Download citation
Download citation
link to html
In the title mixed-ligand metal-organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit con­tains a crystallographically unique CdII atom, one doubly deprotonated 4,4'-sulfonyl­dibenzoic acid ligand (H2SDBA), one 3,4,7,8-tetra­methyl-1,10-phenanthroline (TMPHEN) mol­ecule and one water mol­ecule. Each CdII centre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxyl­ate groups of three different SDBA2- ligands and one O atom from a coordinated water mol­ecule, giving a distorted CdN2O4 octa­hedral geom­etry. Single-crystal X-ray diffraction analysis reveals that the compound is a one-dimensional double-chain polymer con­taining 28-membered rings based on Cd2O2 clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O-H...O and C-H...O hydrogen bonds to form a three-dimensional supra­molecular framework. The framework is reinforced by [pi]-[pi] and C-O...[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113001716/wq3024sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113001716/wq3024Isup2.hkl
Contains datablock I

CCDC reference: 934558

Comment top

Crystal engineering of metal–organic frameworks (MOFs) has been flourishing in recent years, not only due to their intriguing structural diversity and new topologies, but also owing to their potential applications in, for example, gas storage, chemical separations, microelectronics, nonlinear optics and heterogeneous catalysis (Kitagawa et al., 2004; Ferey et al., 2005; Roy et al., 2009; Zhang et al., 2009; Jiang et al., 2010). It is well known that the construction of metal–organic compounds is usually influenced by several factors in the self-assembly process, including the organic ligands, solvents and metal atoms used (Kan et al., 2012; Liu et al., 2012). Among these factors, organic ligands play a key role in directing the ultimate architecture of a complex. A frequently employed method of constructing coordination polymers utilizes carboxylate-containing ligands with multidentate N-donor ligands.

4,4'-Sulfonyldibenzoic acid (H2SDBA), a semi-rigid V-shaped dicarboxylate ligand, is very versatile for the construction of metal–organic compounds (Zhuang et al., 2007; Lian et al., 2008; Xiao et al., 2008; Chen et al., 2008; Liu et al., 2009; Li et al., 2010). However, to the best of our knowledge, coordination polymers constructed from H2SDBA and 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) ligands have not been yet been documented in the literature. Here, we have selected H2SDBA and TMPHEN as organic ligands, generating the title coordination polymer, [Cd(TMPHEN)(SDBA)(H2O)]n, (I), the crystal structure of which is now reported.

Compound (I) crystallizes in the triclinic space group P1 and the asymmetric unit consists of a crystallographically unique CdII cation, one fully deprotonated SDBA2- ligand, one TMPHEN molecule and one aqua ligand. Each CdII centre is coordinated by two N atoms from one chelating TMPHEN ligand, three O atoms from the monodentate carboxylate groups of three different SDBA2- ligands and one O atom from a coordinated aqua molecule to give a distorted CdN2O4 octahedral geometry (Table 1). The average Cd—O and Cd—N distances in (I) are comparable with those in similar Cd compounds (Wang et al., 2011, 2012).

The dihedral angle between the two benzene rings is 83.98 (11)° and the C21—S1—C24 angle is 104.91 (12)° in the SDBA2- ligand. On the other hand, the dihedral angles between the carboxylate groups and their corresponding phenyl rings are 9.1 (3) and 22.1 (3)°. More interestingly, the H2SDBA molecule is doubly deprotonated and links three CdII cations. There are two coordination patterns for the SDBA2- ligand, with one carboxylate group in a µ1-η0:η1 monodentate mode and the other in a µ2-η2:η0 bridging mode. Two crystallographically equivalent CdII cations are bridged by two O5 atoms to form a binuclear [Cd2O2] cluster with a Cd···Cd separation of 3.6889 (4) Å. The cluster is further bridged by the SDBA2- ligand to form a one-dimensional double chain containing 28-membered rings arranged parallel to the (101) crystal direction (Fig. 2). The chelating TMPHEN ligands extend on both sides of the chain.

There are extensive inter- and intramolecular O—H···O and C—H···O hydrogen bonds connecting the one-dimensional chains of compound (I). Four hydrogen bonds (C1—H1···O2, C20—H20···O3, C29—H29···O4 and O7—H7A···O6i; see Table 2 for details and symmetry code) exist in the chain. These one-dimensional chains are linked by O7—H7B···O1v and C19—H19···O7v hydrogen bonds (Table 2) to form a two-dimensional layer. Neighbouring two-dimensional layers are interconnected by C14—H14A···O6vii, C15—H15C···O4vi and C29—H29···O4iv hydrogen bonds (Table 2), generating an extensive three-dimensional hydrogen-bond network (Fig. 3). This framework is reinforced by ππ interactions between the benzene and pyridine rings, with a Cg1···Cg2iii separation of 3.5164 (19) Å [Cg1 and Cg2 are the centroids of the C24–C29 and N2/C7–C11 rings, respectively; symmetry code: (iii) x - 1, y, z + 1], and by C—O···π interactions [O6···Cg3viii = 3.888 (3) Å, C30···Cg3viii = 4.189 (4) Å and C30—O6···Cg3viii = 95.6 (2)°; O6···Cg4ix = 3.823 (4) Å, C30···Cg4ix = 4.747 (4) Å and C30—O6···Cg4ix = 133.1 (2)°; Cg3 and Cg4 are the centroids of the N1/C1/C2/C3/C4/C12 and N2/C7/C8/C9/C10/C11 rings, respectively; symmetry codes: (viii) x - 1, y, z + 1; (ix) x, y, z + 1].

Approximately 3.6% of the crystal volume is occupied by solvent molecules with a volume of ~48.5 Å3 in each cell unit [1362.5 s.u.? Å3], based on a PLATON calculation (Spek, 2009). However, no significant electron density was found in the structure, and therefore any solvent that is present is likely to be disordered.

In conclusion, we have synthesized a one-dimensional double-chain polymer containing 28-membered rings based on Cd2O2 clusters, with a Cd···Cd separation of 3.6889 (4) Å.

Related literature top

For related literature, see: Chen et al. (2008); Ferey et al. (2005); Jiang et al. (2010); Kan et al. (2012); Kitagawa et al. (2004); Li et al. (2010); Lian et al. (2008); Liu et al. (2009, 2012); Roy et al. (2009); Spek (2009); Wang et al. (2011, 2012); Xiao et al. (2008); Zhang et al. (2009); Zhuang et al. (2007).

Experimental top

A mixture of Cd(NO3)2.6H2O (34.5 mg, 0.1 mmol), H2SDBA (30.6 mg, 0.1 mmol), TMPHEN (35.4 mg, 0.15 mmol) and KOH (11.2 mg, 0.2 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 423 K for 72 h. After cooling to room temperature, white block-shaped crystals of (I) were collected by filtration and washed with water and ethanol several times (yield 12.8%, based on TMPHEN). Elemental analysis for C30H26CdN2O7S: C 53.70, N 4.17, H 3.91%; found: C 53.82, N 4.18, H 3.92%.

Refinement top

C-bound H atoms were placed in calculated positions and treated using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the tert-butyl H atom [Not present]. The water H atoms were located in difference Fourier syntheses and refined with an O—H restraint of 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker 2000); cell refinement: SAINT (Bruker 2000); data reduction: SAINT (Bruker 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CdII cation in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x + 1, y, z - 1.]
[Figure 2] Fig. 2. A view of the one-dimensional double-chain framework in (I).
[Figure 3] Fig. 3. A perspective view of the three-dimensional supramolecular structure of (I), showing the O—H···O and C—H···O hydrogen bonds (dashed lines).
[Figure 4] Fig. 4. A perspective view of the three-dimensional supramolecular structure of (I), showing the ππ and C—O···π interactions (dashed lines).
Poly[aqua(µ3-4,4'-sulfonyldibenzoato)(3,4,7,8-tetramethyl-1,10-phenanthroline-κ2N,N')cadmium(II)] top
Crystal data top
[Cd(C14H8O6S)(C16H16N2)(H2O)]Z = 2
Mr = 671.01F(000) = 680
Triclinic, P1Dx = 1.636 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0981 (10) ÅCell parameters from 4957 reflections
b = 12.2931 (16) Åθ = 1.2–22.1°
c = 14.6297 (19) ŵ = 0.93 mm1
α = 78.157 (1)°T = 296 K
β = 80.994 (1)°Block, white
γ = 74.005 (1)°0.21 × 0.19 × 0.17 mm
V = 1362.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4803 independent reflections
Radiation source: fine-focus sealed tube4277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.822, Tmax = 0.854k = 1413
9634 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2431P]
where P = (Fo2 + 2Fc2)/3
4741 reflections(Δ/σ)max = 0.002
374 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cd(C14H8O6S)(C16H16N2)(H2O)]γ = 74.005 (1)°
Mr = 671.01V = 1362.5 (3) Å3
Triclinic, P1Z = 2
a = 8.0981 (10) ÅMo Kα radiation
b = 12.2931 (16) ŵ = 0.93 mm1
c = 14.6297 (19) ÅT = 296 K
α = 78.157 (1)°0.21 × 0.19 × 0.17 mm
β = 80.994 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4277 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.854Rint = 0.021
9634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
4741 reflectionsΔρmin = 0.32 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3142 (3)0.3183 (2)0.07919 (19)0.0366 (6)
H11.35510.26550.13110.044*
C21.3056 (3)0.4339 (2)0.0780 (2)0.0388 (7)
C31.2521 (3)0.5131 (2)0.0004 (2)0.0387 (7)
C41.2061 (3)0.4727 (2)0.07410 (19)0.0360 (6)
C51.1521 (4)0.5460 (2)0.1597 (2)0.0461 (7)
H51.14860.62360.16780.055*
C61.1066 (4)0.5061 (2)0.2282 (2)0.0476 (8)
H61.07620.55640.28320.057*
C71.1031 (3)0.3889 (2)0.21953 (18)0.0350 (6)
C81.0514 (3)0.3453 (2)0.28993 (18)0.0376 (6)
C91.0460 (3)0.2312 (2)0.27268 (17)0.0356 (6)
C101.0920 (3)0.1658 (2)0.18593 (17)0.0339 (6)
H101.08350.09020.17360.041*
C111.1533 (3)0.3139 (2)0.13621 (17)0.0292 (6)
C121.2113 (3)0.3552 (2)0.06447 (18)0.0304 (6)
C131.3562 (4)0.4655 (3)0.1625 (2)0.0534 (8)
H13A1.46170.48950.14530.080*
H13B1.37270.39990.21190.080*
H13C1.26630.52700.18380.080*
C141.2401 (4)0.6392 (2)0.0079 (2)0.0538 (8)
H14A1.25840.65370.05130.081*
H14B1.12770.68330.02410.081*
H14C1.32660.66080.05560.081*
C151.0046 (4)0.4209 (3)0.3819 (2)0.0556 (8)
H15A1.02320.37430.42960.083*
H15B1.07540.47450.39950.083*
H15C0.88520.46210.37520.083*
C160.9960 (4)0.1749 (3)0.3422 (2)0.0507 (8)
H16A0.88340.21660.35960.076*
H16B0.99430.09730.31440.076*
H16C1.07850.17460.39700.076*
C171.0626 (3)0.1183 (2)0.19563 (17)0.0325 (6)
C180.9035 (3)0.1503 (2)0.26445 (17)0.0308 (6)
C190.7429 (3)0.1420 (2)0.24992 (17)0.0356 (6)
H190.73280.11120.19870.043*
C200.5973 (3)0.1787 (2)0.30994 (18)0.0379 (6)
H200.49040.17110.30040.046*
C210.6139 (3)0.2269 (2)0.38465 (16)0.0341 (6)
C220.7735 (4)0.2343 (3)0.40152 (18)0.0445 (7)
H220.78300.26600.45230.053*
C230.9190 (4)0.1942 (2)0.34246 (18)0.0394 (7)
H231.02710.19650.35480.047*
C240.4685 (3)0.2485 (2)0.56979 (16)0.0327 (6)
C250.4716 (4)0.1374 (2)0.61449 (18)0.0396 (6)
H250.45190.08510.58240.048*
C260.5045 (3)0.1051 (2)0.70747 (18)0.0365 (6)
H260.50490.03100.73860.044*
C270.5368 (3)0.1833 (2)0.75415 (16)0.0282 (5)
C280.5344 (3)0.2939 (2)0.70755 (17)0.0352 (6)
H280.55680.34610.73880.042*
C290.4992 (3)0.3272 (2)0.61512 (17)0.0373 (6)
H290.49620.40170.58410.045*
C300.5822 (3)0.1482 (2)0.85360 (17)0.0313 (6)
Cd11.27446 (2)0.086184 (14)0.012979 (11)0.02632 (7)
N11.2686 (3)0.27842 (17)0.01212 (14)0.0311 (5)
N21.1463 (3)0.20235 (17)0.12011 (14)0.0292 (5)
O11.0385 (2)0.09173 (16)0.11947 (12)0.0389 (4)
O21.2029 (2)0.12224 (18)0.21453 (13)0.0473 (5)
O30.2866 (3)0.2449 (2)0.43810 (14)0.0602 (6)
O40.4012 (3)0.41442 (18)0.42760 (13)0.0578 (6)
O50.5341 (2)0.06058 (14)0.90363 (11)0.0292 (4)
O60.6625 (3)0.20462 (18)0.88124 (14)0.0546 (6)
S10.42270 (9)0.29193 (7)0.45114 (4)0.04112 (18)
O71.2279 (2)0.06950 (15)0.03637 (12)0.0413 (5)
H7B1.13430.05420.06120.062*
H7A1.23450.12110.01240.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (15)0.0359 (16)0.0395 (15)0.0096 (12)0.0072 (12)0.0058 (12)
C20.0296 (14)0.0410 (17)0.0505 (17)0.0132 (13)0.0015 (12)0.0170 (14)
C30.0279 (14)0.0305 (15)0.0581 (18)0.0092 (12)0.0027 (13)0.0115 (13)
C40.0290 (14)0.0265 (14)0.0493 (16)0.0059 (11)0.0013 (12)0.0049 (12)
C50.0487 (18)0.0230 (15)0.0624 (19)0.0088 (13)0.0088 (15)0.0038 (13)
C60.0492 (18)0.0330 (16)0.0511 (18)0.0067 (14)0.0082 (14)0.0114 (14)
C70.0285 (14)0.0310 (15)0.0355 (14)0.0011 (11)0.0000 (11)0.0055 (11)
C80.0272 (14)0.0435 (17)0.0326 (14)0.0004 (12)0.0023 (11)0.0016 (12)
C90.0290 (14)0.0419 (16)0.0310 (14)0.0027 (12)0.0031 (11)0.0041 (12)
C100.0352 (14)0.0334 (15)0.0318 (14)0.0084 (12)0.0038 (11)0.0031 (11)
C110.0220 (12)0.0266 (14)0.0338 (13)0.0018 (10)0.0012 (10)0.0024 (11)
C120.0240 (13)0.0267 (14)0.0368 (14)0.0042 (10)0.0019 (10)0.0038 (11)
C130.0517 (19)0.054 (2)0.064 (2)0.0166 (16)0.0051 (16)0.0269 (17)
C140.0501 (19)0.0329 (17)0.082 (2)0.0141 (14)0.0013 (17)0.0194 (16)
C150.064 (2)0.053 (2)0.0401 (17)0.0034 (17)0.0160 (15)0.0080 (14)
C160.0548 (19)0.059 (2)0.0379 (16)0.0113 (16)0.0141 (14)0.0057 (14)
C170.0382 (16)0.0249 (14)0.0300 (13)0.0046 (11)0.0016 (11)0.0032 (11)
C180.0371 (15)0.0256 (13)0.0258 (12)0.0051 (11)0.0006 (11)0.0016 (10)
C190.0420 (16)0.0378 (15)0.0292 (13)0.0107 (12)0.0001 (11)0.0121 (11)
C200.0341 (15)0.0446 (17)0.0351 (14)0.0094 (13)0.0021 (11)0.0089 (12)
C210.0344 (14)0.0413 (16)0.0222 (12)0.0037 (12)0.0006 (10)0.0053 (11)
C220.0470 (17)0.062 (2)0.0256 (13)0.0088 (15)0.0044 (12)0.0167 (13)
C230.0339 (15)0.0535 (18)0.0317 (14)0.0112 (13)0.0035 (11)0.0088 (13)
C240.0304 (14)0.0394 (15)0.0224 (12)0.0015 (12)0.0000 (10)0.0041 (11)
C250.0488 (17)0.0403 (17)0.0325 (14)0.0109 (13)0.0060 (12)0.0115 (12)
C260.0429 (16)0.0317 (15)0.0330 (14)0.0097 (12)0.0050 (12)0.0002 (12)
C270.0243 (13)0.0324 (14)0.0245 (12)0.0050 (11)0.0004 (10)0.0020 (11)
C280.0430 (16)0.0322 (15)0.0293 (13)0.0090 (12)0.0033 (11)0.0040 (11)
C290.0444 (16)0.0345 (15)0.0267 (13)0.0056 (12)0.0018 (11)0.0017 (11)
C300.0308 (14)0.0319 (14)0.0270 (13)0.0036 (11)0.0029 (10)0.0014 (11)
Cd10.02736 (11)0.02383 (11)0.02531 (11)0.00447 (7)0.00168 (7)0.00220 (7)
N10.0315 (12)0.0272 (12)0.0337 (11)0.0055 (9)0.0052 (9)0.0048 (9)
N20.0296 (11)0.0264 (11)0.0295 (11)0.0052 (9)0.0026 (9)0.0031 (9)
O10.0385 (11)0.0476 (12)0.0322 (10)0.0134 (9)0.0064 (8)0.0148 (9)
O20.0352 (11)0.0594 (14)0.0455 (11)0.0084 (10)0.0004 (9)0.0128 (10)
O30.0382 (12)0.1061 (19)0.0374 (11)0.0126 (12)0.0023 (9)0.0233 (12)
O40.0717 (15)0.0469 (13)0.0332 (11)0.0156 (11)0.0076 (10)0.0014 (9)
O50.0279 (9)0.0295 (10)0.0264 (8)0.0064 (7)0.0012 (7)0.0020 (7)
O60.0818 (16)0.0508 (13)0.0429 (12)0.0368 (12)0.0283 (11)0.0098 (10)
S10.0368 (4)0.0547 (5)0.0231 (3)0.0029 (3)0.0028 (3)0.0072 (3)
O70.0574 (13)0.0345 (11)0.0348 (10)0.0131 (9)0.0168 (9)0.0010 (8)
Geometric parameters (Å, º) top
C1—N11.323 (3)C17—C181.519 (3)
C1—C21.401 (4)C18—C191.383 (4)
C1—H10.9300C18—C231.394 (4)
C2—C31.385 (4)C19—C201.382 (4)
C2—C131.512 (4)C19—H190.9300
C3—C41.412 (4)C20—C211.386 (4)
C3—C141.508 (4)C20—H200.9300
C4—C121.412 (3)C21—C221.383 (4)
C4—C51.435 (4)C21—S11.775 (2)
C5—C61.341 (4)C22—C231.383 (4)
C5—H50.9300C22—H220.9300
C6—C71.427 (4)C23—H230.9300
C6—H60.9300C24—C291.373 (4)
C7—C111.410 (3)C24—C251.383 (4)
C7—C81.418 (4)C24—S11.774 (3)
C8—C91.385 (4)C25—C261.383 (4)
C8—C151.507 (4)C25—H250.9300
C9—C101.400 (4)C26—C271.387 (4)
C9—C161.499 (4)C26—H260.9300
C10—N21.319 (3)C27—C281.387 (3)
C10—H100.9300C27—C301.503 (3)
C11—N21.358 (3)C28—C291.381 (3)
C11—C121.444 (4)C28—H280.9300
C12—N11.360 (3)C29—H290.9300
C13—H13A0.9600C30—O61.231 (3)
C13—H13B0.9600C30—O51.290 (3)
C13—H13C0.9600Cd1—O12.2634 (17)
C14—H14A0.9600Cd1—O5i2.3010 (16)
C14—H14B0.9600Cd1—O72.3186 (17)
C14—H14C0.9600Cd1—N12.348 (2)
C15—H15A0.9600Cd1—N22.363 (2)
C15—H15B0.9600Cd1—O5ii2.4222 (16)
C15—H15C0.9600O3—S11.431 (2)
C16—H16A0.9600O4—S11.441 (2)
C16—H16B0.9600O5—Cd1i2.3010 (16)
C16—H16C0.9600O5—Cd1iii2.4222 (16)
C17—O21.226 (3)O7—H7B0.8500
C17—O11.280 (3)O7—H7A0.8501
N1—C1—C2125.0 (3)C18—C19—H19119.3
N1—C1—H1117.5C21—C20—C19118.6 (3)
C2—C1—H1117.5C21—C20—H20120.7
C3—C2—C1118.3 (3)C19—C20—H20120.7
C3—C2—C13123.5 (3)C22—C21—C20121.0 (2)
C1—C2—C13118.2 (3)C22—C21—S1120.5 (2)
C2—C3—C4117.9 (2)C20—C21—S1118.1 (2)
C2—C3—C14121.9 (3)C21—C22—C23119.7 (2)
C4—C3—C14120.2 (3)C21—C22—H22120.2
C12—C4—C3119.5 (2)C23—C22—H22120.2
C12—C4—C5117.4 (3)C22—C23—C18120.0 (3)
C3—C4—C5123.1 (2)C22—C23—H23120.0
C6—C5—C4122.1 (3)C18—C23—H23120.0
C6—C5—H5118.9C29—C24—C25121.6 (2)
C4—C5—H5118.9C29—C24—S1118.6 (2)
C5—C6—C7122.2 (3)C25—C24—S1119.8 (2)
C5—C6—H6118.9C24—C25—C26119.2 (3)
C7—C6—H6118.9C24—C25—H25120.4
C11—C7—C8119.0 (2)C26—C25—H25120.4
C11—C7—C6117.7 (3)C25—C26—C27119.9 (2)
C8—C7—C6123.3 (2)C25—C26—H26120.1
C9—C8—C7118.6 (2)C27—C26—H26120.1
C9—C8—C15120.6 (3)C28—C27—C26119.8 (2)
C7—C8—C15120.9 (3)C28—C27—C30119.4 (2)
C8—C9—C10117.5 (2)C26—C27—C30120.8 (2)
C8—C9—C16123.5 (2)C29—C28—C27120.6 (2)
C10—C9—C16119.0 (3)C29—C28—H28119.7
N2—C10—C9125.6 (3)C27—C28—H28119.7
N2—C10—H10117.2C24—C29—C28118.8 (2)
C9—C10—H10117.2C24—C29—H29120.6
N2—C11—C7121.7 (2)C28—C29—H29120.6
N2—C11—C12118.1 (2)O6—C30—O5124.8 (2)
C7—C11—C12120.2 (2)O6—C30—C27117.8 (2)
N1—C12—C4121.5 (2)O5—C30—C27117.3 (2)
N1—C12—C11118.2 (2)O1—Cd1—O5i98.31 (6)
C4—C12—C11120.2 (2)O1—Cd1—O790.36 (7)
C2—C13—H13A109.5O5i—Cd1—O780.30 (6)
C2—C13—H13B109.5O1—Cd1—N192.86 (7)
H13A—C13—H13B109.5O5i—Cd1—N1120.41 (7)
C2—C13—H13C109.5O7—Cd1—N1158.22 (7)
H13A—C13—H13C109.5O1—Cd1—N2100.40 (7)
H13B—C13—H13C109.5O5i—Cd1—N2157.63 (6)
C3—C14—H14A109.5O7—Cd1—N287.40 (7)
C3—C14—H14B109.5N1—Cd1—N270.83 (7)
H14A—C14—H14B109.5O1—Cd1—O5ii174.54 (6)
C3—C14—H14C109.5O5i—Cd1—O5ii77.32 (6)
H14A—C14—H14C109.5O7—Cd1—O5ii85.70 (6)
H14B—C14—H14C109.5N1—Cd1—O5ii92.19 (6)
C8—C15—H15A109.5N2—Cd1—O5ii83.22 (6)
C8—C15—H15B109.5C1—N1—C12117.6 (2)
H15A—C15—H15B109.5C1—N1—Cd1126.08 (18)
C8—C15—H15C109.5C12—N1—Cd1116.32 (16)
H15A—C15—H15C109.5C10—N2—C11117.5 (2)
H15B—C15—H15C109.5C10—N2—Cd1126.03 (17)
C9—C16—H16A109.5C11—N2—Cd1115.69 (16)
C9—C16—H16B109.5C17—O1—Cd1111.25 (16)
H16A—C16—H16B109.5C30—O5—Cd1i120.97 (15)
C9—C16—H16C109.5C30—O5—Cd1iii120.71 (15)
H16A—C16—H16C109.5Cd1i—O5—Cd1iii102.68 (6)
H16B—C16—H16C109.5O3—S1—O4118.86 (14)
O2—C17—O1124.4 (2)O3—S1—C24108.94 (13)
O2—C17—C18119.1 (2)O4—S1—C24107.77 (13)
O1—C17—C18116.5 (2)O3—S1—C21108.22 (13)
C19—C18—C23119.2 (2)O4—S1—C21107.27 (13)
C19—C18—C17122.1 (2)C24—S1—C21104.91 (12)
C23—C18—C17118.6 (2)Cd1—O7—H7B113.7
C20—C19—C18121.4 (2)Cd1—O7—H7A104.2
C20—C19—H19119.3H7B—O7—H7A114.2
N1—C1—C2—C32.7 (4)C27—C28—C29—C240.8 (4)
N1—C1—C2—C13177.6 (2)C28—C27—C30—O620.6 (4)
C1—C2—C3—C41.2 (4)C26—C27—C30—O6156.8 (3)
C13—C2—C3—C4179.2 (2)C28—C27—C30—O5159.6 (2)
C1—C2—C3—C14179.6 (2)C26—C27—C30—O523.1 (3)
C13—C2—C3—C140.0 (4)C2—C1—N1—C121.0 (4)
C2—C3—C4—C121.8 (4)C2—C1—N1—Cd1178.37 (19)
C14—C3—C4—C12177.4 (2)C4—C12—N1—C12.2 (3)
C2—C3—C4—C5178.7 (2)C11—C12—N1—C1177.1 (2)
C14—C3—C4—C52.1 (4)C4—C12—N1—Cd1178.35 (18)
C12—C4—C5—C60.5 (4)C11—C12—N1—Cd12.3 (3)
C3—C4—C5—C6179.0 (3)O1—Cd1—N1—C174.1 (2)
C4—C5—C6—C72.1 (5)O5i—Cd1—N1—C127.2 (2)
C5—C6—C7—C111.3 (4)O7—Cd1—N1—C1172.30 (19)
C5—C6—C7—C8178.4 (3)N2—Cd1—N1—C1174.2 (2)
C11—C7—C8—C92.4 (4)O5ii—Cd1—N1—C1103.8 (2)
C6—C7—C8—C9177.3 (2)O1—Cd1—N1—C12105.24 (17)
C11—C7—C8—C15177.2 (2)O5i—Cd1—N1—C12153.40 (15)
C6—C7—C8—C153.1 (4)O7—Cd1—N1—C127.1 (3)
C7—C8—C9—C100.2 (4)N2—Cd1—N1—C125.22 (16)
C15—C8—C9—C10179.7 (2)O5ii—Cd1—N1—C1276.82 (17)
C7—C8—C9—C16179.0 (2)C9—C10—N2—C112.2 (4)
C15—C8—C9—C160.5 (4)C9—C10—N2—Cd1167.44 (19)
C8—C9—C10—N22.6 (4)C7—C11—N2—C100.6 (3)
C16—C9—C10—N2176.6 (2)C12—C11—N2—C10179.5 (2)
C8—C7—C11—N22.9 (4)C7—C11—N2—Cd1171.35 (17)
C6—C7—C11—N2176.8 (2)C12—C11—N2—Cd19.7 (3)
C8—C7—C11—C12178.2 (2)O1—Cd1—N2—C1092.9 (2)
C6—C7—C11—C122.0 (4)O5i—Cd1—N2—C1053.4 (3)
C3—C4—C12—N13.6 (4)O7—Cd1—N2—C103.0 (2)
C5—C4—C12—N1176.8 (2)N1—Cd1—N2—C10177.6 (2)
C3—C4—C12—C11175.7 (2)O5ii—Cd1—N2—C1082.9 (2)
C5—C4—C12—C113.8 (4)O1—Cd1—N2—C1197.25 (16)
N2—C11—C12—N15.1 (3)O5i—Cd1—N2—C11116.5 (2)
C7—C11—C12—N1176.0 (2)O7—Cd1—N2—C11172.86 (16)
N2—C11—C12—C4174.3 (2)N1—Cd1—N2—C117.83 (15)
C7—C11—C12—C44.7 (3)O5ii—Cd1—N2—C1186.89 (16)
O2—C17—C18—C19176.6 (2)O2—C17—O1—Cd110.9 (3)
O1—C17—C18—C195.3 (4)C18—C17—O1—Cd1167.17 (16)
O2—C17—C18—C236.4 (4)O5i—Cd1—O1—C1762.70 (17)
O1—C17—C18—C23171.8 (2)O7—Cd1—O1—C17142.95 (17)
C23—C18—C19—C201.4 (4)N1—Cd1—O1—C1758.60 (17)
C17—C18—C19—C20175.6 (2)N2—Cd1—O1—C17129.62 (17)
C18—C19—C20—C211.5 (4)O6—C30—O5—Cd1i49.2 (3)
C19—C20—C21—C222.6 (4)C27—C30—O5—Cd1i130.61 (18)
C19—C20—C21—S1171.2 (2)O6—C30—O5—Cd1iii81.6 (3)
C20—C21—C22—C230.7 (4)C27—C30—O5—Cd1iii98.5 (2)
S1—C21—C22—C23172.9 (2)C29—C24—S1—O3138.7 (2)
C21—C22—C23—C182.2 (4)C25—C24—S1—O340.9 (2)
C19—C18—C23—C223.3 (4)C29—C24—S1—O48.5 (2)
C17—C18—C23—C22173.8 (2)C25—C24—S1—O4171.1 (2)
C29—C24—C25—C260.7 (4)C29—C24—S1—C21105.6 (2)
S1—C24—C25—C26178.9 (2)C25—C24—S1—C2174.8 (2)
C24—C25—C26—C271.1 (4)C22—C21—S1—O3164.1 (2)
C25—C26—C27—C280.6 (4)C20—C21—S1—O322.1 (3)
C25—C26—C27—C30176.7 (2)C22—C21—S1—O466.6 (3)
C26—C27—C28—C290.4 (4)C20—C21—S1—O4107.3 (2)
C30—C27—C28—C29177.7 (2)C22—C21—S1—C2447.9 (3)
C25—C24—C29—C280.2 (4)C20—C21—S1—C24138.3 (2)
S1—C24—C29—C28179.8 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z1; (iii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O4iv0.932.583.402 (4)147
C19—H19···O7v0.932.493.377 (3)161
C15—H15C···O4vi0.962.533.436 (4)157
C14—H14A···O6vii0.962.443.240 (4)141
O7—H7B···O1v0.851.952.737 (3)154
O7—H7A···O6i0.851.862.640 (3)152
C29—H29···O40.932.492.883 (3)106
C20—H20···O30.932.552.921 (3)104
C1—H1···O20.932.443.037 (3)122
Symmetry codes: (i) x+2, y, z+1; (iv) x+1, y+1, z+1; (v) x+2, y, z; (vi) x+1, y+1, z; (vii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C14H8O6S)(C16H16N2)(H2O)]
Mr671.01
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0981 (10), 12.2931 (16), 14.6297 (19)
α, β, γ (°)78.157 (1), 80.994 (1), 74.005 (1)
V3)1362.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.822, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
9634, 4803, 4277
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.07
No. of reflections4741
No. of parameters374
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: SMART (Bruker 2000), SAINT (Bruker 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cd1—O12.2634 (17)Cd1—N12.348 (2)
Cd1—O5i2.3010 (16)Cd1—N22.363 (2)
Cd1—O72.3186 (17)Cd1—O5ii2.4222 (16)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O4iii0.932.583.402 (4)147.3
C19—H19···O7iv0.932.493.377 (3)160.8
C15—H15C···O4v0.962.533.436 (4)157.1
C14—H14A···O6vi0.962.443.240 (4)141.1
O7—H7B···O1iv0.851.952.737 (3)154.3
O7—H7A···O6i0.851.862.640 (3)152.4
C29—H29···O40.932.492.883 (3)105.6
C20—H20···O30.932.552.921 (3)104.4
C1—H1···O20.932.443.037 (3)122.0
Symmetry codes: (i) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z; (v) x+1, y+1, z; (vi) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds