Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, poly[[bis­[[mu]2-2-ethyl-1-(pyridin-3-ylmeth­yl)-1H-benzimidazole-[kappa]2N1:N3]copper(I)] tetra­fluoro­borate aceto­nitrile monosolvate], {[Cu(C15H15N3)2]BF4·CH3CN}n, (I), and poly[[bis­[[mu]2-2-ethyl-1-(pyridin-3-ylmeth­yl)-1H-benz­imidazole-[kappa]2N1:N3]silver(I)] perchlorate methanol monosolvate], {[Ag(C15H15N3)2]ClO4·CH3OH}n, (II), are isostructural and exhibit one-dimensional ladder-like structures in which each asymmetric unit contains one metal ion (Cu+ or Ag+), two 2-ethyl-1-(pyridin-3-ylmeth­yl)-1H-benzimidazole (bep) ligands, one counter-anion (tetra­fluoro­borate or perchlorate) and one interstitial mol­ecule (aceto­nitrile or methanol). Each metal ion exhibits a distorted tetra­hedral coordination geometry consisting of two pyridyl and two benzimidazole N atoms from four distinct ligands. Two metal ions are linked by two bep ligands to form a centrosymmetric 18-membered M2(bep)2 metallacycle, while adjacent M2(bep)2 metallacycles are further inter­linked by another two bep ligands resulting in a ladder-like array. In the extended structure, four adjacent ladder-like arrays are connected together through C-H...F, O-H...O and C-H...O hydrogen bonds between bep ligands, solvent mol­ecules and counter-anions into a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113019963/wq3040sup1.cif
Contains datablocks 1, 2, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113019963/wq30401sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113019963/wq30402sup3.hkl
Contains datablock 2

CCDC references: 964760; 964761

Introduction top

Currently, the rational design and synthesis of inorganic–organic coordination polymers have attracted considerable attention due to the intriguing variety of architectures and topologies, and potential applications in gas storage and separation, ion exchange, magnetism, and luminescence (Hill et al., 2005; Hong et al., 2007; Murray et al., 2009; Zhang, Liu et al., 2010; Zhang, Zhang et al., 2013). Many factors, such as the metal centres (as nodes), organic linkers (as building blocks), solvent molecules, temperature, templates, counter-anions etc., can affect the final architectures (Tong et al., 1998; Ferey et al., 2005; Bradshaw et al., 2005; Uemura et al., 2006; Zhang, Wang et al., 2010). In particular, the structure of the ligand and the coordination mode of the metal ion play key roles in the manipulation of the coordination polymer (Liu et al., 2007; Lee et al., 2008; Zheng et al., 2009).

There has been much inter­est and progress recently in the crystal engineering of supra­molecular architectures organized and sustained by means of bis-heterocyclic chelating or bridging ligands with pyridine, pyrazine, imidazole and diazo­les, and 4,4'-bi­pyridine and its derivatives have been the most frequently used bridging ligands to constructed inter­esting grid or chain-like coordination polymers (Hartshorn et al., 1998; Li et al., 2007; Zhai et al., 2011). Recently, pyridyl/benzimidazolyl-based ligands with a freely rotatable methyl­ene (–CH2–) juncture between the pyridyl ring and the benzimidazole moiety have attracted considerable attention for two main reasons: (i) they possess flexibility owing to the presence of the methyl­ene (–CH2–) spacer; (ii) they can act as µ2-bridging ligands via the pyridyl and benzimidazole N atoms. In previous studies, N-(pyridin-2-yl­methyl)-1H-benzimidazole (2-pb-m), N-(pyridin-3-yl­methyl)-1H-benzimidazole (3-pb-m) and N-(pyridin-4-yl­methyl)-1H-benzimidazole (4-pb-m) have been used to create some one-dimensional double-helical chains and two- and three-dimensional networks with d10 metals (Wang et al., 2009; Huang et al., 2006).

To extend the study of these types of ligands, an ethyl group was introduced into the 2-position of the benzimidazole system giving a new ligand 2-ethyl-1-(pyridin-3-yl­methyl)-1H-benzimidazole (bep) which is expected to result in inter­esting structures mediated by by steric and electronic effects of the ethyl group. In this study, two isostructural compounds, {[Cu(bep)2]BF4.CH3CN)}n, (I), and {[Ag(bep)2]ClO4.CH3OH)}n, (II), were obtained by the reaction of bep and [Cu(CH3CN)4]BF4 or AgClO4. These two isostructural complexes exhibit one-dimensional ladder-like structures which are different from previously reported complexes.

Experimental top

Synthesis and crystallization top

Bep was synthesized according to the method reported by Huang et al. (2006). For the preparation of (I), a solution of [Cu(CH3CN)4]BF4 (0.05 mmol) in a mixture of CH3CN (3 ml) and N,N-di­methyl­formamide (DMF, 3 ml) was added to bep (0.1 mmol). A yellow solution formed and was filtered off. Di­ethyl ether was diffused slowly into the solution and, after several days, yellow block-shaped crystals suitable for X-ray diffraction analysis had formed (yield ~60%). Elemental analysis calculated for C32H33BCuF4N7: C 57.71, H 4.99, N 14.72%; found: C 57.48, H 5.12, N 14.34%. For the preparation of (II), a solution of AgClO4 (0.05 mmol) in a mixture of CH3OH (3 ml) and DMF (3 ml) was added to bep (0.1 mmol). A yellow solution formed and was filtered off. Di­ethyl ether was diffused slowly into the solution and, after several days, yellow block-shaped crystals suitable for X-ray diffraction analysis had formed (yield ~80%). Elemental analysis calculated for C31H34AgClN6O5: C 52.15, H 4.80, N 11.77%; found: C 52.01, H 4.96, N 11.46%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. In both structures, all C-bound H atoms were placed in idealized positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

In order to make the refinement of the aceto­nitrile solvent molecules in (I) and the methanol solvent molecules in (II) fully anisotropic, all their C, N and O atoms were subjected to a `rigid bond' restraint (DELU instruction in SHELXL97; Sheldrick, 2008), i.e. the components of the (anisotropic) displacement parameters in the direction of the corresponding bonds were restrained to be equal within an effective standard uncertainty of 0.005 Å. In addition, within this same set of atoms, those closer than 1.7 Å were restrained with an effective standard uncertainty of 0.005 Å to have the same Uij components (SIMU instruction). The refinement of the H atoms of the solvent aceto­nitrile molecules in (II) required the inclusion of some inter­molecular restraints to avoid convergence to unreasonable inter­molecular H···H distances. The H···H inter­molecular shortest contact distances were restrained to 2.30 Å.

Results and discussion top

As compounds (I) and (II) are isostructural, only the structure of (I) is described in detail here. The asymmetric unit of (I) contains one CuI atom, two coordinated bep ligands, one tetra­fluoro­borate counter-anion and one lattice aceto­nitrile molecule (Fig. 1). The CuI centre adopts a distorted tetra­hedral coordination geometry consisting of two pyridyl (py) N atoms [N6i and N3ii; symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z] and two benzimidazole (Bm) N atoms (N1 and N4), which are from four distinct ligands. The Cu—NBm bond lengths [2.018 (2) and 2.041 (2) Å] are distinctly shorter than those of Cu—Npy [2.108 (2) and 2.155 (2) Å] due to the benzimidazole group being more electron-rich, and hence a stronger donor than the pyridyl group. The same results have been observed by others (Su et al., 1999). The bond angles around each CuI centre (Table 2) are within the expected range for similar complexes (Su et al., 1999). In (II), the Ag—NBm [2.230 (3) and 2.257 (3) Å] and Ag—Npy [2.397 (3) and 2.443 (3) Å] bond lengths are both longer than the Cu—N bonds in (I) due to the Ag+ radius being larger than that of Cu+ (Huang et al., 2006).

Two metal ions are bridged by two µ2-bep ligands, forming an 18-membered M2(bep)2 metallacycle with an M···M separation of 7.933 (1) Å for (I) and 8.167 (5) Å for (II) (Fig. 2). C—H···π inter­actions between ethyl H atoms of one ligand and the benzimidazole system of another molecule stabilize further the metallacycle [C—H···π(centroid): 3.086 Å for (I) and 3.303 Å for (II)]. Such metallacycles can be viewed as the rungs of the ladder, which are further connected by two bep ligands to form one-dimensional ladder-like arrays with the M···M separations of 9.368 (1) Å for (I) and 9.560 (7) Å for (II).

In contrast with other analogues, the title compounds exhibit one-dimensional ladder-like coordination polymers with metallacycle units, which maybe result of two factors: (i) the ligand possessing flexibility owing to the presence of a methyl­ene (–CH2–) spacer between the pyridyl ring and the benzimidazole moiety; (ii) the steric and electronic effect of the ethyl group introduced into the 2-position of benzimidazole. Thus, the present work once again emphasizes the important role played by both the metal centres, and organic linkers, on the final structures of coordination complexes.

In the crystal packing, four adjacent ladder-like arrays are connected through C—H···F, O—H···O and C—H···O hydrogen-bonding inter­actions between bep ligands, lattice solvent molecules and counter-anions into a three-dimensional supra­molecular structure. In (I), the tetra­fluoro­borate anion connects four adjacent ladder-like arrays through C19—H19A···F3, C10—H10A···F2 and C10—H10B···F4 hydrogen bonds (Table 2), forming the three-dimensional supermolecular structure (Fig. 3a). In (II), the perchlorate anion acts in the same manner through C10—H10A···O3, C23—H23A···O4, O5—H5B···O1 and C31—H31C···O3 hydrogen bonds (Table 2 and Fig. 3b).

Related literature top

For related literature, see: Bradshaw et al. (2005); Ferey et al. (2005); Hartshorn & Steel (1998); Hill et al. (2005); Hong (2007); Huang et al. (2006); Lee et al. (2008); Li et al. (2007); Liu et al. (2007); Murray et al. (2009); Su et al. (1999); Tong et al. (1998); Uemura et al. (2006); Wang et al. (2009); Zhai et al. (2011); Zhang et al. (2013); Zhang, Liu, Kanegawa & Sato (2010); Zhang, Wang, Feng & Li (2010); Zheng et al. (2009).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii and have been omitted from symmetry-generated atoms for clarity. [Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.] [Please provide fully labelled ellipsoid plot]

Fig. 2 (a) The one-dimensional ladder-like chain of (I) and (II), (b) the 18-membered M2(bep)2 metallacycle and (c) a schematic view of the one-dimensional ladder-like chain. The Cu atom and the organic linear ligands are represented by red balls and the curved line mixed linear ligands act as linkers.

Fig. 3 (a) The three-dimensional network of (I) formed by C—H···F hydrogen-bonding interactions (partial H atoms have been omitted for clarity) and (b) the three-dimensional network of (II) formed by O—H···O and C—H···O hydrogen-bonding interactions (partial H atoms have been omitted for clarity).
(1) Poly[[bis[µ2-2-ethyl-1-(pyridin-3-ylmethyl)-1H-benzimidazole-κ2N1:N3]copper(I)] tetrafluoroborate acetonitrile monosolvate] top
Crystal data top
[Cu(C15H15N3)2]BF4·C2H3NV = 1486.42 (12) Å3
Mr = 666.00Z = 2
Triclinic, P1F(000) = 688
Hall symbol: -P 1Dx = 1.488 Mg m3
a = 9.3674 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5367 (6) Åθ = 2.2–25.0°
c = 13.3150 (7) ŵ = 0.80 mm1
α = 89.912 (2)°T = 298 K
β = 72.786 (2)°Block, yellow
γ = 84.599 (1)°0.68 × 0.21 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6748 independent reflections
Radiation source: fine-focus sealed tube6004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.614, Tmax = 0.890k = 1616
14603 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0762P)2 + 1.632P]
where P = (Fo2 + 2Fc2)/3
6748 reflections(Δ/σ)max = 0.001
408 parametersΔρmax = 2.17 e Å3
20 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Cu(C15H15N3)2]BF4·C2H3Nγ = 84.599 (1)°
Mr = 666.00V = 1486.42 (12) Å3
Triclinic, P1Z = 2
a = 9.3674 (4) ÅMo Kα radiation
b = 12.5367 (6) ŵ = 0.80 mm1
c = 13.3150 (7) ÅT = 298 K
α = 89.912 (2)°0.68 × 0.21 × 0.15 mm
β = 72.786 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6004 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.890Rint = 0.020
14603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04720 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.09Δρmax = 2.17 e Å3
6748 reflectionsΔρmin = 0.91 e Å3
408 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42937 (3)0.24036 (2)0.32103 (2)0.02427 (12)
N10.2425 (2)0.25010 (17)0.27419 (17)0.0219 (4)
N20.0736 (2)0.30988 (17)0.19341 (17)0.0224 (4)
N30.4284 (2)0.36926 (18)0.28324 (19)0.0264 (5)
N40.4437 (2)0.20740 (18)0.46810 (17)0.0236 (4)
N50.3778 (2)0.18863 (17)0.64224 (17)0.0219 (4)
C10.1811 (3)0.1626 (2)0.24431 (19)0.0203 (5)
C20.2104 (3)0.0532 (2)0.2570 (2)0.0237 (5)
H2A0.27810.02790.29250.028*
C30.1360 (3)0.0165 (2)0.2153 (2)0.0262 (5)
H3A0.15370.08980.22310.031*
C40.0341 (3)0.0211 (2)0.1613 (2)0.0258 (5)
H4A0.01280.02810.13300.031*
C50.0017 (3)0.1294 (2)0.1492 (2)0.0242 (5)
H5A0.06640.15450.11400.029*
C60.0762 (3)0.1991 (2)0.19250 (19)0.0211 (5)
C70.1748 (3)0.3359 (2)0.2426 (2)0.0218 (5)
C80.2027 (3)0.4474 (2)0.2649 (2)0.0287 (6)
H8A0.16130.49690.22230.034*
H8B0.30990.45270.24630.034*
C90.1310 (4)0.4775 (3)0.3803 (3)0.0410 (7)
H9A0.15510.54770.39420.061*
H9B0.16850.42650.42250.061*
H9C0.02400.47750.39740.061*
C100.0160 (3)0.3819 (2)0.1425 (2)0.0258 (5)
H10A0.02280.34660.07950.031*
H10B0.03440.44610.12140.031*
C110.1724 (3)0.4132 (2)0.2146 (2)0.0246 (5)
C120.2054 (3)0.5024 (2)0.2813 (3)0.0348 (6)
H12A0.13170.54750.28060.042*
C130.3498 (3)0.5242 (2)0.3495 (3)0.0390 (7)
H13A0.37420.58420.39450.047*
C140.4565 (3)0.4553 (2)0.3491 (3)0.0334 (6)
H14A0.55190.46900.39660.040*
C150.2892 (3)0.3507 (2)0.2169 (2)0.0241 (5)
H15A0.26910.29270.16960.029*
C160.5692 (3)0.2153 (2)0.5031 (2)0.0224 (5)
C170.7172 (3)0.2302 (2)0.4468 (2)0.0292 (6)
H17A0.74710.23420.37390.035*
C180.8175 (3)0.2389 (2)0.5038 (2)0.0316 (6)
H18A0.91670.24900.46840.038*
C190.7736 (3)0.2327 (2)0.6133 (2)0.0305 (6)
H19A0.84370.24080.64900.037*
C200.6278 (3)0.2147 (2)0.6704 (2)0.0265 (5)
H20A0.59860.20930.74320.032*
C210.5286 (3)0.20541 (19)0.6119 (2)0.0213 (5)
C220.3333 (3)0.1911 (2)0.5532 (2)0.0225 (5)
C230.1791 (3)0.1729 (2)0.5521 (2)0.0287 (6)
H23A0.16140.20330.48930.034*
H23B0.10650.20950.61270.034*
C240.1566 (3)0.0542 (3)0.5543 (2)0.0361 (7)
H24A0.05740.04540.55090.054*
H24B0.16870.02480.61820.054*
H24C0.22940.01760.49510.054*
C250.2879 (3)0.1741 (2)0.7503 (2)0.0268 (5)
H25A0.18350.17390.75250.032*
H25B0.29500.23450.79340.032*
C260.3357 (3)0.0720 (2)0.7968 (2)0.0230 (5)
C270.3125 (3)0.0668 (2)0.9045 (2)0.0325 (6)
H27A0.27030.12670.94800.039*
C280.3528 (4)0.0283 (3)0.9463 (2)0.0364 (7)
H28A0.33780.03341.01830.044*
N70.6571 (12)0.7019 (7)0.0088 (9)0.223 (5)
C310.6053 (9)0.6234 (8)0.0375 (6)0.163 (4)
C320.5185 (11)0.5398 (8)0.0993 (5)0.329 (9)
H32A0.49360.55760.17290.493*
H32B0.57770.47180.08460.493*
H32C0.42790.53600.08020.493*
B10.1334 (4)0.7004 (3)0.1088 (3)0.0328 (7)
F10.2692 (3)0.7337 (2)0.1087 (2)0.0653 (7)
F20.0565 (4)0.77528 (18)0.06303 (19)0.0726 (8)
F30.0482 (2)0.69078 (16)0.21312 (14)0.0425 (4)
F40.1548 (2)0.60215 (14)0.05601 (14)0.0417 (4)
C290.4154 (3)0.1153 (2)0.8800 (2)0.0294 (6)
H29A0.44340.17860.90880.035*
N60.4381 (2)0.11307 (18)0.77614 (17)0.0240 (4)
C300.3979 (3)0.0203 (2)0.73583 (19)0.0216 (5)
H30A0.41250.01790.66370.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01949 (17)0.02608 (18)0.03104 (19)0.00154 (12)0.01450 (13)0.00219 (12)
N10.0167 (9)0.0234 (10)0.0271 (10)0.0003 (8)0.0096 (8)0.0004 (8)
N20.0161 (9)0.0239 (10)0.0299 (11)0.0011 (8)0.0115 (8)0.0022 (8)
N30.0185 (10)0.0249 (11)0.0380 (12)0.0013 (8)0.0121 (9)0.0007 (9)
N40.0146 (9)0.0292 (11)0.0289 (11)0.0011 (8)0.0099 (8)0.0011 (8)
N50.0154 (9)0.0236 (10)0.0273 (11)0.0013 (8)0.0083 (8)0.0017 (8)
C10.0152 (10)0.0244 (12)0.0219 (11)0.0006 (9)0.0070 (9)0.0017 (9)
C20.0184 (11)0.0272 (12)0.0265 (12)0.0003 (9)0.0091 (9)0.0022 (9)
C30.0225 (12)0.0240 (12)0.0313 (13)0.0022 (10)0.0068 (10)0.0008 (10)
C40.0201 (11)0.0290 (13)0.0295 (13)0.0060 (10)0.0081 (10)0.0028 (10)
C50.0171 (11)0.0315 (13)0.0255 (12)0.0018 (10)0.0087 (9)0.0004 (10)
C60.0149 (10)0.0244 (12)0.0237 (11)0.0000 (9)0.0059 (9)0.0017 (9)
C70.0141 (10)0.0242 (12)0.0277 (12)0.0008 (9)0.0080 (9)0.0012 (9)
C80.0227 (12)0.0249 (13)0.0428 (15)0.0024 (10)0.0161 (11)0.0018 (11)
C90.0428 (17)0.0322 (15)0.0492 (18)0.0005 (13)0.0168 (15)0.0122 (13)
C100.0187 (11)0.0287 (13)0.0336 (13)0.0021 (10)0.0133 (10)0.0078 (10)
C110.0188 (11)0.0204 (11)0.0391 (14)0.0017 (9)0.0155 (10)0.0074 (10)
C120.0233 (13)0.0239 (13)0.062 (2)0.0019 (10)0.0206 (13)0.0026 (12)
C130.0274 (14)0.0240 (13)0.067 (2)0.0042 (11)0.0185 (14)0.0142 (13)
C140.0201 (12)0.0294 (14)0.0506 (17)0.0054 (10)0.0128 (12)0.0085 (12)
C150.0188 (11)0.0237 (12)0.0334 (13)0.0006 (9)0.0136 (10)0.0010 (10)
C160.0166 (11)0.0251 (12)0.0291 (12)0.0006 (9)0.0128 (10)0.0006 (9)
C170.0182 (12)0.0389 (15)0.0330 (14)0.0041 (11)0.0112 (10)0.0081 (11)
C180.0182 (12)0.0370 (15)0.0450 (16)0.0076 (11)0.0161 (11)0.0117 (12)
C190.0247 (13)0.0316 (14)0.0442 (16)0.0055 (11)0.0232 (12)0.0062 (11)
C200.0260 (13)0.0272 (13)0.0311 (13)0.0010 (10)0.0163 (11)0.0007 (10)
C210.0165 (11)0.0188 (11)0.0300 (12)0.0003 (9)0.0097 (9)0.0012 (9)
C220.0162 (11)0.0235 (12)0.0287 (12)0.0022 (9)0.0095 (9)0.0034 (9)
C230.0129 (11)0.0407 (15)0.0341 (14)0.0028 (10)0.0092 (10)0.0014 (11)
C240.0277 (14)0.0476 (18)0.0373 (15)0.0150 (13)0.0130 (12)0.0007 (13)
C250.0204 (12)0.0294 (13)0.0271 (13)0.0046 (10)0.0037 (10)0.0032 (10)
C260.0146 (10)0.0285 (12)0.0242 (12)0.0004 (9)0.0037 (9)0.0021 (9)
C270.0305 (14)0.0385 (15)0.0249 (13)0.0033 (12)0.0046 (11)0.0073 (11)
C280.0381 (16)0.0488 (18)0.0200 (12)0.0009 (13)0.0061 (11)0.0009 (11)
N70.185 (8)0.191 (9)0.219 (10)0.045 (7)0.062 (7)0.061 (7)
C310.110 (6)0.216 (9)0.097 (5)0.067 (5)0.046 (4)0.071 (5)
C320.142 (9)0.268 (14)0.457 (17)0.053 (9)0.071 (12)0.198 (13)
B10.0459 (19)0.0272 (15)0.0255 (15)0.0008 (14)0.0120 (13)0.0028 (11)
F10.0552 (14)0.0650 (15)0.0721 (16)0.0250 (12)0.0073 (12)0.0162 (12)
F20.136 (2)0.0401 (11)0.0522 (13)0.0193 (13)0.0523 (15)0.0049 (9)
F30.0422 (10)0.0499 (11)0.0315 (9)0.0071 (8)0.0087 (8)0.0014 (8)
F40.0626 (12)0.0299 (9)0.0356 (9)0.0032 (8)0.0194 (9)0.0026 (7)
C290.0270 (13)0.0358 (14)0.0267 (13)0.0018 (11)0.0103 (11)0.0065 (11)
N60.0182 (10)0.0277 (11)0.0269 (11)0.0001 (8)0.0087 (8)0.0009 (8)
C300.0173 (11)0.0269 (12)0.0212 (11)0.0005 (9)0.0072 (9)0.0011 (9)
Geometric parameters (Å, º) top
Cu1—N12.018 (2)C14—H14A0.9300
Cu1—N42.041 (2)C15—H15A0.9300
Cu1—N6i2.108 (2)C16—C211.394 (4)
Cu1—N3ii2.155 (2)C16—C171.397 (4)
N1—C71.328 (3)C17—C181.383 (4)
N1—C11.396 (3)C17—H17A0.9300
N2—C71.364 (3)C18—C191.396 (4)
N2—C61.386 (3)C18—H18A0.9300
N2—C101.474 (3)C19—C201.392 (4)
N3—C151.341 (3)C19—H19A0.9300
N3—C141.348 (4)C20—C211.390 (3)
N3—Cu1iii2.155 (2)C20—H20A0.9300
N4—C221.320 (3)C22—C231.487 (3)
N4—C161.398 (3)C23—C241.522 (4)
N5—C221.368 (3)C23—H23A0.9700
N5—C211.386 (3)C23—H23B0.9700
N5—C251.458 (3)C24—H24A0.9600
C1—C21.393 (3)C24—H24B0.9600
C1—C61.402 (3)C24—H24C0.9600
C2—C31.380 (4)C25—C261.509 (4)
C2—H2A0.9300C25—H25A0.9700
C3—C41.403 (4)C25—H25B0.9700
C3—H3A0.9300C26—C271.387 (4)
C4—C51.384 (4)C26—C301.390 (3)
C4—H4A0.9300C27—C281.383 (4)
C5—C61.392 (4)C27—H27A0.9300
C5—H5A0.9300C28—C291.374 (4)
C7—C81.492 (4)C28—H28A0.9300
C8—C91.517 (4)N7—C311.223 (5)
C8—H8A0.9700C31—C321.482 (5)
C8—H8B0.9700C32—H32A0.9600
C9—H9A0.9600C32—H32B0.9600
C9—H9B0.9600C32—H32C0.9600
C9—H9C0.9600B1—F11.375 (4)
C10—C111.511 (4)B1—F21.379 (4)
C10—H10A0.9700B1—F41.387 (4)
C10—H10B0.9700B1—F31.394 (4)
C11—C121.383 (4)C29—N61.337 (3)
C11—C151.398 (3)C29—H29A0.9300
C12—C131.390 (4)N6—C301.348 (3)
C12—H12A0.9300N6—Cu1i2.108 (2)
C13—C141.382 (4)C30—H30A0.9300
C13—H13A0.9300
N1—Cu1—N4126.94 (9)N3—C15—H15A118.1
N1—Cu1—N6i101.41 (8)C11—C15—H15A118.1
N4—Cu1—N6i104.97 (9)C21—C16—C17120.2 (2)
N1—Cu1—N3ii118.24 (8)C21—C16—N4109.5 (2)
N4—Cu1—N3ii99.80 (9)C17—C16—N4130.3 (2)
N6i—Cu1—N3ii102.48 (9)C18—C17—C16117.4 (3)
C7—N1—C1105.5 (2)C18—C17—H17A121.3
C7—N1—Cu1128.08 (17)C16—C17—H17A121.3
C1—N1—Cu1124.81 (16)C17—C18—C19121.7 (2)
C7—N2—C6107.2 (2)C17—C18—H18A119.2
C7—N2—C10128.2 (2)C19—C18—H18A119.2
C6—N2—C10124.4 (2)C20—C19—C18121.8 (2)
C15—N3—C14117.2 (2)C20—C19—H19A119.1
C15—N3—Cu1iii119.66 (18)C18—C19—H19A119.1
C14—N3—Cu1iii119.59 (19)C21—C20—C19115.9 (2)
C22—N4—C16105.4 (2)C21—C20—H20A122.1
C22—N4—Cu1127.69 (17)C19—C20—H20A122.1
C16—N4—Cu1126.17 (17)N5—C21—C20131.3 (2)
C22—N5—C21107.0 (2)N5—C21—C16105.6 (2)
C22—N5—C25128.4 (2)C20—C21—C16123.0 (2)
C21—N5—C25124.6 (2)N4—C22—N5112.5 (2)
C2—C1—N1130.6 (2)N4—C22—C23123.8 (2)
C2—C1—C6120.1 (2)N5—C22—C23123.7 (2)
N1—C1—C6109.3 (2)C22—C23—C24111.8 (2)
C3—C2—C1117.9 (2)C22—C23—H23A109.3
C3—C2—H2A121.0C24—C23—H23A109.3
C1—C2—H2A121.0C22—C23—H23B109.3
C2—C3—C4121.4 (2)C24—C23—H23B109.3
C2—C3—H3A119.3H23A—C23—H23B107.9
C4—C3—H3A119.3C23—C24—H24A109.5
C5—C4—C3121.6 (2)C23—C24—H24B109.5
C5—C4—H4A119.2H24A—C24—H24B109.5
C3—C4—H4A119.2C23—C24—H24C109.5
C4—C5—C6116.6 (2)H24A—C24—H24C109.5
C4—C5—H5A121.7H24B—C24—H24C109.5
C6—C5—H5A121.7N5—C25—C26113.4 (2)
N2—C6—C5132.0 (2)N5—C25—H25A108.9
N2—C6—C1105.6 (2)C26—C25—H25A108.9
C5—C6—C1122.4 (2)N5—C25—H25B108.9
N1—C7—N2112.4 (2)C26—C25—H25B108.9
N1—C7—C8122.6 (2)H25A—C25—H25B107.7
N2—C7—C8124.9 (2)C27—C26—C30117.8 (2)
C7—C8—C9110.5 (2)C27—C26—C25119.9 (2)
C7—C8—H8A109.6C30—C26—C25122.3 (2)
C9—C8—H8A109.6C28—C27—C26119.2 (3)
C7—C8—H8B109.6C28—C27—H27A120.4
C9—C8—H8B109.6C26—C27—H27A120.4
H8A—C8—H8B108.1C29—C28—C27119.1 (3)
C8—C9—H9A109.5C29—C28—H28A120.4
C8—C9—H9B109.5C27—C28—H28A120.4
H9A—C9—H9B109.5N7—C31—C32170.4 (9)
C8—C9—H9C109.5C31—C32—H32A109.5
H9A—C9—H9C109.5C31—C32—H32B109.5
H9B—C9—H9C109.5H32A—C32—H32B109.5
N2—C10—C11112.0 (2)C31—C32—H32C109.5
N2—C10—H10A109.2H32A—C32—H32C109.5
C11—C10—H10A109.2H32B—C32—H32C109.5
N2—C10—H10B109.2F1—B1—F2110.7 (3)
C11—C10—H10B109.2F1—B1—F4110.3 (3)
H10A—C10—H10B107.9F2—B1—F4110.1 (3)
C12—C11—C15117.6 (2)F1—B1—F3107.9 (3)
C12—C11—C10122.0 (2)F2—B1—F3108.1 (3)
C15—C11—C10120.4 (2)F4—B1—F3109.7 (2)
C11—C12—C13119.4 (3)N6—C29—C28123.0 (3)
C11—C12—H12A120.3N6—C29—H29A118.5
C13—C12—H12A120.3C28—C29—H29A118.5
C14—C13—C12118.9 (3)C29—N6—C30117.6 (2)
C14—C13—H13A120.6C29—N6—Cu1i119.65 (18)
C12—C13—H13A120.6C30—N6—Cu1i121.62 (17)
N3—C14—C13123.0 (3)N6—C30—C26123.2 (2)
N3—C14—H14A118.5N6—C30—H30A118.4
C13—C14—H14A118.5C26—C30—H30A118.4
N3—C15—C11123.9 (2)
N4—Cu1—N1—C7113.9 (2)Cu1iii—N3—C14—C13159.6 (3)
N6i—Cu1—N1—C7127.3 (2)C12—C13—C14—N32.2 (5)
N3ii—Cu1—N1—C716.3 (2)C14—N3—C15—C111.8 (4)
N4—Cu1—N1—C182.9 (2)Cu1iii—N3—C15—C11156.8 (2)
N6i—Cu1—N1—C135.9 (2)C12—C11—C15—N33.4 (4)
N3ii—Cu1—N1—C1146.89 (19)C10—C11—C15—N3175.6 (2)
N1—Cu1—N4—C222.2 (3)C22—N4—C16—C211.3 (3)
N6i—Cu1—N4—C22119.4 (2)Cu1—N4—C16—C21169.25 (17)
N3ii—Cu1—N4—C22134.8 (2)C22—N4—C16—C17178.6 (3)
N1—Cu1—N4—C16170.63 (19)Cu1—N4—C16—C1710.9 (4)
N6i—Cu1—N4—C1672.2 (2)C21—C16—C17—C182.5 (4)
N3ii—Cu1—N4—C1633.7 (2)N4—C16—C17—C18177.7 (3)
C7—N1—C1—C2179.8 (3)C16—C17—C18—C190.2 (4)
Cu1—N1—C1—C213.4 (4)C17—C18—C19—C201.7 (5)
C7—N1—C1—C60.9 (3)C18—C19—C20—C211.2 (4)
Cu1—N1—C1—C6165.47 (16)C22—N5—C21—C20177.2 (3)
N1—C1—C2—C3177.4 (2)C25—N5—C21—C201.4 (4)
C6—C1—C2—C31.4 (4)C22—N5—C21—C161.2 (3)
C1—C2—C3—C40.2 (4)C25—N5—C21—C16179.9 (2)
C2—C3—C4—C51.2 (4)C19—C20—C21—N5179.4 (3)
C3—C4—C5—C60.5 (4)C19—C20—C21—C161.2 (4)
C7—N2—C6—C5176.9 (3)C17—C16—C21—N5178.3 (2)
C10—N2—C6—C50.9 (4)N4—C16—C21—N51.6 (3)
C7—N2—C6—C10.8 (3)C17—C16—C21—C203.1 (4)
C10—N2—C6—C1176.8 (2)N4—C16—C21—C20177.0 (2)
C4—C5—C6—N2178.5 (3)C16—N4—C22—N50.5 (3)
C4—C5—C6—C11.1 (4)Cu1—N4—C22—N5169.83 (16)
C2—C1—C6—N2179.9 (2)C16—N4—C22—C23177.1 (2)
N1—C1—C6—N21.1 (3)Cu1—N4—C22—C2312.5 (4)
C2—C1—C6—C52.1 (4)C21—N5—C22—N40.4 (3)
N1—C1—C6—C5176.9 (2)C25—N5—C22—N4179.0 (2)
C1—N1—C7—N20.4 (3)C21—N5—C22—C23178.1 (2)
Cu1—N1—C7—N2165.38 (17)C25—N5—C22—C233.3 (4)
C1—N1—C7—C8176.5 (2)N4—C22—C23—C2497.7 (3)
Cu1—N1—C7—C817.7 (4)N5—C22—C23—C2479.7 (3)
C6—N2—C7—N10.3 (3)C22—N5—C25—C26115.1 (3)
C10—N2—C7—N1176.0 (2)C21—N5—C25—C2666.5 (3)
C6—N2—C7—C8177.1 (2)N5—C25—C26—C27151.7 (2)
C10—N2—C7—C87.1 (4)N5—C25—C26—C3030.9 (3)
N1—C7—C8—C972.1 (3)C30—C26—C27—C280.5 (4)
N2—C7—C8—C9104.4 (3)C25—C26—C27—C28178.1 (3)
C7—N2—C10—C1196.8 (3)C26—C27—C28—C290.3 (5)
C6—N2—C10—C1188.1 (3)C27—C28—C29—N60.8 (5)
N2—C10—C11—C1289.6 (3)C28—C29—N6—C300.5 (4)
N2—C10—C11—C1589.3 (3)C28—C29—N6—Cu1i168.6 (2)
C15—C11—C12—C132.1 (4)C29—N6—C30—C260.4 (4)
C10—C11—C12—C13176.9 (3)Cu1i—N6—C30—C26167.46 (18)
C11—C12—C13—C140.5 (5)C27—C26—C30—N60.9 (4)
C15—N3—C14—C131.0 (4)C25—C26—C30—N6178.4 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F2iv0.972.553.505 (4)169
C10—H10B···F40.972.393.353 (3)175
C19—H19A···F3v0.932.533.412 (3)158
Symmetry codes: (iv) x, y+1, z; (v) x+1, y+1, z+1.
(2) Poly[[bis[µ2-2-ethyl-1-(pyridin-3-ylmethyl)-1H-benzimidazole-κ2N1:N3]silver(I)] perchlorate methanol monosolvate] top
Crystal data top
[Ag(C15H15N3)2]ClO4·CH4OV = 1614 (2) Å3
Mr = 713.96Z = 2
Triclinic, P1F(000) = 732
Hall symbol: -P 1Dx = 1.469 Mg m3
a = 9.560 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.946 (10) Åθ = 2.2–27.1°
c = 13.849 (11) ŵ = 0.76 mm1
α = 90.163 (10)°T = 298 K
β = 108.773 (9)°Block, yellow
γ = 95.518 (9)°0.60 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7140 independent reflections
Radiation source: fine-focus sealed tube5396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.850, Tmax = 0.860k = 1716
10939 measured reflectionsl = 1017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.1704P]
where P = (Fo2 + 2Fc2)/3
7140 reflections(Δ/σ)max < 0.001
400 parametersΔρmax = 0.78 e Å3
9 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ag(C15H15N3)2]ClO4·CH4Oγ = 95.518 (9)°
Mr = 713.96V = 1614 (2) Å3
Triclinic, P1Z = 2
a = 9.560 (7) ÅMo Kα radiation
b = 12.946 (10) ŵ = 0.76 mm1
c = 13.849 (11) ÅT = 298 K
α = 90.163 (10)°0.60 × 0.20 × 0.18 mm
β = 108.773 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5396 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.860Rint = 0.018
10939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.78 e Å3
7140 reflectionsΔρmin = 0.51 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.09029 (3)0.24459 (2)0.33648 (2)0.05197 (11)
N10.2835 (3)0.2553 (2)0.2788 (2)0.0438 (6)
N20.4372 (3)0.3144 (2)0.1958 (2)0.0428 (6)
N30.9311 (3)0.3858 (2)0.2933 (3)0.0551 (8)
N40.0594 (3)0.2031 (2)0.4870 (2)0.0469 (7)
N50.1199 (3)0.1824 (2)0.6552 (2)0.0446 (6)
N60.0661 (3)0.1111 (2)0.7796 (2)0.0518 (7)
C10.3400 (3)0.1709 (3)0.2472 (2)0.0416 (7)
C20.3108 (4)0.0648 (3)0.2578 (3)0.0501 (8)
H2A0.24690.03980.29270.060*
C30.3800 (4)0.0015 (3)0.2145 (3)0.0575 (9)
H3A0.36260.07270.22070.069*
C40.4753 (4)0.0351 (3)0.1619 (3)0.0585 (10)
H4A0.51960.01220.13360.070*
C50.5057 (4)0.1397 (3)0.1506 (3)0.0520 (9)
H5A0.56960.16400.11550.062*
C60.4363 (3)0.2073 (3)0.1943 (2)0.0395 (7)
C70.3426 (4)0.3380 (3)0.2465 (3)0.0435 (7)
C80.3099 (5)0.4448 (3)0.2645 (3)0.0608 (10)
H8A0.20320.44710.24290.073*
H8B0.34970.49250.22360.073*
C90.3757 (7)0.4793 (4)0.3750 (4)0.0968 (17)
H9A0.35110.54810.38390.145*
H9B0.48170.47940.39600.145*
H9C0.33630.43250.41570.145*
C100.5223 (4)0.3859 (3)0.1479 (3)0.0511 (9)
H10A0.46920.44630.12590.061*
H10B0.53090.35160.08800.061*
C110.6758 (4)0.4204 (3)0.2204 (3)0.0461 (8)
C120.7055 (5)0.5094 (3)0.2813 (4)0.0722 (13)
H12A0.63090.55210.27690.087*
C130.8473 (5)0.5351 (3)0.3493 (4)0.0796 (14)
H13A0.86860.59430.39180.096*
C140.9555 (5)0.4717 (3)0.3527 (4)0.0665 (11)
H14A1.05030.48920.39850.080*
C150.7942 (4)0.3627 (3)0.2289 (3)0.0494 (8)
H15A0.77650.30360.18660.059*
C160.0661 (4)0.2120 (3)0.5159 (3)0.0427 (7)
C170.2091 (4)0.2305 (3)0.4579 (3)0.0568 (9)
H17A0.23500.23780.38770.068*
C180.3115 (4)0.2377 (3)0.5084 (4)0.0667 (11)
H18A0.40840.24930.47150.080*
C190.2722 (5)0.2277 (3)0.6133 (4)0.0676 (11)
H19A0.34320.23450.64510.081*
C200.1319 (4)0.2082 (3)0.6716 (3)0.0560 (9)
H20A0.10660.20070.74180.067*
C210.0300 (4)0.2003 (2)0.6208 (3)0.0424 (7)
C220.1662 (4)0.1848 (3)0.5719 (3)0.0445 (7)
C230.3188 (4)0.1660 (3)0.5739 (3)0.0632 (10)
H23A0.38870.18720.64060.076*
H23B0.34570.20870.52390.076*
C240.3314 (5)0.0544 (4)0.5517 (4)0.0851 (15)
H24A0.42810.04770.54690.128*
H24B0.25690.03140.48840.128*
H24C0.31730.01280.60570.128*
C250.2061 (4)0.1685 (3)0.7615 (3)0.0561 (9)
H25A0.19540.22610.80270.067*
H25B0.31030.17080.76730.067*
C260.1611 (4)0.0682 (3)0.8038 (3)0.0452 (8)
C270.1843 (5)0.0609 (3)0.9076 (3)0.0657 (11)
H27A0.22500.11860.95130.079*
C280.1472 (6)0.0313 (4)0.9453 (3)0.0785 (14)
H28A0.16160.03711.01470.094*
C290.0884 (5)0.1154 (3)0.8793 (3)0.0620 (10)
H29A0.06310.17790.90540.074*
C300.1028 (4)0.0205 (3)0.7438 (3)0.0464 (8)
H30A0.08800.01710.67420.056*
C310.9220 (17)0.5758 (11)0.0796 (13)0.298 (8)
H31A0.94620.59050.15150.446*
H31B1.00830.55660.06560.446*
H31C0.84410.51970.05870.446*
Cl10.36635 (11)0.70352 (7)0.10573 (7)0.0550 (2)
O10.2294 (5)0.7397 (4)0.1060 (5)0.152 (2)
O20.4377 (5)0.7825 (3)0.0640 (3)0.1128 (14)
O30.3390 (6)0.6084 (3)0.0533 (3)0.1209 (16)
O40.4470 (5)0.6944 (3)0.2100 (2)0.0987 (12)
O50.8712 (11)0.6702 (9)0.0222 (8)0.264 (5)
H5B0.95340.70720.03220.316*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04669 (17)0.05521 (17)0.0643 (2)0.00097 (11)0.03339 (14)0.00017 (13)
N10.0379 (14)0.0469 (15)0.0549 (17)0.0046 (11)0.0264 (13)0.0051 (13)
N20.0336 (14)0.0499 (15)0.0512 (16)0.0056 (11)0.0220 (12)0.0090 (13)
N30.0404 (16)0.0481 (17)0.079 (2)0.0061 (13)0.0221 (16)0.0025 (15)
N40.0366 (15)0.0595 (17)0.0514 (17)0.0064 (12)0.0230 (13)0.0051 (14)
N50.0391 (15)0.0459 (15)0.0494 (16)0.0010 (12)0.0164 (13)0.0036 (12)
N60.0517 (17)0.0526 (17)0.0507 (18)0.0004 (13)0.0179 (14)0.0016 (14)
C10.0349 (16)0.0498 (18)0.0422 (18)0.0062 (13)0.0148 (14)0.0045 (14)
C20.0435 (19)0.0508 (19)0.059 (2)0.0038 (15)0.0214 (17)0.0076 (16)
C30.052 (2)0.049 (2)0.071 (3)0.0085 (16)0.0176 (19)0.0019 (18)
C40.050 (2)0.059 (2)0.068 (3)0.0137 (17)0.0198 (19)0.0086 (19)
C50.0397 (18)0.070 (2)0.052 (2)0.0120 (16)0.0214 (16)0.0019 (18)
C60.0309 (15)0.0493 (18)0.0405 (17)0.0061 (13)0.0141 (13)0.0053 (14)
C70.0373 (17)0.0483 (18)0.0509 (19)0.0069 (14)0.0218 (15)0.0063 (15)
C80.057 (2)0.048 (2)0.090 (3)0.0095 (17)0.041 (2)0.008 (2)
C90.120 (5)0.064 (3)0.117 (5)0.004 (3)0.059 (4)0.024 (3)
C100.0435 (19)0.058 (2)0.061 (2)0.0123 (16)0.0272 (17)0.0223 (17)
C110.0417 (18)0.0424 (17)0.063 (2)0.0064 (14)0.0290 (17)0.0165 (16)
C120.052 (2)0.047 (2)0.127 (4)0.0122 (18)0.040 (3)0.002 (2)
C130.066 (3)0.047 (2)0.130 (4)0.0022 (19)0.038 (3)0.019 (2)
C140.046 (2)0.059 (2)0.092 (3)0.0006 (18)0.021 (2)0.007 (2)
C150.046 (2)0.0446 (18)0.066 (2)0.0075 (15)0.0290 (18)0.0054 (16)
C160.0358 (16)0.0482 (18)0.0496 (19)0.0030 (13)0.0217 (15)0.0072 (15)
C170.045 (2)0.073 (2)0.059 (2)0.0131 (18)0.0241 (18)0.0215 (19)
C180.037 (2)0.081 (3)0.090 (3)0.0152 (19)0.031 (2)0.022 (2)
C190.055 (2)0.079 (3)0.090 (3)0.014 (2)0.050 (2)0.011 (2)
C200.056 (2)0.063 (2)0.060 (2)0.0002 (18)0.0351 (19)0.0018 (18)
C210.0379 (17)0.0430 (17)0.0512 (19)0.0002 (13)0.0224 (15)0.0011 (14)
C220.0335 (16)0.0481 (18)0.054 (2)0.0011 (13)0.0184 (15)0.0011 (15)
C230.039 (2)0.082 (3)0.071 (3)0.0078 (18)0.0210 (19)0.000 (2)
C240.063 (3)0.101 (4)0.101 (4)0.032 (3)0.034 (3)0.005 (3)
C250.049 (2)0.061 (2)0.049 (2)0.0087 (17)0.0069 (17)0.0020 (17)
C260.0343 (17)0.055 (2)0.0421 (18)0.0031 (14)0.0070 (14)0.0008 (15)
C270.077 (3)0.067 (3)0.042 (2)0.003 (2)0.007 (2)0.0080 (19)
C280.103 (4)0.087 (3)0.039 (2)0.004 (3)0.015 (2)0.009 (2)
C290.066 (3)0.066 (2)0.050 (2)0.005 (2)0.0150 (19)0.0163 (19)
C300.0445 (19)0.056 (2)0.0379 (17)0.0030 (15)0.0152 (15)0.0010 (15)
C310.287 (15)0.270 (15)0.306 (17)0.150 (12)0.106 (13)0.048 (12)
Cl10.0654 (6)0.0501 (5)0.0498 (5)0.0014 (4)0.0204 (4)0.0048 (4)
O10.091 (3)0.167 (5)0.205 (6)0.039 (3)0.050 (3)0.004 (4)
O20.166 (4)0.083 (2)0.103 (3)0.015 (2)0.071 (3)0.025 (2)
O30.198 (5)0.077 (2)0.094 (3)0.017 (3)0.067 (3)0.025 (2)
O40.120 (3)0.108 (3)0.059 (2)0.006 (2)0.020 (2)0.0110 (18)
O50.216 (8)0.297 (13)0.263 (12)0.041 (9)0.077 (8)0.088 (9)
Geometric parameters (Å, º) top
Ag1—N12.230 (3)C12—H12A0.9300
Ag1—N42.257 (3)C13—C141.369 (6)
Ag1—N6i2.397 (3)C13—H13A0.9300
Ag1—N3ii2.443 (3)C14—H14A0.9300
N1—C71.309 (4)C15—H15A0.9300
N1—C11.393 (4)C16—C171.388 (5)
N2—C71.365 (4)C16—C211.393 (5)
N2—C61.386 (4)C17—C181.384 (5)
N2—C101.471 (4)C17—H17A0.9300
N3—C151.330 (5)C18—C191.388 (6)
N3—C141.339 (5)C18—H18A0.9300
N3—Ag1iii2.443 (3)C19—C201.373 (6)
N4—C221.325 (4)C19—H19A0.9300
N4—C161.397 (4)C20—C211.384 (5)
N5—C221.362 (4)C20—H20A0.9300
N5—C211.400 (4)C22—C231.494 (5)
N5—C251.458 (5)C23—C241.501 (6)
N6—C291.330 (5)C23—H23A0.9700
N6—C301.334 (5)C23—H23B0.9700
N6—Ag1i2.397 (3)C24—H24A0.9600
C1—C21.392 (5)C24—H24B0.9600
C1—C61.399 (4)C24—H24C0.9600
C2—C31.377 (5)C25—C261.509 (5)
C2—H2A0.9300C25—H25A0.9700
C3—C41.390 (6)C25—H25B0.9700
C3—H3A0.9300C26—C301.376 (5)
C4—C51.377 (5)C26—C271.387 (5)
C4—H4A0.9300C27—C281.366 (6)
C5—C61.393 (5)C27—H27A0.9300
C5—H5A0.9300C28—C291.371 (6)
C7—C81.485 (5)C28—H28A0.9300
C8—C91.503 (7)C29—H29A0.9300
C8—H8A0.9700C30—H30A0.9300
C8—H8B0.9700C31—O51.494 (9)
C9—H9A0.9600C31—H31A0.9600
C9—H9B0.9600C31—H31B0.9600
C9—H9C0.9600C31—H31C0.9600
C10—C111.511 (5)Cl1—O31.386 (4)
C10—H10A0.9700Cl1—O21.402 (3)
C10—H10B0.9700Cl1—O41.412 (4)
C11—C121.378 (6)Cl1—O11.434 (5)
C11—C151.390 (5)O5—H5B0.8500
C12—C131.388 (6)
N1—Ag1—N4134.12 (10)N3—C14—H14A118.4
N1—Ag1—N6i98.85 (11)C13—C14—H14A118.4
N4—Ag1—N6i103.37 (11)N3—C15—C11124.7 (3)
N1—Ag1—N3ii116.32 (11)N3—C15—H15A117.7
N4—Ag1—N3ii98.91 (11)C11—C15—H15A117.7
N6i—Ag1—N3ii99.63 (12)C17—C16—C21120.3 (3)
C7—N1—C1106.2 (3)C17—C16—N4130.3 (3)
C7—N1—Ag1127.2 (2)C21—C16—N4109.3 (3)
C1—N1—Ag1125.0 (2)C18—C17—C16117.5 (4)
C7—N2—C6106.9 (3)C18—C17—H17A121.3
C7—N2—C10128.2 (3)C16—C17—H17A121.3
C6—N2—C10124.9 (3)C17—C18—C19121.2 (4)
C15—N3—C14117.0 (3)C17—C18—H18A119.4
C15—N3—Ag1iii117.1 (2)C19—C18—H18A119.4
C14—N3—Ag1iii122.5 (3)C20—C19—C18122.1 (3)
C22—N4—C16105.6 (3)C20—C19—H19A119.0
C22—N4—Ag1125.9 (2)C18—C19—H19A119.0
C16—N4—Ag1127.3 (2)C19—C20—C21116.6 (4)
C22—N5—C21106.6 (3)C19—C20—H20A121.7
C22—N5—C25128.6 (3)C21—C20—H20A121.7
C21—N5—C25124.8 (3)C20—C21—C16122.3 (3)
C29—N6—C30117.7 (3)C20—C21—N5131.9 (3)
C29—N6—Ag1i120.8 (3)C16—C21—N5105.8 (3)
C30—N6—Ag1i119.6 (2)N4—C22—N5112.7 (3)
C2—C1—N1130.6 (3)N4—C22—C23123.0 (3)
C2—C1—C6120.5 (3)N5—C22—C23124.4 (3)
N1—C1—C6108.9 (3)C22—C23—C24112.8 (3)
C3—C2—C1117.5 (3)C22—C23—H23A109.0
C3—C2—H2A121.3C24—C23—H23A109.0
C1—C2—H2A121.3C22—C23—H23B109.0
C2—C3—C4121.7 (4)C24—C23—H23B109.0
C2—C3—H3A119.2H23A—C23—H23B107.8
C4—C3—H3A119.2C23—C24—H24A109.5
C5—C4—C3121.8 (3)C23—C24—H24B109.5
C5—C4—H4A119.1H24A—C24—H24B109.5
C3—C4—H4A119.1C23—C24—H24C109.5
C4—C5—C6116.9 (3)H24A—C24—H24C109.5
C4—C5—H5A121.6H24B—C24—H24C109.5
C6—C5—H5A121.6N5—C25—C26113.9 (3)
N2—C6—C5132.7 (3)N5—C25—H25A108.8
N2—C6—C1105.6 (3)C26—C25—H25A108.8
C5—C6—C1121.7 (3)N5—C25—H25B108.8
N1—C7—N2112.4 (3)C26—C25—H25B108.8
N1—C7—C8123.0 (3)H25A—C25—H25B107.7
N2—C7—C8124.5 (3)C30—C26—C27117.1 (3)
C7—C8—C9111.8 (4)C30—C26—C25122.5 (3)
C7—C8—H8A109.3C27—C26—C25120.3 (3)
C9—C8—H8A109.3C28—C27—C26119.7 (4)
C7—C8—H8B109.3C28—C27—H27A120.2
C9—C8—H8B109.3C26—C27—H27A120.2
H8A—C8—H8B107.9C27—C28—C29119.0 (4)
C8—C9—H9A109.5C27—C28—H28A120.5
C8—C9—H9B109.5C29—C28—H28A120.5
H9A—C9—H9B109.5N6—C29—C28122.7 (4)
C8—C9—H9C109.5N6—C29—H29A118.7
H9A—C9—H9C109.5C28—C29—H29A118.7
H9B—C9—H9C109.5N6—C30—C26123.9 (3)
N2—C10—C11111.8 (3)N6—C30—H30A118.1
N2—C10—H10A109.3C26—C30—H30A118.1
C11—C10—H10A109.3O5—C31—H31A109.5
N2—C10—H10B109.3O5—C31—H31B109.5
C11—C10—H10B109.3H31A—C31—H31B109.5
H10A—C10—H10B107.9O5—C31—H31C109.5
C12—C11—C15116.8 (3)H31A—C31—H31C109.5
C12—C11—C10122.2 (3)H31B—C31—H31C109.5
C15—C11—C10121.0 (3)O3—Cl1—O2114.3 (3)
C11—C12—C13119.6 (4)O3—Cl1—O4111.3 (3)
C11—C12—H12A120.2O2—Cl1—O4109.9 (2)
C13—C12—H12A120.2O3—Cl1—O1110.2 (3)
C14—C13—C12118.8 (4)O2—Cl1—O1106.2 (3)
C14—C13—H13A120.6O4—Cl1—O1104.4 (3)
C12—C13—H13A120.6C31—O5—H5B101.2
N3—C14—C13123.1 (4)
N4—Ag1—N1—C7118.2 (3)Ag1iii—N3—C14—C13158.6 (4)
N6i—Ag1—N1—C7123.3 (3)C12—C13—C14—N30.1 (8)
N3ii—Ag1—N1—C717.9 (3)C14—N3—C15—C110.9 (6)
N4—Ag1—N1—C178.5 (3)Ag1iii—N3—C15—C11158.6 (3)
N6i—Ag1—N1—C140.0 (3)C12—C11—C15—N32.1 (5)
N3ii—Ag1—N1—C1145.4 (3)C10—C11—C15—N3177.5 (3)
N1—Ag1—N4—C225.6 (3)C22—N4—C16—C17179.7 (4)
N6i—Ag1—N4—C22122.4 (3)Ag1—N4—C16—C1712.2 (5)
N3ii—Ag1—N4—C22135.4 (3)C22—N4—C16—C211.1 (4)
N1—Ag1—N4—C16171.5 (2)Ag1—N4—C16—C21167.1 (2)
N6i—Ag1—N4—C1671.7 (3)C21—C16—C17—C180.6 (6)
N3ii—Ag1—N4—C1630.5 (3)N4—C16—C17—C18178.6 (4)
C7—N1—C1—C2177.5 (4)C16—C17—C18—C190.6 (6)
Ag1—N1—C1—C211.3 (5)C17—C18—C19—C201.4 (7)
C7—N1—C1—C60.1 (4)C18—C19—C20—C210.9 (6)
Ag1—N1—C1—C6166.3 (2)C19—C20—C21—C160.4 (5)
N1—C1—C2—C3177.4 (3)C19—C20—C21—N5179.3 (4)
C6—C1—C2—C30.1 (5)C17—C16—C21—C201.2 (5)
C1—C2—C3—C40.2 (6)N4—C16—C21—C20178.2 (3)
C2—C3—C4—C50.2 (6)C17—C16—C21—N5179.7 (3)
C3—C4—C5—C60.1 (6)N4—C16—C21—N50.9 (4)
C7—N2—C6—C5177.2 (4)C22—N5—C21—C20178.6 (4)
C10—N2—C6—C51.1 (6)C25—N5—C21—C200.8 (6)
C7—N2—C6—C10.9 (3)C22—N5—C21—C160.4 (3)
C10—N2—C6—C1179.2 (3)C25—N5—C21—C16178.2 (3)
C4—C5—C6—N2177.9 (3)C16—N4—C22—N50.8 (4)
C4—C5—C6—C10.0 (5)Ag1—N4—C22—N5167.6 (2)
C2—C1—C6—N2178.4 (3)C16—N4—C22—C23177.5 (3)
N1—C1—C6—N20.5 (4)Ag1—N4—C22—C2314.1 (5)
C2—C1—C6—C50.1 (5)C21—N5—C22—N40.2 (4)
N1—C1—C6—C5177.8 (3)C25—N5—C22—N4177.4 (3)
C1—N1—C7—N20.7 (4)C21—N5—C22—C23178.0 (3)
Ag1—N1—C7—N2166.5 (2)C25—N5—C22—C234.3 (5)
C1—N1—C7—C8179.8 (3)N4—C22—C23—C2485.9 (5)
Ag1—N1—C7—C814.0 (5)N5—C22—C23—C2492.2 (5)
C6—N2—C7—N11.0 (4)C22—N5—C25—C26113.3 (4)
C10—N2—C7—N1179.2 (3)C21—N5—C25—C2669.5 (4)
C6—N2—C7—C8179.4 (3)N5—C25—C26—C3029.7 (5)
C10—N2—C7—C81.3 (6)N5—C25—C26—C27153.4 (4)
N1—C7—C8—C969.7 (5)C30—C26—C27—C281.0 (6)
N2—C7—C8—C9109.8 (4)C25—C26—C27—C28178.0 (4)
C7—N2—C10—C1192.2 (4)C26—C27—C28—C290.5 (7)
C6—N2—C10—C1189.9 (4)C30—N6—C29—C280.2 (6)
N2—C10—C11—C1292.2 (4)Ag1i—N6—C29—C28164.5 (4)
N2—C10—C11—C1587.4 (4)C27—C28—C29—N60.2 (8)
C15—C11—C12—C132.1 (6)C29—N6—C30—C260.4 (5)
C10—C11—C12—C13177.5 (4)Ag1i—N6—C30—C26164.1 (3)
C11—C12—C13—C141.1 (7)C27—C26—C30—N61.0 (5)
C15—N3—C14—C130.3 (6)C25—C26—C30—N6177.9 (3)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1iii0.852.503.275 (13)153
C10—H10A···O30.972.583.550 (7)174
C23—H23A···O4iv0.972.553.481 (6)160
C31—H31C···O3v0.962.433.343 (17)159
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.

Experimental details

(1)(2)
Crystal data
Chemical formula[Cu(C15H15N3)2]BF4·C2H3N[Ag(C15H15N3)2]ClO4·CH4O
Mr666.00713.96
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)9.3674 (4), 12.5367 (6), 13.3150 (7)9.560 (7), 12.946 (10), 13.849 (11)
α, β, γ (°)89.912 (2), 72.786 (2), 84.599 (1)90.163 (10), 108.773 (9), 95.518 (9)
V3)1486.42 (12)1614 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.800.76
Crystal size (mm)0.68 × 0.21 × 0.150.60 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.614, 0.8900.850, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
14603, 6748, 6004 10939, 7140, 5396
Rint0.0200.018
(sin θ/λ)max1)0.6490.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.09 0.044, 0.118, 1.02
No. of reflections67487140
No. of parameters408400
No. of restraints209
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.17, 0.910.78, 0.51

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (1) top
Cu1—N12.018 (2)Cu1—N6i2.108 (2)
Cu1—N42.041 (2)Cu1—N3ii2.155 (2)
N1—Cu1—N4126.94 (9)N1—Cu1—N3ii118.24 (8)
N1—Cu1—N6i101.41 (8)N4—Cu1—N3ii99.80 (9)
N4—Cu1—N6i104.97 (9)N6i—Cu1—N3ii102.48 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F2iii0.972.553.505 (4)169
C10—H10B···F40.972.393.353 (3)175
C19—H19A···F3iv0.932.533.412 (3)158
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (2) top
Ag1—N12.230 (3)Ag1—N6i2.397 (3)
Ag1—N42.257 (3)Ag1—N3ii2.443 (3)
N1—Ag1—N4134.12 (10)N1—Ag1—N3ii116.32 (11)
N1—Ag1—N6i98.85 (11)N4—Ag1—N3ii98.91 (11)
N4—Ag1—N6i103.37 (11)N6i—Ag1—N3ii99.63 (12)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1iii0.852.503.275 (13)153
C10—H10A···O30.972.583.550 (7)174
C23—H23A···O4iv0.972.553.481 (6)160
C31—H31C···O3v0.962.433.343 (17)159
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds