Download citation
Download citation
link to html
A new 3d-4f heterometallic polymer, poly[[aqua-[mu]3-chlorido-[[mu]3-4-(pyridin-4-yl)benzoato]tris­[[mu]2-4-(pyridin-4-yl)benzoato]dicopper(I)erbium(III)] dihydrate], {[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2O}n, was synthesized by the hydro­thermal reaction of Er2O3, CuCl2·2H2O and 4-(pyridin-4-yl)benzoic acid in the presence of HClO4. The asymmetric unit contains one Er3+ cation, two Cu+ cations, one Cl- anion, four deprotonated 4-(pyridin-4-yl)benzoate ligands, one coordinated aqua ligand and two solvent water mol­ecules. This tubular one-dimensional polymer is constructed from alternating clusters of europium(III)-water and copper(I) chloride bridged by 4-(pyridin-4-yl)benzoate ligands. Extensive hydrogen-bonding inter­actions involving both the coordinated and the solvent water mol­ecules provide further stabilization to the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113014765/wq3036sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014765/wq3036Isup2.hkl
Contains datablock I

CCDC reference: 935388

Comment top

The rational design and synthesis of df heterometallic complexes have attracted great interest over the last decade. The structural diversity, potential lanthanide fluorescence and magnetochemistry resulting from combining df electrons has provided the motivation for these studies (Zhao et al., 2004; Paulovič et al., 2004; Liu et al., 2013; Benelli & Gatteschi, 2002). The selection of multifunctional organic ligands is essential to the incorporation of both transition metal and lanthanide metal ions into a molecular structure. Multidentate ligands containing N- and O-atom donors have been extensively employed for this purpose as they are ideal candidates to capture both ions simultaneously (Xiang et al., 2007; Sun et al., 2005; Zhang et al., 2005; Cheng et al., 2006; Cheng, Zhang et al., 2008; Cheng, Zheng & Yang, 2008). Isonicotinic acid, which is a rigid linear ligand containing O- and N-atom donors on opposite ends of the ligand, has been used extensively in constructing frameworks consisting of hetero-Cu–Ln complexes (Zhang et al., 2005; Cheng et al., 2006; Cheng, Zhang et al., 2008; Cheng, Zheng & Yang, 2008). Compared with isonicotinic acid, 4-(pyridin-4-yl)benzoic acid (Hpyba), which has one more benzene ring and therefore a more extended structure, is preferable for the generation of more open frameworks. The pyba- ligand has been used successfully in the preparation of a range of lanthanide and transition metal complexes (Fang et al., 2013; Wang et al., 2009a,b; Fang et al., 2010; Zhang et al., 2009; Zeng et al., 2010; Mehlana et al., 2009; Jia et al., 2009; Evans & Lin, 2001; Sekiya et al., 2006; Lu & Luck, 2003; Ou et al., 2005). For example, the Yang group obtained a series of lanthanide coordination polymers with pyba- (Fang et al., 2013; Wang et al., 2009a,b; Fang et al., 2010). Chen and co-workers reported robust porous coordination polymers with ncb topology using naphthalene-2,6-dicarboxylate and pyba- as mixed linkers (Zhang et al., 2009). Zeng and co-workers synthesized a double-walled zinc–organic framework through an alternate arrangement of the long pyba- ligands (Zeng et al., 2010). Bourne and co-workers presented two new metal-coordination networks with the pyba- ligand (Mehlana et al., 2009). However, the analogous chemistry of hetero-Cu–Ln coordination polymers of pyba- is less well developed (Wang et al., 2010; Zhang et al., 2011).

Interest in the design and synthesis of hetero-Cu–Ln complexes has increased since the observation of ferromagnetic Cu–Gd coupling in hetero-Cu–Ln complexes in 1985 (Bencini et al., 1985). Up to now, hetero-Cu–Ln complexes have been well documented and can be classified into three main categories: (i) complexes constructed with mononuclear copper and lanthanide centres as building nodes, bridged by organic ligands (Wang et al., 2010); (ii) complexes built by heterometallic Cu–Ln clusters linked via organic ligands (Zhang et al., 2011); and (iii) complexes formed by linkages between copper clusters and lanthanide clusters via organic ligands (Cheng et al., 2006; Cheng, Zhang et al., 2008; Cheng, Zheng & Yang, 2008). In category (iii), copper cations exist in a variety of oligomeric and polymeric clusters, including dimers, tetramers, single and double chains, and two-dimensional layers. Among these, tetranuclear copper clusters always exhibit cubane-type structures, whereas planar copper tetranuclear clusters are less common. To the best of our knowledge, there has been little success in the design of hetero-Cu–Ln architectures with predetermined structures using the pyba- ligand (Wang et al., 2010; Zhang et al., 2011). Our first attempt was to obtain extended hetero-Cu–Ln open frameworks under hydrothermal conditions using pyba-. Unexpectedly, we obtained and report here the title heterometallic coordination polymer, {[Cu2Er(pyba)4Cl(H2O)].2H2O}n, (I), which is best described as a tubular one-dimensional heterometallic framework constructed from alternating clusters of europium(III)–water and copper(I) chloride bridged by pyba- ligands.

Complex (I) crystallizes in the triclinic space group P1, and the asymmetric unit contains one Er3+ cation, two Cu+ cations, one Cl- anion, four deprotonated pyba- ligands, one coordinated aqua ligand and two solvent water molecules (Fig. 1). The independent pyba- ligands exhibit three distinct coordination modes, where the N atom of the pyba- ligand is coordinated to a Cu+ cation in all three modes, with: (i) the two O atoms of the carboxylate group coordinated to two Er3+ cations; (ii) only one O atom of the carboxylate group coordinated to one Er3+ cation; and (iii) both O atoms of the carboxylate group chelated to one Er3+ cation. The coordination environment of the Er3+ cation can be viewed as a capped trigonal prism, featuring contributions from one terminal aqua ligand and six carboxylate O atoms from five pyba- ligands. The Er—O bond lengths range from 2.2186 (19) to 2.472 (2) Å (Table 1) are in agreement with literature values [Standard reference?]. Two crystallographically identical Er3+ cations are linked by two pyba- ligands, suggesting a dimeric [Er2(COO)2] unit with an Er···Er distance of 5.243 (1) Å. This dimeric unit is surrounded by eight pyba- ligands.

There are two types of Cu+ cation present in the structure. Atom Cu1 is four-coordinated in a distorted tetrahedral geometry by two Cl- anions and two N atoms from two pyba- ligands. The coordination geometry for three-coordinated Cu2 is trigonal-planar, involving one Cl- ligand and two N atoms of pyba-. The Cu—Cl bond lengths range from 2.5284 (11) to 2.8611 (13) Å (Table 1) and the Cu—N bond lengths are 1.914 (2) and 1.929 (2) Å. Atoms Cu1 and Cu2 are bridged by the chloride ligand to form a dinuclear unit, and these dinuclear units are coupled, forming a planar tetranuclear centrosymmetric [Cu4Cl2] cluster. In this tetranuclear [Cu4Cl2] cluster, two Cu1 atoms are tightly linked by a shared edge, while neighbouring Cu1 and Cu2 atoms are bridged via corner-sharing. The linkage between adjacent dimeric [Er2(COO)2] units and planar tetranuclear [Cu4Cl2] clusters gives rise to a tubular one-dimensional chain via pyba- ligands (Fig. 2). These tubular chains are arranged in an AAAA··· stacking mode along the [111] direction to form two-dimensional corrugated layers, which are further packed in an ABAB··· stacking mode along the [010] direction into a three-dimensional solid-state supramolecular architecture through hydrogen bonds between aqua ligands, and between aqua ligands and carboxylate O atoms (Table 2).

In summary, a new 3d–4f heterometallic polymer, (I), has been obtained under hydrothermal reaction conditions. The unexpected result obtained here indicates that structural control of coordination polymers under hydrothermal conditions remains a challenging issue in the long term. Current work is in progress towards an open framework of cluster-based hetero-Cu–Ln complexes using pyba- ligands. It is reasonable to believe that the present work will provide an important reference for projected framework structures of hetero-Cu–Ln complexex in the presence of pyba- ligands in the future.

Related literature top

For related literature, see: Bencini et al. (1985); Benelli & Gatteschi (2002); Cheng et al. (2006); Cheng, Zhang, Zheng & Yang (2008); Cheng, Zheng & Yang (2008); Evans & Lin (2001); Fang et al. (2010, 2013); Jia et al. (2009); Liu et al. (2013); Lu & Luck (2003); Mehlana et al. (2009); Ou et al. (2005); Paulovič et al. (2004); Sekiya et al. (2006); Sun et al. (2005); Wang et al. (2009a, 2009b, 2010); Xiang et al. (2007); Zeng et al. (2010); Zhang et al. (2005, 2009, 2011); Zhao et al. (2004).

Experimental top

All chemicals used during the course of this work were of reagent grade and used as received from commercial sources without further purification. A mixture of Er2O3 (0.25 mmol, 0.096 g), CuCl2.2H2O (1 mmol, 0.34 g), Hpyba (2 mmol, 0.398 g), H2O (10 ml) and HClO4 (0.385 mmol) was stirred for 1 h; the pH of the reaction system was about 2.0. The suspension was then sealed in a 30 ml Teflon-lined bomb at 443 K for 7 d, followed by cooling to room temperature. Red prismatic crystals of (I) were obtained (yield 37%, based on Er2O3). Crystals of (I) suitable for single-crystal X-ray diffraction analysis were selected directly from the sample as prepared. Analysis, calculated for C48H38ClCu2ErN4O11: C 48.99, H 3.25, N 4.76%; found: C 48.75, H 3.83, N 4.89%. IR spectroscopy (Medium?, ν, cm-1): 3515 (w), 3248 (m), 1677 (w), 1599 (s), 1564 (s), 1555 (s), 1487 (m), 1402 (s), 1337 (s), 1248 (m), 1187 (m), 1165 (m), 1140 (m), 1101 (w), 1071 (w), 832 (s), 781 (s), 757 (s), 659 (s), 591 (s), 544 (s), 480 (s).

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and Uiso(H) = 1.2Uiso(C). Water H atoms were located in difference maps and constrained to an O—H distance of 0.85 Å, with Uiso(H) = 1.5Uiso(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the tubular one-dimensional polymeric structure of (I), constructed from alternating clusters of europium(III)–water and copper(I) chloride bridged by pyba- ligands. H atoms have been omitted for clarity.
Poly[[aqua-µ3-chlorido-tris[µ3-4-(pyridin-4-yl)benzoato]tris[µ2-4-(pyridin-4-yl)benzoato]dicopper(I)erbium(III)] dihydrate] top
Crystal data top
[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2OZ = 2
Mr = 1176.63F(000) = 1170
Triclinic, P1Dx = 1.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.748 (5) ÅCell parameters from 3020 reflections
b = 13.227 (5) Åθ = 2.5–27.5°
c = 14.460 (5) ŵ = 3.02 mm1
α = 103.344 (4)°T = 293 K
β = 109.689 (4)°Prism, pink
γ = 97.861 (4)°0.20 × 0.20 × 0.15 mm
V = 2171.6 (14) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
9954 independent reflections
Radiation source: fine-focus sealed tube9336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.553, Tmax = 0.636k = 817
16861 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.4906P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
9885 reflectionsΔρmax = 1.11 e Å3
622 parametersΔρmin = 1.14 e Å3
9 restraints
Crystal data top
[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2Oγ = 97.861 (4)°
Mr = 1176.63V = 2171.6 (14) Å3
Triclinic, P1Z = 2
a = 12.748 (5) ÅMo Kα radiation
b = 13.227 (5) ŵ = 3.02 mm1
c = 14.460 (5) ÅT = 293 K
α = 103.344 (4)°0.20 × 0.20 × 0.15 mm
β = 109.689 (4)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
9954 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9336 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.636Rint = 0.017
16861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0269 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.11 e Å3
9885 reflectionsΔρmin = 1.14 e Å3
622 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.952606 (8)0.657187 (7)0.927554 (7)0.02313 (4)
Cu10.66166 (4)0.09309 (4)0.43481 (3)0.06241 (13)
Cu20.55321 (3)0.22420 (3)0.31081 (3)0.04226 (9)
Cl10.53916 (8)0.09341 (6)0.41485 (6)0.05034 (18)
O11.14982 (16)0.66526 (15)0.91351 (15)0.0391 (4)
O21.02104 (16)0.81316 (14)0.95559 (15)0.0356 (4)
O31.03638 (15)0.48241 (14)0.83599 (13)0.0318 (4)
O41.04962 (17)0.36960 (15)0.92548 (14)0.0366 (4)
O50.79398 (15)0.59387 (15)0.93852 (14)0.0354 (4)
O60.63062 (17)0.72078 (17)1.00950 (17)0.0494 (5)
O70.95571 (18)0.68743 (17)0.78209 (14)0.0389 (4)
O81.0097 (3)0.7626 (2)0.65730 (19)0.0708 (9)
OW10.79990 (17)0.79822 (16)1.03653 (17)0.0431 (5)
H1W0.738 (2)0.785 (3)1.042 (3)0.065*
H2W0.793 (3)0.845 (2)1.089 (2)0.065*
OW21.0915 (3)0.8924 (2)0.7778 (2)0.0761 (9)
H3W1.083 (5)0.841 (3)0.735 (3)0.114*
H4W1.065 (4)0.878 (4)0.833 (2)0.114*
OW30.7787 (2)0.9615 (2)1.20448 (19)0.0557 (6)
H5W0.817 (3)1.007 (3)1.199 (3)0.084*
H6W0.725 (3)0.988 (3)1.262 (2)0.084*
C10.7638 (3)0.0388 (3)0.5843 (2)0.0479 (7)
H1A0.73170.09080.60940.057*
C20.8202 (3)0.0185 (2)0.6366 (2)0.0431 (7)
H2A0.82590.00400.69490.052*
C30.8682 (2)0.0977 (2)0.60221 (18)0.0304 (5)
C40.8599 (3)0.1110 (3)0.5124 (2)0.0436 (7)
H4A0.89300.16100.48430.052*
C50.8026 (3)0.0502 (3)0.4645 (2)0.0510 (8)
H5A0.79820.06110.40450.061*
C60.9200 (2)0.16865 (19)0.66110 (17)0.0274 (5)
C70.9591 (2)0.1391 (2)0.7323 (2)0.0350 (6)
H7A0.95860.07120.74000.042*
C80.9990 (2)0.2101 (2)0.79232 (19)0.0321 (5)
H8A1.02440.18940.83990.038*
C91.00087 (19)0.31120 (19)0.78142 (17)0.0244 (4)
C100.9675 (2)0.3389 (2)0.7069 (2)0.0345 (6)
H10A0.97240.40510.69630.041*
C110.9269 (2)0.2684 (2)0.6480 (2)0.0360 (6)
H11A0.90390.28850.59900.043*
C121.03105 (19)0.39400 (19)0.85305 (17)0.0243 (4)
C130.4821 (3)0.1618 (3)0.6640 (3)0.0577 (9)
H13A0.52370.09160.62940.069*
C140.5301 (3)0.2306 (3)0.7144 (3)0.0521 (8)
H14A0.60310.20660.71250.062*
C150.4713 (2)0.3351 (2)0.76785 (19)0.0326 (5)
C160.3617 (2)0.3643 (3)0.7686 (2)0.0457 (7)
H16A0.31690.43310.80500.055*
C170.3200 (3)0.2908 (3)0.7151 (2)0.0504 (8)
H17A0.24700.31240.71600.060*
C180.5255 (2)0.4113 (2)0.81831 (18)0.0301 (5)
C190.6213 (2)0.3734 (2)0.8377 (2)0.0382 (6)
H19A0.65000.30020.82050.046*
C200.6735 (2)0.4432 (2)0.8822 (2)0.0372 (6)
H20A0.73750.41670.89420.045*
C210.6314 (2)0.5527 (2)0.90925 (18)0.0303 (5)
C220.5375 (2)0.5903 (2)0.8889 (2)0.0391 (6)
H22A0.50910.66360.90600.047*
C230.4850 (2)0.5205 (2)0.8436 (2)0.0386 (6)
H23A0.42220.54720.83000.046*
C240.6886 (2)0.6293 (2)0.95677 (19)0.0326 (5)
C250.5763 (3)0.3563 (3)0.4842 (2)0.0519 (8)
H25A0.51830.32780.52010.062*
C260.6225 (3)0.4231 (3)0.5388 (2)0.0487 (8)
H26A0.59420.44030.61020.058*
C270.7112 (2)0.4653 (2)0.48802 (19)0.0337 (5)
C280.7440 (3)0.4406 (2)0.3818 (2)0.0399 (6)
H28A0.80120.46850.34410.048*
C290.6918 (3)0.3747 (2)0.3325 (2)0.0410 (7)
H29A0.71410.36070.26180.049*
C300.7696 (2)0.5306 (2)0.54442 (19)0.0321 (5)
C310.7738 (2)0.5160 (2)0.63538 (19)0.0321 (5)
H31A0.73630.46790.66310.039*
C320.8333 (2)0.5724 (2)0.68533 (18)0.0308 (5)
H32A0.83480.56200.74640.037*
C330.8902 (2)0.6435 (2)0.64536 (18)0.0300 (5)
C340.8823 (3)0.6618 (3)0.5570 (2)0.0486 (8)
H34A0.91750.71190.53090.058*
C350.8227 (3)0.6061 (3)0.5070 (2)0.0513 (9)
H35A0.81800.61940.44790.062*
C360.9576 (2)0.7030 (2)0.6980 (2)0.0335 (6)
C371.5344 (2)1.0449 (2)1.1716 (2)0.0446 (7)
H37A1.60561.01431.16970.054*
C381.4797 (2)0.9800 (2)1.1238 (2)0.0383 (6)
H38A1.51400.90771.09130.046*
C391.3737 (2)1.02267 (19)1.12453 (18)0.0280 (5)
C401.3311 (3)1.1316 (2)1.1716 (3)0.0450 (7)
H40A1.26201.16521.17170.054*
C411.3905 (3)1.1905 (2)1.2183 (3)0.0453 (7)
H41A1.35901.26331.25030.054*
C421.3102 (2)0.95600 (19)1.07691 (18)0.0283 (5)
C431.3432 (2)0.8447 (2)1.0473 (2)0.0393 (6)
H43A1.40640.81161.05680.047*
C441.2829 (2)0.7831 (2)1.0040 (2)0.0384 (6)
H44A1.30600.70900.98450.046*
C451.1881 (2)0.8307 (2)0.98919 (18)0.0289 (5)
C461.1553 (2)0.9408 (2)1.0186 (2)0.0418 (7)
H46A1.09230.97361.00870.050*
C471.2150 (3)1.0029 (2)1.0626 (2)0.0416 (7)
H47A1.19101.07701.08270.050*
C481.1175 (2)0.7648 (2)0.94903 (18)0.0307 (5)
N10.7531 (2)0.0234 (2)0.49944 (19)0.0433 (6)
N20.3779 (2)0.1910 (2)0.66235 (18)0.0455 (6)
N30.6106 (2)0.33004 (19)0.38158 (18)0.0398 (5)
N41.4908 (2)1.14867 (19)1.22016 (17)0.0356 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02927 (7)0.02198 (6)0.02658 (6)0.01196 (4)0.01840 (5)0.00765 (4)
Cu10.0808 (3)0.0681 (3)0.0567 (2)0.0466 (3)0.0445 (2)0.0081 (2)
Cu20.0474 (2)0.04057 (19)0.04524 (19)0.01990 (16)0.02924 (17)0.00159 (15)
Cl10.0753 (5)0.0437 (4)0.0441 (4)0.0288 (4)0.0295 (4)0.0166 (3)
O10.0378 (10)0.0306 (10)0.0490 (11)0.0141 (8)0.0210 (9)0.0017 (8)
O20.0391 (10)0.0306 (9)0.0523 (11)0.0174 (8)0.0316 (9)0.0136 (8)
O30.0398 (10)0.0246 (8)0.0344 (9)0.0116 (8)0.0184 (8)0.0063 (7)
O40.0533 (11)0.0381 (10)0.0298 (9)0.0153 (9)0.0273 (9)0.0113 (8)
O50.0322 (9)0.0370 (10)0.0417 (10)0.0170 (8)0.0197 (8)0.0070 (8)
O60.0372 (10)0.0393 (11)0.0622 (13)0.0088 (9)0.0234 (10)0.0091 (10)
O70.0542 (12)0.0485 (11)0.0358 (10)0.0271 (10)0.0318 (9)0.0222 (9)
O80.112 (2)0.099 (2)0.0655 (15)0.0863 (19)0.0663 (16)0.0590 (15)
OW10.0348 (10)0.0301 (10)0.0600 (13)0.0103 (9)0.0212 (10)0.0009 (9)
OW20.118 (2)0.0802 (19)0.0671 (16)0.0729 (19)0.0531 (18)0.0351 (15)
OW30.0516 (13)0.0541 (14)0.0581 (14)0.0207 (12)0.0240 (11)0.0009 (11)
C10.0612 (19)0.0490 (17)0.0502 (17)0.0332 (16)0.0317 (15)0.0183 (14)
C20.0619 (19)0.0431 (16)0.0440 (15)0.0287 (15)0.0336 (15)0.0191 (13)
C30.0344 (12)0.0325 (13)0.0270 (11)0.0133 (11)0.0159 (10)0.0047 (10)
C40.0601 (18)0.0565 (18)0.0349 (14)0.0374 (16)0.0299 (14)0.0199 (13)
C50.071 (2)0.067 (2)0.0374 (15)0.0394 (19)0.0373 (16)0.0173 (15)
C60.0297 (11)0.0297 (12)0.0244 (11)0.0095 (10)0.0134 (9)0.0050 (9)
C70.0517 (16)0.0267 (12)0.0369 (13)0.0157 (12)0.0254 (12)0.0121 (10)
C80.0437 (14)0.0287 (12)0.0329 (12)0.0092 (11)0.0250 (11)0.0100 (10)
C90.0256 (11)0.0254 (11)0.0243 (10)0.0077 (9)0.0126 (9)0.0055 (9)
C100.0538 (16)0.0277 (12)0.0366 (13)0.0171 (12)0.0290 (13)0.0140 (11)
C110.0521 (16)0.0381 (14)0.0357 (13)0.0188 (13)0.0316 (13)0.0172 (11)
C120.0229 (10)0.0257 (11)0.0229 (10)0.0063 (9)0.0101 (9)0.0024 (9)
C130.063 (2)0.0404 (17)0.071 (2)0.0155 (16)0.0386 (19)0.0044 (16)
C140.0500 (17)0.0414 (17)0.066 (2)0.0108 (14)0.0357 (16)0.0030 (15)
C150.0338 (13)0.0371 (14)0.0286 (12)0.0183 (11)0.0134 (10)0.0047 (10)
C160.0337 (14)0.0455 (17)0.0487 (16)0.0123 (13)0.0171 (13)0.0066 (13)
C170.0333 (14)0.064 (2)0.0487 (17)0.0207 (15)0.0186 (13)0.0024 (15)
C180.0282 (11)0.0379 (14)0.0251 (11)0.0139 (11)0.0116 (9)0.0052 (10)
C190.0421 (14)0.0314 (13)0.0505 (16)0.0157 (12)0.0268 (13)0.0117 (12)
C200.0392 (14)0.0372 (14)0.0496 (15)0.0184 (12)0.0286 (13)0.0162 (12)
C210.0275 (11)0.0356 (13)0.0269 (11)0.0137 (11)0.0108 (10)0.0034 (10)
C220.0315 (13)0.0319 (13)0.0500 (16)0.0087 (11)0.0200 (12)0.0021 (12)
C230.0289 (12)0.0397 (15)0.0452 (15)0.0070 (11)0.0202 (12)0.0005 (12)
C240.0338 (13)0.0369 (14)0.0314 (12)0.0184 (11)0.0159 (11)0.0072 (11)
C250.063 (2)0.065 (2)0.0423 (16)0.0449 (18)0.0260 (15)0.0162 (15)
C260.066 (2)0.063 (2)0.0292 (13)0.0415 (18)0.0236 (14)0.0133 (13)
C270.0430 (14)0.0359 (14)0.0299 (12)0.0183 (12)0.0211 (11)0.0079 (10)
C280.0460 (15)0.0497 (17)0.0320 (13)0.0252 (14)0.0192 (12)0.0118 (12)
C290.0493 (16)0.0512 (17)0.0273 (12)0.0218 (14)0.0208 (12)0.0055 (12)
C300.0401 (13)0.0363 (13)0.0302 (12)0.0204 (12)0.0210 (11)0.0109 (10)
C310.0415 (14)0.0320 (13)0.0321 (12)0.0187 (11)0.0191 (11)0.0130 (10)
C320.0399 (13)0.0344 (13)0.0272 (11)0.0151 (11)0.0190 (11)0.0127 (10)
C330.0389 (13)0.0348 (13)0.0270 (11)0.0187 (11)0.0205 (11)0.0111 (10)
C340.078 (2)0.063 (2)0.0434 (16)0.0532 (19)0.0425 (16)0.0362 (15)
C350.082 (2)0.070 (2)0.0401 (15)0.050 (2)0.0447 (17)0.0357 (15)
C360.0453 (14)0.0379 (14)0.0337 (13)0.0232 (12)0.0261 (12)0.0167 (11)
C370.0388 (14)0.0423 (16)0.0562 (18)0.0069 (13)0.0331 (14)0.0001 (13)
C380.0376 (14)0.0305 (13)0.0473 (16)0.0031 (11)0.0281 (13)0.0026 (11)
C390.0298 (12)0.0278 (12)0.0326 (12)0.0115 (10)0.0185 (10)0.0078 (10)
C400.0414 (15)0.0300 (14)0.069 (2)0.0063 (12)0.0366 (15)0.0035 (13)
C410.0503 (17)0.0284 (13)0.0644 (19)0.0109 (13)0.0375 (16)0.0026 (13)
C420.0301 (11)0.0280 (12)0.0332 (12)0.0126 (10)0.0187 (10)0.0077 (10)
C430.0337 (13)0.0303 (13)0.0598 (17)0.0087 (11)0.0294 (13)0.0061 (12)
C440.0344 (13)0.0232 (12)0.0578 (17)0.0060 (11)0.0246 (13)0.0020 (11)
C450.0303 (12)0.0301 (12)0.0325 (12)0.0146 (10)0.0173 (10)0.0085 (10)
C460.0450 (15)0.0318 (14)0.0680 (19)0.0134 (12)0.0427 (15)0.0161 (13)
C470.0509 (16)0.0228 (12)0.0687 (19)0.0129 (12)0.0434 (16)0.0124 (12)
C480.0362 (13)0.0338 (13)0.0286 (12)0.0176 (11)0.0167 (10)0.0089 (10)
N10.0507 (14)0.0455 (14)0.0423 (13)0.0266 (12)0.0266 (12)0.0068 (11)
N20.0453 (14)0.0524 (15)0.0374 (12)0.0270 (13)0.0175 (11)0.0011 (11)
N30.0520 (14)0.0390 (13)0.0390 (12)0.0221 (11)0.0283 (11)0.0081 (10)
N40.0400 (12)0.0367 (12)0.0376 (12)0.0169 (10)0.0247 (10)0.0055 (10)
Geometric parameters (Å, º) top
Er1—O72.2186 (19)C16—H16A0.9300
Er1—O4i2.2254 (18)C17—N21.326 (4)
Er1—O52.2637 (18)C17—H17A0.9300
Er1—O32.2796 (19)C18—C231.383 (4)
Er1—OW12.310 (2)C18—C191.397 (4)
Er1—O22.3507 (18)C19—C201.375 (3)
Er1—O12.472 (2)C19—H19A0.9300
Er1—C482.757 (2)C20—C211.387 (4)
Cu1—N11.926 (2)C20—H20A0.9300
Cu1—N2ii1.929 (2)C21—C221.382 (4)
Cu1—Cl1ii2.7453 (12)C21—C241.499 (3)
Cu1—Cl12.8611 (13)C22—C231.384 (3)
Cu2—N4iii1.914 (2)C22—H22A0.9300
Cu2—N31.914 (2)C23—H23A0.9300
Cu2—Cl12.5284 (11)C25—N31.340 (4)
Cl1—Cu1ii2.7453 (12)C25—C261.373 (4)
O1—C481.251 (3)C25—H25A0.9300
O2—C481.268 (3)C26—C271.390 (4)
O3—C121.256 (3)C26—H26A0.9300
O4—C121.249 (3)C27—C281.392 (4)
O4—Er1i2.2254 (18)C27—C301.492 (3)
O5—C241.275 (3)C28—C291.379 (4)
O6—C241.242 (3)C28—H28A0.9300
O7—C361.272 (3)C29—N31.338 (4)
O8—C361.226 (3)C29—H29A0.9300
OW1—H1W0.814 (17)C30—C311.390 (3)
OW1—H2W0.831 (18)C30—C351.391 (4)
OW2—H3W0.850 (18)C31—C321.389 (3)
OW2—H4W0.837 (19)C31—H31A0.9300
OW3—H5W0.830 (18)C32—C331.379 (3)
OW3—H6W0.833 (18)C32—H32A0.9300
C1—N11.336 (4)C33—C341.387 (3)
C1—C21.384 (4)C33—C361.512 (3)
C1—H1A0.9300C34—C351.386 (4)
C2—C31.389 (4)C34—H34A0.9300
C2—H2A0.9300C35—H35A0.9300
C3—C41.386 (4)C37—N41.330 (4)
C3—C61.491 (3)C37—C381.385 (3)
C4—C51.380 (4)C37—H37A0.9300
C4—H4A0.9300C38—C391.387 (3)
C5—N11.335 (4)C38—H38A0.9300
C5—H5A0.9300C39—C401.385 (4)
C6—C111.386 (4)C39—C421.483 (3)
C6—C71.393 (3)C40—C411.379 (3)
C7—C81.394 (3)C40—H40A0.9300
C7—H7A0.9300C41—N41.333 (4)
C8—C91.385 (3)C41—H41A0.9300
C8—H8A0.9300C42—C471.387 (3)
C9—C101.388 (3)C42—C431.395 (4)
C9—C121.510 (3)C43—C441.381 (3)
C10—C111.387 (3)C43—H43A0.9300
C10—H10A0.9300C44—C451.390 (4)
C11—H11A0.9300C44—H44A0.9300
C13—N21.341 (4)C45—C461.379 (4)
C13—C141.372 (4)C45—C481.497 (3)
C13—H13A0.9300C46—C471.384 (3)
C14—C151.379 (4)C46—H46A0.9300
C14—H14A0.9300C47—H47A0.9300
C15—C161.393 (4)N2—Cu1ii1.929 (2)
C15—C181.489 (3)N4—Cu2iv1.914 (2)
C16—C171.379 (4)
O7—Er1—O4i178.71 (6)C20—C19—C18120.7 (3)
O7—Er1—O588.29 (7)C20—C19—H19A119.6
O4i—Er1—O592.65 (7)C18—C19—H19A119.6
O7—Er1—O388.03 (7)C19—C20—C21120.6 (2)
O4i—Er1—O392.99 (7)C19—C20—H20A119.7
O5—Er1—O380.28 (7)C21—C20—H20A119.7
O7—Er1—OW196.51 (8)C22—C21—C20118.8 (2)
O4i—Er1—OW182.90 (8)C22—C21—C24120.3 (2)
O5—Er1—OW174.58 (7)C20—C21—C24120.9 (2)
O3—Er1—OW1154.27 (7)C21—C22—C23120.9 (3)
O7—Er1—O285.41 (7)C21—C22—H22A119.5
O4i—Er1—O293.31 (7)C23—C22—H22A119.5
O5—Er1—O2144.37 (7)C18—C23—C22120.4 (2)
O3—Er1—O2134.34 (7)C18—C23—H23A119.8
OW1—Er1—O271.37 (7)C22—C23—H23A119.8
O7—Er1—O1100.57 (7)O6—C24—O5125.7 (2)
O4i—Er1—O178.78 (7)O6—C24—C21118.1 (2)
O5—Er1—O1161.06 (7)O5—C24—C21116.2 (2)
O3—Er1—O183.30 (6)N3—C25—C26123.2 (3)
OW1—Er1—O1120.35 (6)N3—C25—H25A118.4
O2—Er1—O153.91 (6)C26—C25—H25A118.4
O7—Er1—C4896.58 (7)C25—C26—C27120.4 (3)
O4i—Er1—C4882.34 (7)C25—C26—H26A119.8
O5—Er1—C48168.78 (7)C27—C26—H26A119.8
O3—Er1—C48109.91 (8)C26—C27—C28116.2 (2)
OW1—Er1—C4894.77 (8)C26—C27—C30121.5 (2)
O2—Er1—C4827.31 (7)C28—C27—C30122.3 (2)
O1—Er1—C4826.99 (7)C29—C28—C27120.1 (3)
N1—Cu1—N2ii160.20 (12)C29—C28—H28A120.0
N1—Cu1—Cl1ii108.67 (8)C27—C28—H28A120.0
N2ii—Cu1—Cl1ii87.98 (8)N3—C29—C28123.2 (2)
N1—Cu1—Cl197.26 (9)N3—C29—H29A118.4
N2ii—Cu1—Cl194.07 (10)C28—C29—H29A118.4
Cl1ii—Cu1—Cl187.34 (3)C31—C30—C35118.3 (2)
N4iii—Cu2—N3163.38 (11)C31—C30—C27120.4 (2)
N4iii—Cu2—Cl194.61 (8)C35—C30—C27121.2 (2)
N3—Cu2—Cl1101.79 (8)C32—C31—C30120.7 (2)
Cu2—Cl1—Cu1ii123.02 (4)C32—C31—H31A119.6
Cu2—Cl1—Cu1144.09 (4)C30—C31—H31A119.6
Cu1ii—Cl1—Cu192.66 (3)C33—C32—C31120.7 (2)
C48—O1—Er189.28 (15)C33—C32—H32A119.7
C48—O2—Er194.47 (15)C31—C32—H32A119.7
C12—O3—Er1135.69 (16)C32—C33—C34118.8 (2)
C12—O4—Er1i168.87 (18)C32—C33—C36120.9 (2)
C24—O5—Er1138.83 (17)C34—C33—C36120.3 (2)
C36—O7—Er1178.97 (18)C35—C34—C33120.7 (2)
Er1—OW1—H1W113 (2)C35—C34—H34A119.6
Er1—OW1—H2W131 (2)C33—C34—H34A119.6
H1W—OW1—H2W110 (3)C34—C35—C30120.6 (2)
H3W—OW2—H4W103 (3)C34—C35—H35A119.7
H5W—OW3—H6W104 (3)C30—C35—H35A119.7
N1—C1—C2123.4 (3)O8—C36—O7124.7 (2)
N1—C1—H1A118.3O8—C36—C33118.2 (2)
C2—C1—H1A118.3O7—C36—C33117.1 (2)
C1—C2—C3120.1 (3)N4—C37—C38123.6 (3)
C1—C2—H2A119.9N4—C37—H37A118.2
C3—C2—H2A119.9C38—C37—H37A118.2
C4—C3—C2116.2 (2)C37—C38—C39120.0 (3)
C4—C3—C6121.6 (2)C37—C38—H38A120.0
C2—C3—C6122.2 (2)C39—C38—H38A120.0
C5—C4—C3120.1 (3)C40—C39—C38116.0 (2)
C5—C4—H4A119.9C40—C39—C42121.9 (2)
C3—C4—H4A119.9C38—C39—C42122.1 (2)
N1—C5—C4123.7 (3)C41—C40—C39120.3 (3)
N1—C5—H5A118.1C41—C40—H40A119.8
C4—C5—H5A118.1C39—C40—H40A119.8
C11—C6—C7118.2 (2)N4—C41—C40123.5 (3)
C11—C6—C3119.9 (2)N4—C41—H41A118.3
C7—C6—C3121.8 (2)C40—C41—H41A118.3
C6—C7—C8120.8 (2)C47—C42—C43118.4 (2)
C6—C7—H7A119.6C47—C42—C39120.7 (2)
C8—C7—H7A119.6C43—C42—C39120.9 (2)
C9—C8—C7120.3 (2)C44—C43—C42120.6 (2)
C9—C8—H8A119.9C44—C43—H43A119.7
C7—C8—H8A119.9C42—C43—H43A119.7
C8—C9—C10119.0 (2)C43—C44—C45120.7 (2)
C8—C9—C12121.5 (2)C43—C44—H44A119.6
C10—C9—C12119.3 (2)C45—C44—H44A119.6
C11—C10—C9120.4 (2)C46—C45—C44118.8 (2)
C11—C10—H10A119.8C46—C45—C48120.1 (2)
C9—C10—H10A119.8C44—C45—C48121.0 (2)
C6—C11—C10121.1 (2)C45—C46—C47120.8 (2)
C6—C11—H11A119.4C45—C46—H46A119.6
C10—C11—H11A119.4C47—C46—H46A119.6
O4—C12—O3124.2 (2)C46—C47—C42120.8 (2)
O4—C12—C9117.5 (2)C46—C47—H47A119.6
O3—C12—C9118.3 (2)C42—C47—H47A119.6
N2—C13—C14123.0 (3)O1—C48—O2120.6 (2)
N2—C13—H13A118.5O1—C48—C45121.7 (2)
C14—C13—H13A118.5O2—C48—C45117.6 (2)
C13—C14—C15120.7 (3)O1—C48—Er163.74 (13)
C13—C14—H14A119.7O2—C48—Er158.23 (12)
C15—C14—H14A119.7C45—C48—Er1165.36 (17)
C14—C15—C16116.2 (2)C5—N1—C1116.4 (2)
C14—C15—C18120.7 (2)C5—N1—Cu1120.2 (2)
C16—C15—C18123.1 (3)C1—N1—Cu1123.2 (2)
C17—C16—C15119.7 (3)C17—N2—C13116.7 (2)
C17—C16—H16A120.2C17—N2—Cu1ii125.7 (2)
C15—C16—H16A120.2C13—N2—Cu1ii116.7 (2)
N2—C17—C16123.7 (3)C29—N3—C25116.8 (2)
N2—C17—H17A118.1C29—N3—Cu2122.83 (19)
C16—C17—H17A118.1C25—N3—Cu2120.15 (19)
C23—C18—C19118.6 (2)C37—N4—C41116.5 (2)
C23—C18—C15121.1 (2)C37—N4—Cu2iv120.37 (18)
C19—C18—C15120.3 (2)C41—N4—Cu2iv121.84 (19)
Symmetry codes: (i) x+2, y1, z2; (ii) x+1, y, z1; (iii) x1, y+1, z+1; (iv) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W···O60.81 (2)1.84 (2)2.617 (3)160 (3)
OW1—H2W···OW30.83 (2)1.93 (2)2.759 (3)176 (4)
OW2—H3W···O80.85 (2)1.91 (3)2.721 (3)158 (5)
OW2—H4W···O20.84 (2)2.08 (2)2.909 (3)169 (5)
OW3—H5W···OW2v0.83 (2)1.93 (2)2.733 (3)164 (4)
OW3—H6W···Cl1vi0.83 (2)2.57 (2)3.384 (3)166 (4)
Symmetry codes: (v) x+2, y2, z2; (vi) x, y1, z1.

Experimental details

Crystal data
Chemical formula[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2O
Mr1176.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.748 (5), 13.227 (5), 14.460 (5)
α, β, γ (°)103.344 (4), 109.689 (4), 97.861 (4)
V3)2171.6 (14)
Z2
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.553, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
16861, 9954, 9336
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.06
No. of reflections9885
No. of parameters622
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 1.14

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O72.2186 (19)Cu1—N11.926 (2)
Er1—O4i2.2254 (18)Cu1—N2ii1.929 (2)
Er1—O52.2637 (18)Cu1—Cl1ii2.7453 (12)
Er1—O32.2796 (19)Cu1—Cl12.8611 (13)
Er1—OW12.310 (2)Cu2—N4iii1.914 (2)
Er1—O22.3507 (18)Cu2—N31.914 (2)
Er1—O12.472 (2)Cu2—Cl12.5284 (11)
Er1—C482.757 (2)Cl1—Cu1ii2.7453 (12)
Symmetry codes: (i) x+2, y1, z2; (ii) x+1, y, z1; (iii) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W···O60.814 (17)1.838 (18)2.617 (3)160 (3)
OW1—H2W···OW30.831 (18)1.929 (18)2.759 (3)176 (4)
OW2—H3W···O80.850 (18)1.91 (3)2.721 (3)158 (5)
OW2—H4W···O20.837 (19)2.08 (2)2.909 (3)169 (5)
OW3—H5W···OW2iv0.830 (18)1.93 (2)2.733 (3)164 (4)
OW3—H6W···Cl1v0.833 (18)2.57 (2)3.384 (3)166 (4)
Symmetry codes: (iv) x+2, y2, z2; (v) x, y1, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds