Download citation
Download citation
link to html
catena-Poly[[bis­{4-[(pyrimidin-2-yl­aza­nid­yl)sulfon­yl]ani­line}cobalt(II)]-bis­[[mu]-1,3-bis­(pyridin-4-yl)propane]], [Co(C10H8N4O4S2)2(C13H14N2)]n or [Co(L)2(bpp)]n, crystallizes as a one-dimensional polymeric structure which is further stabilized by inter­molecular hydrogen bonding. The refined Flack parameter, -0.001 (10), indicates that the model represents the correct absolute structure. Investigation of the thermal stability shows that the complex is stable up to 543 K. The structure is of inter­est with respect to its electrochemical properties in the reduction reaction of H2O2 to H2O.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011302297X/wq3046sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011302297X/wq3046Isup2.hkl
Contains datablock I

CCDC reference: 935986

Introduction top

Among the various families of N-heterocycles, sulfonamides and their derivatives are a well-studied group (Bellú et al., 2005). For over half a century, sulfadiazine has been used as an anti­bacterial and an anti­malarial drug due its low cost, low toxicity and excellent activity against bacterial diseases (Navarro et al., 2001). More recently, metal–sulfadiazine complexes have shown promise as pharmaceuticals in the treatment of a variety of conditions, including arthritis, and in cardiovascular medicine (Wong & Giandomenico, 1999; Robert et al., 1996). A silver–sulfadiazine complex has become one of the most effective and widely used topical burn treatments since it was introduced by Fox in 1968 (Fox, 1968; Hindi et al., 2009). It has been shown that the activities of silver–sulfonamide complexes are superior to the sulfonamides alone or silver nitrate salts in most of the therapy cases (Baenziger & Struss, 1976; Miller et al., 2012). The crystal structures of metal–sulfadiazine with a coligand, such as 2,2'-bi­pyridine (Cabaleiro et al., 2000; Beloso et al., 2003; He et al., 2010), 4,4'-di­methyl-2,2'-bi­pyridine (Hossain & Amoroso, 2012), 1,10-phenanthroline (Hu et al., 2012), pyridine (Wang, Li et al., 2009; Wang, Zou et al., 2010), have also been reported, all of which were mononuclear. To contribute to the studies of metal–sulfadiazine complexes, we report here the synthesis and characterization of a cobalt(II) complex with sulfadiazine (HL) and 1,3-bis­(pyridin-4-yl)propane (bpp), viz. [Co(L)2(bpp)]n, (I), which exhibits a one-dimensional chain structure.

Experimental top

Synthesis and crystallization top

A mixture of Co(OAc)2.4H2O (ac is acetate; 0.013 g, 0.05 mmol), sulfadiazine (0.013 g, 0.05 mmol), 1,3-bis­(pyridin-4-yl)propane (0.011 g, 0.05 mmol), KOH (0.003 g, 0.05 mmol) and distilled water (10 ml) was added in a Teflon-lined stainless steel vessel, heated to 353 K for 48 h under autogenous pressure, and then cooled naturally to room temperature. Finally, red block-shaped crystals of (I) suitable for X-ray diffraction were collected in 43% yield. Analysis calculated for C33H32CoN10O4S2: C 52.45, H 4.27, N 18.53%; found: C 53.02, H 4.75, N 18.96. IR data (KBr, cm-1): 3971 (w), 3852 (w), 3768 (w), 3403 (vs), 2929 (w), 1618 (m), 2847 (w), 1596 (s), 1552 (w), 1502 (w), 1446 (m), 1416 (s), 1320 (w), 1269 (m), 1226 (w), 1136 (s), 1086 (m), 1010 (w), 980 (w), 805 (w), 721 (w), 683 (w), 650 (w), 587(s), 555 (m), 524 (m).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Results and discussion top

As shown in Fig. 1, the structural unit of (I) consists of one cobalt ion, two deprotonated sulfadiazine ligands and {namely 4-[(pyrimidin-2-yl­aza­nidyl)sulfonyl]­aniline} one 1,3-bis­(pyridin-4-yl)propane ligand. The central CoII ion is hexacoordinated, displaying a distorted o­cta­hedral geometry, involving four N atoms from two deprotonated sulfadiazine ligands and two N atoms from two bridging bpp ligands. The Co—N(pyrimidine) bond lengths [2.230 (2) and 2.192 (2) Å] are slightly longer than the Co—N(sulfonamide) bond lengths [2.149 (2) and 2.1512 (19) Å], and the Co—N(bpp) bond lengths are 2.141 (2) and 2.153 (2) Å (Table 2). The absolute structure was confirmed by the refined Flack parameter of -0.001 (10) (Flack, 1983; Flack & Bernardinelli, 2000).

In the crystal structure, the bpp ligands act as bidentate bridging connectors linking CoII ions into a one-dimensional chain extending along the c axis where the separation of adjacent CoII ions is 11.335 (2) Å (Fig. 2); this is shorter than the separation observed in a Co complex containing 1,3-bis­(pyridin-4-yl)propane (Li, Cao et al., 2005). This difference is probably a reflection of the larger dihedral angle of 91.8° between the planes of the two pyridine rings of the bpp ligand, compared to the dihedral angle of 80.6° in the previously reported complex. Different types of hydrogen bonds are observed in the structure of (I). The uncoordinated sulfadiazine amino groups act as hydrogen-bond donors, forming hydrogen bonds to sulfonate O atoms and pyrimidine N atoms (Table 3). There is also a weak hydrogen-bonding inter­action between a sulfonamide O atom and a benzyl C atom (C2—H2···O4iv; see Fig. 3 and Table 3).

Through hydrogen-bonding inter­actions and inter­molecular force inter­actions, the one-dimensional chains are extended into a three-dimensional supra­molecular framework with microporous channels along the c axis (Fig. 4).

Power X-ray diffraction analysis (PXRD) was carried out on the bulk sample to confirm the homogeneity of the material synthesized under solvothermal conditions. The data was collected on a Bruker D8 Focus X-ray diffractometer using Cu Kα radiation, and the correlated simulated powder patterns were obtained from the single-crystal data. As depicted in Fig. 5, the prominant peaks of the PXRD patterns resemble the simulated peaks from single-crystal data for (I), indicating that the bulk products obtained is homogenous in nature.

In order to study the thermal stability of (I), thermogravimetric/differential thermal analysis (TG–DTA) of (I) was carried out in air from 298 to 1073 K at a rate of 10 K min-1 using crystalline samples. As shown in Fig. 6, the DTA curve gave two weak endothermic peaks centered at 597 and 756 K, and one strong exothermic peak centered at 873 K, which showed the chemical or physical changes occurring in the corresponding temperature ranges. The TG analysis showed that the first sharp drop of weigh was observed started from 543 and ended to 763 K, with a weight loss of 56.1% (calculated 59.2%) corresponding to one 1,3-bis­(pyridin-4-yl)propane molecule and one sulfadiazine ligand per [Co(L)2(bpp)]n formula unit, which indicated the stability of the framework of (I) up to 543 K. The second sharp weight change of 32.6% (calculated 33.0%) after 763 K can be attributed to loss of the other sulfadiazine ligand per formula unit. The remaining 10.9% may be CoO, in agreement with the theoretical value of 9.9%.

A cyclic voltammetry (CV) experiment was determined at a scan rate of 50 mV s-1 (Dickinson et al., 1999; Zhao et al., 2008). The results are presented in Fig. 7. The bare screen-printed carbon working electrode (SPCE) in PBS (KH2PO4 buffer solution, c = 0.1 mol L-1, pH = 7.0) exhibited the anodic peak of H2O2 at -0.72 V for (I) (see b in Fig. 7) after adding a H2O2 solution of 10.0 mM. The modified electrodes of the SPCE|Sample of (I) showed that the anodic current increased noticeably while the cathodic current decreased (see c in Fig. 7), which indicated (I) had an electrocatalytic response to H2O2 resulting from the reduction of H2O2 to H2O (Li, Zha et al., 2011); the oxidation peak potentials had a slight negative shift, which is attributed to the subtle electrochemical properties of the complexe (Hong & Ma, 2013). The electrocatalytic behaviour is understandable, in which (I) holds active π electrons, thus H2O2 can obtain the electrons and then are reduced to be H2O, in the experiments above.

In summary, a cobalt(II) complex based on sulfadiazine and 1,3-bis­(pyridin-4-yl) propane was prepared and exhibited a one-dimensional chain structure, which was further extended into a three-dimensional network by inter­molecular hydrogen-bond inter­actions. The complex is stable up to 543 K and displays catalytic activity towards the reduction reaction of H2O2 to H2O.

Related literature top

For related literature, see: Baenziger & Struss (1976); Bellú et al. (2005); Dickinson et al. (1999); Flack (1983); Fox (1968); He et al. (2010); Hindi et al. (2009); Hong & Ma (2013); Hossain & Amoroso (2012); Hu et al. (2012); Li et al. (2005, 2011); Miller et al. (2012); Navarro et al. (2001); Robert et al. (1996); Wang et al. (2009, 2010); Wong & Giandomenico (1999); Zhao et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SMART (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CoII ion in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) x, y, z-1.]
[Figure 2] Fig. 2. A view of the one-dimensional polymeric sructure of (I).
[Figure 3] Fig. 3. A view of the intermolecular hydrogen bonds (dashed lines) in (I).
[Figure 4] Fig. 4. Packing structure along the c axis of (I).
[Figure 5] Fig. 5. Experimental and simulated powder XRD patterns of (I).
[Figure 6] Fig. 6. The TGA–DTA curve for (I).
[Figure 7] Fig. 7. Cyclic voltammograms in PBS solution (pH = 7.0), showing (a) the bare SPCE, (b) SPCE after adding H2O2 and (c) SPCE|Sample of (I) after adding H2O2.
catena-Poly[[bis{4-[(pyrimidin-2-ylazanidyl)sulfonyl]aniline}cobalt(II)]-bis[µ-1,3-bis(pyridin-4-yl)propane]] top
Crystal data top
[Co(C10H8N4O4S2)2(C13H14N2)]F(000) = 782
Mr = 755.76Dx = 1.470 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6651 reflections
a = 9.5651 (10) Åθ = 1.9–27.6°
b = 16.6002 (17) ŵ = 0.68 mm1
c = 11.3351 (12) ÅT = 296 K
β = 108.400 (1)°Block, red
V = 1707.8 (3) Å30.41 × 0.34 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
7675 independent reflections
Radiation source: fine-focus sealed tube6733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.758, Tmax = 0.827k = 2021
14950 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7675 reflectionsΔρmax = 0.34 e Å3
451 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983; Flack & Bernardinelli, 2000), 3603 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (10)
Crystal data top
[Co(C10H8N4O4S2)2(C13H14N2)]V = 1707.8 (3) Å3
Mr = 755.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5651 (10) ŵ = 0.68 mm1
b = 16.6002 (17) ÅT = 296 K
c = 11.3351 (12) Å0.41 × 0.34 × 0.28 mm
β = 108.400 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7675 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6733 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.827Rint = 0.037
14950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.25 e Å3
7675 reflectionsAbsolute structure: Flack (1983; Flack & Bernardinelli, 2000), 3603 Friedel pairs
451 parametersAbsolute structure parameter: 0.001 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.01810 (3)0.328109 (18)0.79725 (3)0.03396 (8)
S10.34898 (6)0.27600 (4)0.62842 (6)0.03798 (14)
S20.33351 (8)0.44265 (4)0.95149 (7)0.04879 (17)
O10.3633 (2)0.26891 (14)0.75032 (17)0.0540 (5)
O20.3717 (2)0.20276 (11)0.55481 (19)0.0525 (5)
O30.4012 (3)0.39259 (14)0.8804 (3)0.0734 (7)
O40.3908 (3)0.43447 (15)1.0844 (2)0.0740 (7)
N10.7201 (3)0.53168 (16)0.3213 (2)0.0605 (7)
H1A0.76550.52320.24380.073*
H1B0.72220.57870.35260.073*
N20.1874 (2)0.31375 (12)0.65031 (17)0.0365 (5)
N30.2088 (2)0.33196 (16)0.43413 (17)0.0439 (5)
N40.0003 (2)0.37123 (13)0.6067 (2)0.0395 (5)
N50.4380 (3)0.77936 (17)0.8266 (3)0.0717 (8)
H5A0.47120.81480.88400.086*
H5B0.41970.79260.74990.086*
N60.1607 (3)0.42229 (14)0.8976 (2)0.0481 (5)
N70.0730 (3)0.41999 (15)0.8912 (2)0.0497 (5)
N80.0863 (3)0.51141 (16)1.0354 (2)0.0607 (7)
N90.0387 (2)0.25827 (13)0.96072 (18)0.0390 (5)
N100.1199 (2)0.22952 (13)1.73162 (18)0.0373 (4)
C10.6441 (3)0.46992 (16)0.3953 (2)0.0407 (6)
C20.6392 (3)0.39357 (17)0.3467 (2)0.0454 (6)
H20.69290.38300.26430.054*
C30.5560 (3)0.33346 (18)0.4191 (2)0.0416 (5)
H30.55310.28280.38490.050*
C40.4763 (2)0.34768 (14)0.5429 (2)0.0348 (5)
C50.4900 (3)0.42198 (16)0.5951 (2)0.0414 (6)
H50.44250.43100.67930.050*
C60.5736 (3)0.48209 (15)0.5226 (2)0.0404 (6)
H60.58340.53130.55850.048*
C70.1369 (2)0.33897 (15)0.5563 (2)0.0364 (5)
C80.1338 (3)0.3593 (2)0.3601 (3)0.0577 (8)
H80.18020.35770.27470.069*
C90.0068 (3)0.3895 (2)0.4025 (3)0.0584 (8)
H90.05600.40630.34800.070*
C100.0713 (3)0.39377 (18)0.5288 (3)0.0508 (7)
H100.16730.41290.56070.061*
C110.4141 (3)0.70175 (17)0.8575 (3)0.0473 (6)
C120.3585 (3)0.64490 (18)0.7638 (3)0.0495 (7)
H120.33910.65980.68110.059*
C130.3317 (3)0.56678 (17)0.7922 (3)0.0470 (6)
H130.29450.52950.72880.056*
C140.3603 (3)0.54357 (16)0.9159 (2)0.0407 (6)
C150.4154 (3)0.59968 (17)1.0103 (3)0.0461 (6)
H150.43410.58471.09290.055*
C160.4425 (3)0.67825 (16)0.9807 (3)0.0479 (7)
H160.48000.71551.04410.057*
C170.0589 (3)0.45487 (16)0.9458 (2)0.0456 (6)
C180.0318 (4)0.5326 (2)1.0673 (3)0.0729 (10)
H180.01880.57201.12820.087*
C190.1710 (4)0.5009 (2)1.0175 (3)0.0750 (10)
H190.24990.51831.04230.090*
C200.1868 (4)0.4416 (2)0.9286 (3)0.0583 (8)
H200.27760.41650.89450.070*
C210.0733 (3)0.23898 (19)1.0030 (3)0.0501 (7)
H210.16860.25230.95460.060*
C220.0543 (3)0.2011 (2)1.1125 (3)0.0579 (8)
H220.13610.19021.13760.069*
C230.1737 (3)0.23681 (17)1.0324 (2)0.0461 (6)
H230.25330.24901.00510.055*
C240.2007 (3)0.19756 (19)1.1445 (3)0.0513 (7)
H240.29660.18401.19110.062*
C250.0832 (3)0.17816 (18)1.1879 (3)0.0490 (7)
C260.0996 (4)0.1347 (3)1.3087 (3)0.0720 (10)
H26A0.07370.17231.36390.086*
H26B0.02700.09181.29110.086*
C270.2431 (4)0.09912 (19)1.3774 (3)0.0549 (7)
H27A0.31720.14131.39820.066*
H27B0.27060.06051.32440.066*
C280.2413 (3)0.05640 (17)1.4983 (2)0.0483 (7)
H28A0.17050.01261.47740.058*
H28B0.33770.03341.53930.058*
C290.2018 (3)0.11307 (15)1.5860 (2)0.0379 (5)
C300.0668 (3)0.11078 (15)1.6070 (3)0.0428 (6)
H300.00020.06981.57220.051*
C310.0312 (3)0.16860 (15)1.6787 (3)0.0414 (6)
H310.06010.16521.69120.050*
C320.2974 (3)0.17425 (17)1.6460 (3)0.0460 (6)
H320.39140.17691.63870.055*
C330.2542 (3)0.23073 (17)1.7157 (2)0.0439 (6)
H330.31980.27151.75350.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03610 (16)0.03424 (16)0.03098 (15)0.00121 (14)0.00977 (12)0.00182 (14)
S10.0335 (3)0.0383 (3)0.0402 (3)0.0039 (2)0.0089 (2)0.0050 (3)
S20.0544 (4)0.0361 (4)0.0517 (4)0.0020 (3)0.0109 (3)0.0022 (3)
O10.0445 (10)0.0724 (14)0.0442 (10)0.0044 (10)0.0127 (8)0.0171 (10)
O20.0477 (11)0.0356 (10)0.0667 (13)0.0059 (8)0.0074 (9)0.0001 (9)
O30.0660 (14)0.0492 (13)0.108 (2)0.0011 (11)0.0317 (14)0.0135 (13)
O40.0831 (16)0.0620 (14)0.0569 (13)0.0116 (12)0.0064 (12)0.0188 (11)
N10.0629 (16)0.0551 (16)0.0517 (15)0.0181 (13)0.0013 (12)0.0003 (12)
N20.0319 (9)0.0416 (13)0.0338 (10)0.0033 (9)0.0072 (8)0.0016 (9)
N30.0394 (10)0.0560 (12)0.0343 (10)0.0095 (12)0.0090 (8)0.0007 (12)
N40.0342 (11)0.0358 (11)0.0465 (12)0.0034 (9)0.0097 (9)0.0034 (9)
N50.0671 (17)0.0469 (15)0.092 (2)0.0130 (13)0.0126 (15)0.0157 (15)
N60.0594 (14)0.0392 (12)0.0469 (13)0.0097 (10)0.0186 (11)0.0081 (10)
N70.0572 (14)0.0493 (13)0.0404 (12)0.0034 (11)0.0124 (11)0.0029 (10)
N80.0749 (18)0.0503 (15)0.0549 (15)0.0025 (13)0.0178 (14)0.0155 (12)
N90.0370 (11)0.0451 (12)0.0353 (11)0.0005 (9)0.0123 (9)0.0027 (9)
N100.0406 (11)0.0375 (11)0.0345 (10)0.0011 (9)0.0129 (9)0.0019 (9)
C10.0313 (12)0.0466 (14)0.0430 (14)0.0016 (11)0.0103 (11)0.0021 (11)
C20.0445 (15)0.0538 (16)0.0329 (13)0.0002 (13)0.0052 (11)0.0066 (12)
C30.0431 (12)0.0429 (13)0.0383 (12)0.0003 (13)0.0121 (10)0.0107 (13)
C40.0294 (11)0.0398 (14)0.0355 (12)0.0029 (9)0.0107 (9)0.0010 (9)
C50.0386 (13)0.0487 (15)0.0338 (13)0.0038 (11)0.0070 (11)0.0052 (11)
C60.0388 (13)0.0390 (14)0.0432 (14)0.0009 (11)0.0126 (11)0.0068 (11)
C70.0355 (11)0.0320 (13)0.0397 (12)0.0023 (10)0.0093 (9)0.0020 (10)
C80.0562 (17)0.081 (2)0.0363 (14)0.0101 (15)0.0151 (13)0.0031 (14)
C90.0541 (17)0.074 (2)0.0535 (17)0.0136 (16)0.0264 (15)0.0051 (15)
C100.0389 (14)0.0512 (17)0.0619 (18)0.0087 (12)0.0152 (13)0.0056 (14)
C110.0332 (13)0.0430 (15)0.0646 (18)0.0002 (11)0.0140 (13)0.0080 (13)
C120.0522 (16)0.0553 (18)0.0456 (15)0.0027 (13)0.0221 (13)0.0084 (13)
C130.0555 (16)0.0469 (15)0.0405 (14)0.0022 (13)0.0177 (13)0.0065 (12)
C140.0419 (14)0.0383 (13)0.0426 (14)0.0024 (11)0.0142 (12)0.0004 (11)
C150.0521 (16)0.0455 (15)0.0343 (14)0.0052 (12)0.0046 (12)0.0011 (11)
C160.0419 (15)0.0396 (15)0.0545 (17)0.0074 (11)0.0043 (13)0.0090 (12)
C170.0594 (17)0.0349 (14)0.0422 (14)0.0003 (12)0.0157 (13)0.0010 (11)
C180.088 (3)0.070 (2)0.061 (2)0.007 (2)0.023 (2)0.0231 (17)
C190.069 (2)0.082 (3)0.075 (2)0.021 (2)0.0244 (19)0.012 (2)
C200.0569 (18)0.064 (2)0.0507 (17)0.0091 (15)0.0121 (14)0.0008 (15)
C210.0379 (14)0.0653 (19)0.0480 (16)0.0034 (13)0.0147 (12)0.0099 (13)
C220.0430 (16)0.082 (2)0.0540 (17)0.0056 (15)0.0232 (13)0.0197 (16)
C230.0380 (14)0.0569 (17)0.0449 (15)0.0048 (12)0.0152 (12)0.0085 (12)
C240.0401 (15)0.068 (2)0.0418 (15)0.0037 (13)0.0075 (12)0.0077 (14)
C250.0461 (15)0.0636 (18)0.0387 (14)0.0019 (13)0.0157 (12)0.0054 (13)
C260.060 (2)0.109 (3)0.0514 (19)0.020 (2)0.0239 (16)0.0292 (19)
C270.0690 (19)0.0560 (18)0.0450 (16)0.0125 (15)0.0258 (15)0.0018 (13)
C280.0633 (18)0.0419 (14)0.0435 (15)0.0126 (13)0.0222 (14)0.0042 (12)
C290.0454 (14)0.0350 (13)0.0342 (13)0.0068 (10)0.0142 (11)0.0079 (10)
C300.0437 (14)0.0331 (13)0.0531 (16)0.0015 (11)0.0173 (12)0.0006 (11)
C310.0407 (14)0.0362 (13)0.0529 (16)0.0004 (11)0.0227 (12)0.0036 (11)
C320.0379 (14)0.0518 (16)0.0512 (16)0.0003 (12)0.0183 (12)0.0003 (13)
C330.0381 (14)0.0490 (16)0.0413 (14)0.0040 (12)0.0079 (11)0.0059 (12)
Geometric parameters (Å, º) top
Co1—N92.141 (2)C8—H80.9300
Co1—N62.149 (2)C9—C101.370 (4)
Co1—N22.1512 (19)C9—H90.9300
Co1—N10i2.153 (2)C10—H100.9300
Co1—N72.192 (2)C11—C161.392 (4)
Co1—N42.230 (2)C11—C121.394 (4)
S1—O11.4356 (19)C12—C131.379 (4)
S1—O21.452 (2)C12—H120.9300
S1—N21.6128 (19)C13—C141.396 (4)
S1—C41.759 (2)C13—H130.9300
S2—O41.438 (2)C14—C151.390 (4)
S2—O31.445 (2)C15—C161.391 (4)
S2—N61.607 (3)C15—H150.9300
S2—C141.761 (3)C16—H160.9300
N1—C11.378 (4)C18—C191.377 (5)
N1—H1A0.8600C18—H180.9300
N1—H1B0.8600C19—C201.383 (5)
N2—C71.368 (3)C19—H190.9300
N3—C71.342 (3)C20—H200.9300
N3—C81.343 (3)C21—C221.352 (4)
N4—C101.327 (3)C21—H210.9300
N4—C71.364 (3)C22—C251.377 (4)
N5—C111.373 (4)C22—H220.9300
N5—H5A0.8600C23—C241.378 (4)
N5—H5B0.8600C23—H230.9300
N6—C171.369 (3)C24—C251.399 (4)
N7—C201.336 (4)C24—H240.9300
N7—C171.348 (4)C25—C261.511 (4)
N8—C181.338 (4)C26—C271.471 (4)
N8—C171.347 (4)C26—H26A0.9700
N9—C231.339 (3)C26—H26B0.9700
N9—C211.344 (3)C27—C281.548 (4)
N10—C311.334 (3)C27—H27A0.9700
N10—C331.353 (3)C27—H27B0.9700
N10—Co1ii2.153 (2)C28—C291.501 (3)
C1—C21.389 (4)C28—H28A0.9700
C1—C61.401 (4)C28—H28B0.9700
C2—C31.375 (4)C29—C301.385 (3)
C2—H20.9300C29—C321.392 (4)
C3—C41.389 (3)C30—C311.368 (4)
C3—H30.9300C30—H300.9300
C4—C51.392 (4)C31—H310.9300
C5—C61.377 (4)C32—C331.371 (4)
C5—H50.9300C32—H320.9300
C6—H60.9300C33—H330.9300
C8—C91.372 (4)
N9—Co1—N693.79 (9)N4—C10—H10119.2
N9—Co1—N2114.96 (8)C9—C10—H10119.2
N6—Co1—N2139.69 (9)N5—C11—C16121.5 (3)
N9—Co1—N10i87.67 (8)N5—C11—C12119.7 (3)
N6—Co1—N10i117.09 (9)C16—C11—C12118.7 (3)
N2—Co1—N10i92.89 (8)C13—C12—C11120.9 (3)
N9—Co1—N784.18 (8)C13—C12—H12119.6
N6—Co1—N761.31 (9)C11—C12—H12119.6
N2—Co1—N792.68 (8)C12—C13—C14120.1 (3)
N10i—Co1—N7171.51 (8)C12—C13—H13119.9
N9—Co1—N4165.87 (8)C14—C13—H13119.9
N6—Co1—N496.95 (8)C15—C14—C13119.6 (2)
N2—Co1—N460.91 (7)C15—C14—S2120.6 (2)
N10i—Co1—N479.28 (8)C13—C14—S2119.7 (2)
N7—Co1—N4109.05 (8)C14—C15—C16119.8 (3)
O1—S1—O2116.24 (13)C14—C15—H15120.1
O1—S1—N2105.16 (11)C16—C15—H15120.1
O2—S1—N2112.08 (11)C15—C16—C11120.8 (3)
O1—S1—C4109.04 (12)C15—C16—H16119.6
O2—S1—C4107.33 (11)C11—C16—H16119.6
N2—S1—C4106.58 (10)N8—C17—N7125.3 (3)
O4—S2—O3116.13 (16)N8—C17—N6125.6 (3)
O4—S2—N6112.57 (14)N7—C17—N6109.1 (2)
O3—S2—N6104.81 (14)N8—C18—C19125.3 (3)
O4—S2—C14107.15 (13)N8—C18—H18117.3
O3—S2—C14107.24 (13)C19—C18—H18117.3
N6—S2—C14108.65 (13)C18—C19—C20116.1 (3)
C1—N1—H1A120.0C18—C19—H19121.9
C1—N1—H1B120.0C20—C19—H19121.9
H1A—N1—H1B120.0N7—C20—C19120.7 (3)
C7—N2—S1123.79 (16)N7—C20—H20119.7
C7—N2—Co196.22 (14)C19—C20—H20119.7
S1—N2—Co1139.40 (11)N9—C21—C22123.2 (3)
C7—N3—C8114.4 (2)N9—C21—H21118.4
C10—N4—C7117.3 (2)C22—C21—H21118.4
C10—N4—Co1146.77 (19)C21—C22—C25121.6 (3)
C7—N4—Co192.83 (14)C21—C22—H22119.2
C11—N5—H5A120.0C25—C22—H22119.2
C11—N5—H5B120.0N9—C23—C24123.3 (2)
H5A—N5—H5B120.0N9—C23—H23118.3
C17—N6—S2122.8 (2)C24—C23—H23118.3
C17—N6—Co194.93 (17)C23—C24—C25119.7 (3)
S2—N6—Co1139.36 (14)C23—C24—H24120.1
C20—N7—C17118.5 (3)C25—C24—H24120.1
C20—N7—Co1146.1 (2)C22—C25—C24115.7 (2)
C17—N7—Co193.66 (17)C22—C25—C26120.0 (2)
C18—N8—C17114.0 (3)C24—C25—C26124.3 (3)
C23—N9—C21116.4 (2)C27—C26—C25119.0 (2)
C23—N9—Co1118.46 (16)C27—C26—H26A107.6
C21—N9—Co1124.89 (18)C25—C26—H26A107.6
C31—N10—C33116.5 (2)C27—C26—H26B107.6
C31—N10—Co1ii116.05 (16)C25—C26—H26B107.6
C33—N10—Co1ii125.93 (18)H26A—C26—H26B107.0
N1—C1—C2121.0 (2)C26—C27—C28112.5 (2)
N1—C1—C6120.6 (2)C26—C27—H27A109.1
C2—C1—C6118.3 (2)C28—C27—H27A109.1
C3—C2—C1120.7 (2)C26—C27—H27B109.1
C3—C2—H2119.6C28—C27—H27B109.1
C1—C2—H2119.6H27A—C27—H27B107.8
C2—C3—C4120.6 (3)C29—C28—C27112.0 (2)
C2—C3—H3119.7C29—C28—H28A109.2
C4—C3—H3119.7C27—C28—H28A109.2
C3—C4—C5119.0 (2)C29—C28—H28B109.2
C3—C4—S1120.36 (19)C27—C28—H28B109.2
C5—C4—S1120.42 (19)H28A—C28—H28B107.9
C6—C5—C4120.2 (2)C30—C29—C32116.1 (2)
C6—C5—H5119.9C30—C29—C28122.6 (3)
C4—C5—H5119.9C32—C29—C28121.1 (2)
C5—C6—C1120.7 (2)C31—C30—C29120.2 (2)
C5—C6—H6119.7C31—C30—H30119.9
C1—C6—H6119.7C29—C30—H30119.9
N3—C7—N4125.3 (2)N10—C31—C30123.8 (2)
N3—C7—N2125.8 (2)N10—C31—H31118.1
N4—C7—N2108.8 (2)C30—C31—H31118.1
N3—C8—C9124.2 (3)C33—C32—C29120.6 (2)
N3—C8—H8117.9C33—C32—H32119.7
C9—C8—H8117.9C29—C32—H32119.7
C10—C9—C8116.9 (3)N10—C33—C32122.6 (2)
C10—C9—H9121.5N10—C33—H33118.7
C8—C9—H9121.5C32—C33—H33118.7
N4—C10—C9121.6 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2iii0.862.363.168 (4)157
N5—H5A···O4iv0.862.353.051 (4)139
N1—H1A···N8v0.862.353.202 (4)173
N5—H5B···N3vi0.862.483.191 (4)140
C2—H2···O4v0.932.563.147 (4)121
Symmetry codes: (iii) x1, y+1/2, z+1; (iv) x+1, y+1/2, z+2; (v) x1, y, z1; (vi) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N4O4S2)2(C13H14N2)]
Mr755.76
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.5651 (10), 16.6002 (17), 11.3351 (12)
β (°) 108.400 (1)
V3)1707.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.41 × 0.34 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.758, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
14950, 7675, 6733
Rint0.037
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.01
No. of reflections7675
No. of parameters451
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25
Absolute structureFlack (1983; Flack & Bernardinelli, 2000), 3603 Friedel pairs
Absolute structure parameter0.001 (10)

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N92.141 (2)Co1—N10i2.153 (2)
Co1—N62.149 (2)Co1—N72.192 (2)
Co1—N22.1512 (19)Co1—N42.230 (2)
N9—Co1—N693.79 (9)N10i—Co1—N7171.51 (8)
N9—Co1—N2114.96 (8)N9—Co1—N4165.87 (8)
N9—Co1—N10i87.67 (8)N6—Co1—N496.95 (8)
N6—Co1—N10i117.09 (9)N2—Co1—N460.91 (7)
N2—Co1—N10i92.89 (8)N10i—Co1—N479.28 (8)
N9—Co1—N784.18 (8)N7—Co1—N4109.05 (8)
N6—Co1—N761.31 (9)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2ii0.862.363.168 (4)157.3
N5—H5A···O4iii0.862.353.051 (4)139.0
N1—H1A···N8iv0.862.353.202 (4)172.5
N5—H5B···N3v0.862.483.191 (4)140.1
C2—H2···O4iv0.932.563.147 (4)121.3
Symmetry codes: (ii) x1, y+1/2, z+1; (iii) x+1, y+1/2, z+2; (iv) x1, y, z1; (v) x, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds