
N8···O1iii2.975 (5)H9···H12C2.3693
N5···H112.8168H11···Ag1ii3.3145
N6···H8iv2.8551H11···C253.0939
N6···H232.7457H11···N52.8168
N7···H12Cxi2.7874H12A···Ag1ii2.7919
N7···H18Bv2.9434H12B···Ag1vi3.6083
N7···H13v2.7822H12B···Ag1ii3.4715
N7···H2Wx2.23 (4)H12B···C28ii2.9511
N8···H1Wiii2.26 (5)H12C···H92.3693
N8···H23iii2.8148H12C···N7xi2.7874
N8···H24Biii2.5088H13···Ag2xii3.7636
C1···O13.278 (4)H13···N7xii2.7822
C1···C9iv3.509 (3)H13···C27xii2.7850
C2···C9iv3.479 (4)H13···H18B2.4458
C3···Ag2xii4.141 (4)H15···H18C2.4698
C3···C9iv3.594 (4)H15···Ag2vii3.7027
C4···C8iv3.586 (4)H15···C25vii2.8931
C4···Ag2xii3.484 (3)H16···O1ix2.5268
C5···Ag2xii3.802 (2)H16···C202.6563
C5···C8iv3.324 (3)H16···H202.0960
C6···C24xii3.565 (5)H18A···Ag2xii3.6627
C7···C27xii3.526 (4)H18B···N7xii2.9434
C7···Ag2xii3.941 (2)H18B···C27xii3.0133
C8···Ag1iv3.934 (3)H18B···H132.4458
C8···Ag2xii4.016 (3)H18C···H152.4698
C8···C26iv3.526 (4)H20···H162.0960
C8···C4iv3.586 (4)H20···O1ix2.5723
C8···C5iv3.324 (3)H20···C162.6573
C9···C1iv3.509 (3)H21···H24C2.4812
C9···C3iv3.594 (4)H23···C263.0947
C9···C2iv3.479 (4)H23···H24B2.4318
C10···Ag1ii4.190 (3)H23···N62.7457
C11···Ag1ii4.004 (3)H23···N8iii2.8148
C12···Ag1ii3.525 (4)H24A···C6v2.8864
C12···Ag1vi4.088 (4)H24A···H6Av2.4518
C12···C28ii3.546 (5)H24B···H232.4318
C13···C15vii3.578 (4)H24B···Ag2i3.4267
C15···C13vii3.578 (4)H24B···N8iii2.5088
C18···Ag2xii4.236 (3)H24C···C15ix2.9918
C20···C20ix3.585 (4)H24C···H212.4812
N1—Cd1—N270.48 (7)C17—C19—C20122.1 (2)
N1—Cd1—N387.77 (6)N4—C19—C17117.4 (2)
N1—Cd1—N4100.04 (7)C19—C20—C21119.4 (2)
N1—Cd1—N5161.90 (7)C20—C21—C22121.0 (3)
N1—Cd1—N692.37 (7)C21—C22—C24121.8 (2)
N2—Cd1—N3101.93 (7)C23—C22—C24121.9 (2)
N2—Cd1—N4168.07 (7)C21—C22—C23116.2 (3)
N2—Cd1—N591.71 (7)N4—C23—C22123.8 (2)
N2—Cd1—N697.23 (7)Ag2—C25—N5176.0 (3)
N3—Cd1—N469.78 (7)Ag1—C26—N6176.6 (3)
N3—Cd1—N592.99 (7)Ag2—C27—N7179.0 (3)
N3—Cd1—N6159.69 (8)Ag1—C28—N8171.9 (3)
N4—Cd1—N597.18 (7)N1—C1—H1118.19
N4—Cd1—N690.24 (7)C2—C1—H1118.23
N5—Cd1—N693.10 (8)C4—C3—H3119.80
C26—Ag1—C28172.77 (12)C2—C3—H3119.79
C25—Ag2—C27173.82 (12)C5—C4—H4120.31
H1W—O1—H2W96 (5)C3—C4—H4120.21
Cd1—N1—C1123.81 (16)C2—C6—H6A109.50
C1—N1—C5118.9 (2)C2—C6—H6C109.49
Cd1—N1—C5117.05 (15)H6A—C6—H6B109.51
Cd1—N2—C7116.22 (16)C2—C6—H6B109.50
Cd1—N2—C11124.74 (17)H6B—C6—H6C109.40
C7—N2—C11118.3 (2)H6A—C6—H6C109.43
Cd1—N3—C13123.07 (15)C7—C8—H8119.90
Cd1—N3—C17118.12 (15)C9—C8—H8119.97
C13—N3—C17118.81 (19)C10—C9—H9120.06
Cd1—N4—C23123.82 (14)C8—C9—H9120.04
C19—N4—C23119.0 (2)N2—C11—H11118.00
Cd1—N4—C19116.63 (16)C10—C11—H11117.92
Cd1—N5—C25172.5 (2)C10—C12—H12B109.50
Cd1—N6—C26168.7 (2)C10—C12—H12C109.47
N1—C1—C2123.6 (2)H12A—C12—H12B109.55
C1—C2—C3117.0 (3)H12A—C12—H12C109.46
C1—C2—C6121.2 (3)H12B—C12—H12C109.44
C3—C2—C6121.8 (3)C10—C12—H12A109.41
C2—C3—C4120.4 (3)N3—C13—H13117.87
C3—C4—C5119.5 (3)C14—C13—H13117.87
N1—C5—C4120.6 (2)C16—C15—H15119.64
C4—C5—C7121.9 (2)C14—C15—H15119.70
N1—C5—C7117.45 (18)C15—C16—H16120.23
N2—C7—C5117.68 (19)C17—C16—H16120.32
C5—C7—C8121.7 (2)C14—C18—H18B109.43
N2—C7—C8120.6 (2)C14—C18—H18C109.46
C7—C8—C9120.1 (3)C14—C18—H18A109.46
C8—C9—C10119.9 (2)H18A—C18—H18C109.45
C9—C10—C11116.9 (2)H18B—C18—H18C109.52
C11—C10—C12121.6 (3)H18A—C18—H18B109.51
C9—C10—C12121.5 (2)C19—C20—H20120.28
N2—C11—C10124.1 (3)C21—C20—H20120.32
N3—C13—C14124.3 (2)C22—C21—H21119.51
C13—C14—C18121.3 (2)C20—C21—H21119.53
C15—C14—C18122.6 (3)N4—C23—H23118.09
C13—C14—C15116.1 (3)C22—C23—H23118.07
C14—C15—C16120.7 (3)C22—C24—H24B109.49
C15—C16—C17119.4 (2)C22—C24—H24C109.52
N3—C17—C16120.7 (2)C22—C24—H24A109.52
C16—C17—C19122.0 (2)H24A—C24—H24C109.47
N3—C17—C19117.28 (19)H24B—C24—H24C109.43
N4—C19—C20120.5 (2)H24A—C24—H24B109.40
N2—Cd1—N1—C1175.0 (2)C17—N3—C13—C140.1 (4)
N2—Cd1—N1—C50.62 (15)Cd1—N3—C17—C16178.02 (19)
N3—Cd1—N1—C171.48 (18)Cd1—N3—C17—C192.8 (3)
N3—Cd1—N1—C5102.86 (16)C13—N3—C17—C161.8 (4)
N4—Cd1—N1—C12.46 (19)C13—N3—C17—C19177.4 (2)
N4—Cd1—N1—C5171.88 (15)Cd1—N4—C19—C179.6 (3)
N6—Cd1—N1—C188.20 (19)Cd1—N4—C19—C20171.4 (2)
N6—Cd1—N1—C597.46 (16)C23—N4—C19—C17178.8 (2)
N1—Cd1—N2—C75.87 (15)C23—N4—C19—C200.2 (4)
N1—Cd1—N2—C11175.9 (2)Cd1—N4—C23—C22169.4 (2)
N3—Cd1—N2—C789.15 (16)C19—N4—C23—C221.6 (4)
N3—Cd1—N2—C11100.78 (19)N1—C1—C2—C30.0 (4)
N5—Cd1—N2—C7177.42 (16)N1—C1—C2—C6179.8 (3)
N5—Cd1—N2—C117.4 (2)C6—C2—C3—C4178.9 (3)
N6—Cd1—N2—C784.09 (17)C1—C2—C3—C41.4 (4)
N6—Cd1—N2—C1186.0 (2)C2—C3—C4—C51.1 (5)
N1—Cd1—N3—C1373.2 (2)C3—C4—C5—N10.5 (4)
N1—Cd1—N3—C17107.04 (17)C3—C4—C5—C7179.8 (3)
N2—Cd1—N3—C133.7 (2)N1—C5—C7—N212.2 (3)
N2—Cd1—N3—C17176.55 (16)C4—C5—C7—C813.3 (4)
N4—Cd1—N3—C13174.7 (2)N1—C5—C7—C8167.4 (2)
N4—Cd1—N3—C175.49 (16)C4—C5—C7—N2167.2 (2)
N5—Cd1—N3—C1388.7 (2)C5—C7—C8—C9178.5 (2)
N5—Cd1—N3—C1791.07 (17)N2—C7—C8—C92.0 (4)
N6—Cd1—N3—C13164.0 (2)C7—C8—C9—C100.1 (4)
N6—Cd1—N3—C1716.2 (3)C8—C9—C10—C12178.7 (3)
N1—Cd1—N4—C1991.80 (19)C8—C9—C10—C111.4 (4)
N1—Cd1—N4—C2397.0 (2)C9—C10—C11—N20.8 (4)
N3—Cd1—N4—C197.96 (18)C12—C10—C11—N2179.3 (3)
N3—Cd1—N4—C23179.1 (2)N3—C13—C14—C18178.1 (3)
N5—Cd1—N4—C1982.60 (19)N3—C13—C14—C151.8 (4)
N5—Cd1—N4—C2388.6 (2)C13—C14—C15—C161.7 (4)
N6—Cd1—N4—C19175.75 (19)C18—C14—C15—C16178.3 (3)
N6—Cd1—N4—C234.6 (2)C14—C15—C16—C170.1 (5)
Cd1—N1—C1—C2172.7 (2)C15—C16—C17—N31.9 (4)
C5—N1—C1—C21.6 (4)C15—C16—C17—C19177.3 (3)
Cd1—N1—C5—C4172.8 (2)N3—C17—C19—N44.7 (3)
Cd1—N1—C5—C76.5 (3)N3—C17—C19—C20176.4 (3)
C1—N1—C5—C41.8 (3)C16—C17—C19—N4174.5 (2)
C1—N1—C5—C7178.8 (2)C16—C17—C19—C204.5 (4)
Cd1—N2—C7—C511.4 (3)C17—C19—C20—C21179.4 (3)
Cd1—N2—C7—C8168.13 (18)N4—C19—C20—C210.5 (4)
C11—N2—C7—C5177.9 (2)C19—C20—C21—C220.2 (5)
C11—N2—C7—C82.6 (3)C20—C21—C22—C231.4 (4)
Cd1—N2—C11—C10168.66 (19)C20—C21—C22—C24179.3 (3)
C7—N2—C11—C101.2 (4)C21—C22—C23—N42.2 (4)
Cd1—N3—C13—C14179.9 (2)C24—C22—C23—N4178.5 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y, z; (viii) x1, y+1, z; (ix) x, y+1, z; (x) x+1, y1, z; (xi) x+1, y, z+1; (xii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N8iii0.73 (5)2.26 (5)2.975 (5)166 (6)
O1—H2W···N7viii0.72 (5)2.23 (4)2.920 (5)162 (5)
C16—H16···O1ix0.932.533.453 (4)174
C20—H20···O1ix0.932.573.502 (4)178
C24—H24B···N8iii0.962.513.431 (4)161
Symmetry codes: (iii) x+1, y+2, z+1; (viii) x1, y+1, z; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2Cd(CN)4(C12H12N2)2]·H2O
Mr818.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6964 (4), 11.2487 (5), 15.7456 (7)
α, β, γ (°)109.525 (1), 100.572 (1), 98.324 (1)
V3)1551.30 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.39 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.799, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21735, 7667, 6749
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.03
No. of reflections7667
No. of parameters373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cd1—N12.3654 (19)Cd1—N42.3924 (19)
Cd1—N22.375 (2)Cd1—N52.291 (2)
Cd1—N32.3609 (18)Cd1—N62.299 (2)
Ag1···Ag1i3.7997 (4)Ag1···Ag2ii3.2575 (3)
N1—Cd1—N270.48 (7)N2—Cd1—N697.23 (7)
N1—Cd1—N387.77 (6)N3—Cd1—N469.78 (7)
N1—Cd1—N4100.04 (7)N3—Cd1—N592.99 (7)
N1—Cd1—N5161.90 (7)N3—Cd1—N6159.69 (8)
N1—Cd1—N692.37 (7)N4—Cd1—N597.18 (7)
N2—Cd1—N3101.93 (7)N4—Cd1—N690.24 (7)
N2—Cd1—N4168.07 (7)N5—Cd1—N693.10 (8)
N2—Cd1—N591.71 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N8i0.73 (5)2.26 (5)2.975 (5)166 (6)
O1—H2W···N7iii0.72 (5)2.23 (4)2.920 (5)162 (5)
C16—H16···O1iv0.93002.533.453 (4)174
C20—H20···O1iv0.93002.573.502 (4)178
C24—H24B···N8i0.96002.513.431 (4)161
Symmetry codes: (i) x+1, y+2, z+1; (iii) x1, y+1, z; (iv) x, y+1, z.
ππ contacts (Å, °) for (I) top
CCD is the centre-to-centre distance (distance between ring centroids), IPD is the mean interplanar distance (perpendicular distance from one plane to the neighbouring ring centroid) and SA is the mean slippage angle (angle subtended by the intercentroid vector to the plane normal); for details, see Janiak (2000). Cg3 is the centroid of the N1/C1–C5 ring, Cg4 is the centroid of the N2/C7–C11 ring and Cg5 is the centroid of the N3/C13–C17 ring.
Group1/group2CCD (Å)SA (°)IPD (Å)
Cg4–Cg3iv3.7582 (14)4.6743.271
Cg5–Cg5v3.8263 (16)1.4053.559
Symmetry codes: (iv) -x, -y + 1, -z + 1; (v) -x, -y, -z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds