Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new one-dimensional platinum mixed-valence complex with nonhalogen bridging ligands, namely catena-poly[[[bis­(ethane-1,2-diamine-[kappa]2N,N')platinum(II)]-[mu]-thio­cyanato-[kappa]2S:S-[bis(ethane-1,2-diamine-[kappa]2N,N')platinum(IV)]-[mu]-thio­cyanato-[kappa]2S:S] tetra­kis­(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thio­cyanate ligands, forming an infinite one-dimensional chain. The PtIV-S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV-S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge-density wave (CDW) state in one-dimensional mixed-valence complexes. The structure of a discrete PtIV thio­cyan­ate compound, bis­(ethane-1,2-diamine-[kappa]2N,N')bis­(thio­cyanato-[kappa]S)platinum(IV) bis­(perchlorate) 1.5-hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) sym­metry. Two S-bound thio­cyanate ligands are located in trans positions, with an S-Pt-S angle of 177.56 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113000541/wq3023sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000541/wq3023Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000541/wq3023IIsup3.hkl
Contains datablock II

cdx

Chemdraw file https://doi.org/10.1107/S0108270113000541/wq3023Isup4.cdx
Supplementary material

cdx

Chemdraw file https://doi.org/10.1107/S0108270113000541/wq3023IIsup5.cdx
Supplementary material

CCDC references: 925760; 925761

Comment top

Halogen-bridged MII···XMIV (M = Pt, Pd) mixed-valence complexes have been investigated as typical one-dimensional polymeric systems having strong electron–lattice interactions (Keller, 1982). These one-dimensional sequences are described as a Peierls-distorted commensurate charge-density wave (CDW), which is induced by a charge transfer (CT) along the one-dimensional chain. The amplitude of the CDW state is influenced by the modification of various chemical parameters, including the metal (M), the bridging halogen (X), the ligand and the counterion. Okamoto et al. (1992) reported a correlation between the CT energies and various chemical parameters of one-dimensional systems. A deviation parameter (d in Table 1) for the bridging halogen atom from the midpoint between two metal atoms correlates linearly with the CT excitation energy. The MIVX bond length is controlled mainly by the combination of metal and halogen atoms, while the MII···X contact distance is influenced by the size of the counteranion, which stabilises the one-dimensional chain structure by hydrogen-bond interactions with the NH2 groups of the diamine ligands. Large counteranions such as ClO4- cause elongation of the MII···MIV distance (Matsushita et al., 1992). More than 100 compounds with various combinations of the chemical parameters discussed above have been reported to date. However, the range of bridging atoms, which exert a large effect on the CDW state, is limited to only three kinds of halogen. There is a report of a one-dimensional Ni complex with nonhalogen bridging ligands (Meyer et al., 1982), in which the one-dimensional sequence is not linear but is bent at the bridging nitrite (NO2) groups. We demonstrate here the synthesis and structure of a new one-dimensional PtII/PtIV mixed-valence complex with the thiocyanate S atom acting as the bridging ligand, {[[PtII(en)2](µ-NCS)[PtIV(en)2](µ-NCS)](ClO4)4}n (en = ethane-1,2-diamine), (I), which has a PtII···S—PtIV linear sequence.

In the structure of (I), the PtII and PtIV complexes are stacked alternately, linked by the thiocyanate S atoms, constructing a one-dimensional chain elongated parallel to b+c [Cannot be one-dimensional if two dimensions are involved?]. The one-dimensional chains are supported by two-dimensional hydrogen-bond networks involving the ClO4- anions and NH2 groups (Fig. 2). Both PtII and PtIV atoms are located on special positions with 1 symmetry. Two thiocyanate ligands of the PtIV complex are located in trans positions related by an inversion centre.

Unlike most of the other halogen-bridged mixed-valence Pt complexes, there is no disorder of the bridging ligand in (I). The PtII···S—PtIV bond angle is slightly bent at 191.97 (4)°. The two en ligands of each Pt complex are attached as δ,λ-conformation chelate rings. The PtIV—S bond distance of 2.3933 (10) Å is shorter than that of the bromide-bridged complex (Toriumi et al., 1993), while the PtII···S distance is much longer than that of the iodide complex (Endres et al., 1979). The crystal exhibits large absorption from polarized light parallel to the one-dimensional chain which is a characteristic CT feature for one-dimensional systems on the CDW states. The large unequal Pt—S distances in (I) achieve a larger deviation parameter d than in the chloride-bridged complexes, which extends the chemical modifications available for controlling the amplitude of the CDW states.

We also report the isolation and crystal structure of a discrete PtIV complex with axial thiocyanate ligands, [Pt(NCS)2(en)2](ClO4)2, (II). In (II), the C1—S1—S2—C2 torsion angle is 156.3 (2)° and the PtIV complex has no special crystallographic symmetry. The two en ligands take δ- and λ-chelating conformations. The linear thiocyanate ligands of (II) do not participate in any hydrogen-bond interactions (Fig. 4). One of Pt—S bond lengths in (II) is slightly longer and the other is slightly shorter than that in (I). The thiocyanate ligand with the longer Pt—S bond makes a smaller Pt—S—C bond angle than that in (I), and the shorter Pt—S bond makes a larger bond angle.

Related literature top

For related literature, see: Basolo et al. (1950); Buckton (1855); Endres et al. (1979); Keller (1982); Matsushita et al. (1992); Meyer et al. (1982); Okamoto, Mitani, Toriumi & Yamashita (1992); Okamoto, Toriumi, Mitani & Yamashita (1992); Toriumi et al. (1993).

Experimental top

The following reagents were prepared according to literature procedures: [Pt(en)2]Cl2 (Basolo et al., 1950) and K2Pt(NCS)4 (Buckton, 1855). Commercially available ethane-1,2-diamine (Wako) and K2PtCl4 (Inuisho) were used as received.

For the preparation of [Pt(en)2](NCS)2, liquid ethane-1,2-diamine (0.83 g, 13.8 mmol) was added to a solution of K2Pt(NCS)4 (1.10 g, 2.0 mmol) in water (20 ml) and the mixture heated to boiling. After cooling to room temperature, another equimolar solution of K2Pt(NCS)4 in water (10 ml) was added to give a bright-yellow precipitate. The solid was filtered off, washed with water and then suspended in water. Ethane-1,2-diamine (2.00 g) was added and the solution warmed to give a clear pale-yellow solution. The mixture was filtered and allowed to evaporate until a yellow crystalline solid appeared. After addition of ethanol, the precipitate was filtered off, washed with ethanol and diethyl ether, and dried under vacuum (yield 1.08 g, 61.1%). Analysis calculated for C6H16N6S2Pt: C 16.70, H 3.74, N 19.48%; found: C 16.79, H 3.58, N 19.67%.

For the preparation of [PtIV(OH)2(en)2](ClO4)2, Pt(en)2Cl2 (1.00 g, 2.59 mmol) was dissolved in H2O (5 ml) and an aqueous solution (5 ml) of AgClO4 (1.18 g, 5.69 mmol) was added. The mixture was stirred for 1 h and the precipitate of AgCl was removed by filtration. To the resulting solution of [Pt(en)2](ClO4)2, 10% hydrogen peroxide (5 ml) was added and the mixture was heated at 353 K for 15 min. The reaction mixture was filtered through a micropore filter to remove the remaining silver chloride, and again warmed to evaporate the solvent to a final volume of about 10 ml. Ethanol (40 ml) was added and the solution allowed to stand at room temperature for 1 d. A white precipitate of [Pt(OH)2(en)2](ClO4)2 was filtered off, washed with ethanol and dried under vacuum (yield 1.22 g, 85.3%). Analysis, calculated for C4H18Cl2N4O10Pt: C 8.76, H 3.06, N 10.31%; found: C 8.80, H 3.05, N 10.27%.

For the preparation of [Pt(en)2][Pt(NCS)2(en)2](ClO4)4, (I), [PtII(en)2](NCS)2 (0.072 g, 0.167 mmol) and [PtIV(OH)2(en)2](ClO4)2 (0.091 g, 0.167 mmol) were dissolved in water (9 ml). An excess of 60% perchloric acid was added to the mixture. [PtII(en)2][PtIV(NCS)2(en)2](ClO4)4 crystals were obtained as light-brown prisms after the solution had been allowed to evaporate slowly for several days. Analysis, calculated for C10H32Cl4N10O16Pt2S2: C 10.49, H 2.82, N 12.24%; found: C 10.36, H 2.57, N 12.15%.

For the preparation of [PtIV(NCS)2(en)2](ClO4)2.1.5H2O, (II), [PtIV(OH)2(en)2](ClO4)2 (0.275 g, 0.50 mmol) and KSCN (0.097 g, 1.00 mmol) were dissolved in water (5 ml). An excess of 60% HClO4 was added. Orange [Yellow in CIF tables - please clarify] crystals of (II) were obtained after slow evaporation at 278 K. Analysis, calculated for C6H19Cl2N6O9.5PtS2: C 10.96, H 2.91, N 12.78%; found: C 10.94, H 2.64, N 12.90%.

Refinement top

H atoms of lattice waters in (II) were located in difference Fourier maps and their coordinates are refined under restraints for their O—H bond lengths and angles.

Computing details top

Data collection: CrystalClear (Rigaku, 2008) for (I); RAPID-AUTO (Rigaku, 2006) for (II). Cell refinement: CrystalClear (Rigaku, 2008) for (I); RAPID-AUTO (Rigaku, 2006) for (II). Data reduction: CrystalClear (Rigaku, 2008) and SORTAV (Blessing, 1995) for (I); RAPID-AUTO (Rigaku, 2006) and SORTAV (Blessing, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008) for (I); PLATON (Spek, 2009) for (II). For both compounds, software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y, -z, (ii) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The one-dimensional chains structure of (I), with short S1···Pt2 contacts shown as dashed lines. Dotted lines indicate hydrogen bonds between perchlorate anions and the NH2 groups of the ethane-1,2-diamine ligands.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering system. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the c axis, showing hydrogen bonds as dashed lines.
(I) catena-Poly[[[bis(ethane-1,2-diamine- κ2N,N')platinum(II)]-µ-thiocyanato-κ2S:S- [bis(ethane-1,2-diamine-κ2N,N')platinum(IV)]-µ- thiocyanato-κ2S:S] tetrakis(perchlorate)] top
Crystal data top
[Pt2(NCS)2(C2H8N2)4](ClO4)4Z = 1
Mr = 1144.56F(000) = 546
Triclinic, P1Dx = 2.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0535 (13) ÅCell parameters from 7324 reflections
b = 9.6033 (14) Åθ = 3.1–27.7°
c = 9.6034 (14) ŵ = 10.17 mm1
α = 104.944 (4)°T = 296 K
β = 91.574 (4)°Block, brown
γ = 113.765 (4)°0.30 × 0.27 × 0.27 mm
V = 730.11 (18) Å3
Data collection top
Rigaku SCX-MINI
diffractometer
3333 independent reflections
Radiation source: normal-focus sealed tube3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 6.85 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω oscillation scansh = 1111
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1212
Tmin = 0.565, Tmax = 1.000l = 1212
7690 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.072H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0232P)2 + 0.9044P]
where P = (Fo2 + 2Fc2)/3
3333 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 2.43 e Å3
Crystal data top
[Pt2(NCS)2(C2H8N2)4](ClO4)4γ = 113.765 (4)°
Mr = 1144.56V = 730.11 (18) Å3
Triclinic, P1Z = 1
a = 9.0535 (13) ÅMo Kα radiation
b = 9.6033 (14) ŵ = 10.17 mm1
c = 9.6034 (14) ÅT = 296 K
α = 104.944 (4)°0.30 × 0.27 × 0.27 mm
β = 91.574 (4)°
Data collection top
Rigaku SCX-MINI
diffractometer
3333 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3014 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 1.000Rint = 0.037
7690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.18Δρmax = 1.20 e Å3
3333 reflectionsΔρmin = 2.43 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction measurements were performed with a Rigaku Rapid IP [for (I)] and a Rigaku SCX-mini CCD [for (II)] diffractometers, using graphite-monochromated Mo Kα (λ = 0.71073 Å) radiation. Pt atoms were located by the Patterson method. The other atoms were located from successive Fourier syntheses. All atoms were found and refined by full-matrix least-squares technique. Anisotropic displacement parameters are applied for all non-H atoms. All calculations were carried out using SHELX program (Sheldrick, 2008).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50.50.50.01129 (8)
S10.50034 (12)0.28326 (12)0.30922 (11)0.0220 (2)
C10.6993 (5)0.3479 (5)0.2941 (4)0.0211 (8)
N10.8344 (5)0.3900 (5)0.2865 (4)0.0319 (9)
N20.2579 (4)0.3527 (4)0.4900 (4)0.0163 (7)
H2A0.24620.25330.48260.024*
H2B0.22080.38770.57160.024*
N30.4087 (5)0.5759 (5)0.3502 (4)0.0177 (8)
H3A0.45660.68290.37470.027*
H3B0.43070.53760.26140.027*
C20.1634 (5)0.3522 (5)0.3603 (4)0.0216 (8)
H2C0.04890.31610.37130.032*
H2D0.1730.28020.27320.032*
C30.2297 (5)0.5193 (6)0.3466 (5)0.0202 (9)
H3C0.18020.51920.25570.03*
H3D0.20580.58870.42650.03*
Pt20.5000.01364 (8)
N40.2652 (5)0.1248 (4)0.0261 (4)0.0175 (7)
H4A0.22860.22710.0280.026*
H4B0.26010.12210.12010.026*
N50.3959 (5)0.0902 (5)0.1229 (4)0.0196 (8)
H5A0.4190.19210.07480.029*
H5B0.4370.08830.20720.029*
C40.1620 (5)0.0524 (5)0.0204 (5)0.0245 (9)
H4C0.1730.04050.0570.037*
H4D0.04820.12840.04130.037*
C50.2157 (6)0.0057 (6)0.1536 (6)0.0242 (10)
H5C0.18760.09980.23590.036*
H5D0.16210.05660.1770.036*
Cl10.22426 (15)0.05757 (13)0.42496 (13)0.0256 (2)
O10.3261 (6)0.1202 (5)0.3461 (5)0.0440 (11)
O20.3205 (6)0.0737 (5)0.5516 (4)0.0426 (10)
O30.1549 (4)0.0025 (4)0.3318 (4)0.0424 (9)
O40.1009 (5)0.1785 (4)0.4701 (4)0.0470 (10)
Cl20.24808 (14)0.41662 (12)0.94696 (12)0.0206 (2)
O50.3090 (5)0.3777 (5)0.8119 (4)0.0353 (9)
O60.3237 (5)0.5855 (4)1.0133 (4)0.0364 (9)
O70.2902 (4)0.3417 (4)1.0441 (3)0.0377 (8)
O80.0767 (4)0.3621 (5)0.9211 (5)0.0471 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01143 (12)0.01112 (12)0.01018 (12)0.00381 (9)0.00287 (8)0.00278 (8)
S10.0217 (5)0.0189 (5)0.0205 (5)0.0074 (4)0.0060 (4)0.0006 (4)
C10.031 (2)0.021 (2)0.0140 (18)0.0158 (18)0.0044 (17)0.0008 (15)
N10.029 (2)0.039 (2)0.031 (2)0.0196 (18)0.0075 (17)0.0065 (17)
N20.0142 (16)0.0144 (16)0.0177 (18)0.0044 (13)0.0054 (14)0.0031 (13)
N30.0168 (18)0.0196 (18)0.0152 (17)0.0053 (15)0.0002 (14)0.0069 (14)
C20.0156 (19)0.025 (2)0.020 (2)0.0045 (17)0.0024 (16)0.0066 (16)
C30.017 (2)0.026 (2)0.021 (2)0.0105 (19)0.0040 (18)0.0091 (18)
Pt20.01586 (13)0.01300 (12)0.01216 (13)0.00600 (9)0.00298 (9)0.00395 (9)
N40.0201 (18)0.0187 (17)0.0135 (17)0.0084 (15)0.0044 (14)0.0039 (14)
N50.0183 (18)0.0198 (18)0.0199 (19)0.0066 (15)0.0007 (15)0.0074 (15)
C40.018 (2)0.029 (2)0.029 (2)0.0118 (18)0.0062 (17)0.0078 (18)
C50.025 (2)0.020 (2)0.026 (2)0.0077 (19)0.0042 (19)0.0069 (19)
Cl10.0337 (6)0.0191 (5)0.0221 (5)0.0080 (5)0.0097 (4)0.0078 (4)
O10.054 (3)0.042 (2)0.046 (3)0.027 (2)0.025 (2)0.0165 (19)
O20.054 (3)0.033 (2)0.0238 (19)0.0054 (18)0.0016 (17)0.0025 (15)
O30.052 (2)0.039 (2)0.042 (2)0.0227 (18)0.0035 (17)0.0157 (16)
O40.053 (2)0.0318 (19)0.046 (2)0.0028 (18)0.0208 (19)0.0166 (17)
Cl20.0250 (5)0.0172 (5)0.0194 (5)0.0082 (4)0.0060 (4)0.0060 (4)
O50.053 (2)0.039 (2)0.0194 (17)0.0237 (19)0.0170 (16)0.0094 (15)
O60.045 (2)0.0164 (16)0.040 (2)0.0072 (16)0.0054 (18)0.0068 (15)
O70.068 (2)0.0349 (18)0.0249 (17)0.0331 (18)0.0098 (16)0.0134 (14)
O80.0243 (18)0.050 (2)0.059 (3)0.0075 (17)0.0084 (17)0.017 (2)
Geometric parameters (Å, º) top
Pt1—N22.057 (4)Pt2—N5ii2.039 (4)
Pt1—N2i2.057 (4)Pt2—N52.039 (4)
Pt1—N32.060 (4)Pt2—C4ii2.886 (4)
Pt1—N3i2.060 (4)Pt2—C42.886 (4)
Pt1—S1i2.3933 (10)Pt2—C5ii2.905 (5)
Pt1—S12.3933 (10)Pt2—C52.905 (5)
Pt1—C22.900 (4)Pt2—S1ii3.4705 (11)
Pt1—C2i2.900 (4)N4—C41.489 (5)
Pt1—C3i2.916 (5)N4—H4A0.9
Pt1—C32.916 (5)N4—H4B0.9
S1—C11.676 (4)N5—C51.489 (6)
S1—Pt23.4705 (11)N5—H5A0.9
C1—N11.135 (5)N5—H5B0.9
N2—C21.490 (5)C4—C51.493 (6)
N2—H2A0.9C4—H4C0.97
N2—H2B0.9C4—H4D0.97
N3—C31.483 (6)C5—H5C0.97
N3—H3A0.9C5—H5D0.97
N3—H3B0.9Cl1—O41.423 (4)
C2—C31.513 (6)Cl1—O11.427 (4)
C2—H2C0.97Cl1—O31.434 (3)
C2—H2D0.97Cl1—O21.447 (4)
C3—H3C0.97Cl2—O81.414 (4)
C3—H3D0.97Cl2—O61.433 (4)
Pt2—N42.037 (4)Cl2—O51.443 (4)
Pt2—N4ii2.037 (4)Cl2—O71.443 (3)
N2—Pt1—N2i180N4ii—Pt2—N596.56 (15)
N2—Pt1—N383.28 (15)N5ii—Pt2—N5180
N2i—Pt1—N396.72 (15)N4—Pt2—C4ii150.80 (13)
N2—Pt1—N3i96.72 (15)N4ii—Pt2—C4ii29.20 (13)
N2i—Pt1—N3i83.28 (15)N5ii—Pt2—C4ii55.37 (14)
N3—Pt1—N3i179.999 (2)N5—Pt2—C4ii124.63 (14)
N2—Pt1—S1i95.20 (10)N4—Pt2—C429.20 (13)
N2i—Pt1—S1i84.80 (10)N4ii—Pt2—C4150.80 (13)
N3—Pt1—S1i89.45 (11)N5ii—Pt2—C4124.63 (14)
N3i—Pt1—S1i90.56 (11)N5—Pt2—C455.37 (14)
N2—Pt1—S184.80 (10)C4ii—Pt2—C4180
N2i—Pt1—S195.20 (10)N4—Pt2—C5ii124.56 (14)
N3—Pt1—S190.55 (11)N4ii—Pt2—C5ii55.44 (14)
N3i—Pt1—S189.44 (11)N5ii—Pt2—C5ii28.82 (14)
S1i—Pt1—S1180N5—Pt2—C5ii151.18 (14)
N2—Pt1—C229.13 (13)C4ii—Pt2—C5ii29.88 (13)
N2i—Pt1—C2150.87 (13)C4—Pt2—C5ii150.12 (13)
N3—Pt1—C255.17 (13)N4—Pt2—C555.44 (14)
N3i—Pt1—C2124.83 (13)N4ii—Pt2—C5124.56 (14)
S1i—Pt1—C2100.82 (9)N5ii—Pt2—C5151.18 (14)
S1—Pt1—C279.18 (9)N5—Pt2—C528.82 (14)
N2—Pt1—C2i150.87 (13)C4ii—Pt2—C5150.12 (13)
N2i—Pt1—C2i29.13 (13)C4—Pt2—C529.88 (13)
N3—Pt1—C2i124.83 (13)C5ii—Pt2—C5180
N3i—Pt1—C2i55.17 (13)N4—Pt2—S184.11 (10)
S1i—Pt1—C2i79.18 (9)N4ii—Pt2—S195.89 (10)
S1—Pt1—C2i100.82 (9)N5ii—Pt2—S191.01 (11)
C2—Pt1—C2i180.00 (18)N5—Pt2—S188.99 (11)
N2—Pt1—C3i124.33 (14)C4ii—Pt2—S1102.49 (9)
N2i—Pt1—C3i55.67 (14)C4—Pt2—S177.51 (9)
N3—Pt1—C3i151.39 (14)C5ii—Pt2—S187.56 (11)
N3i—Pt1—C3i28.61 (14)C5—Pt2—S192.44 (11)
S1i—Pt1—C3i94.72 (10)N4—Pt2—S1ii95.89 (10)
S1—Pt1—C3i85.28 (10)N4ii—Pt2—S1ii84.11 (10)
C2—Pt1—C3i149.84 (12)N5ii—Pt2—S1ii88.99 (11)
C2i—Pt1—C3i30.16 (12)N5—Pt2—S1ii91.01 (11)
N2—Pt1—C355.67 (14)C4ii—Pt2—S1ii77.51 (9)
N2i—Pt1—C3124.33 (14)C4—Pt2—S1ii102.49 (9)
N3—Pt1—C328.61 (14)C5ii—Pt2—S1ii92.44 (11)
N3i—Pt1—C3151.39 (14)C5—Pt2—S1ii87.56 (11)
S1i—Pt1—C385.28 (10)S1—Pt2—S1ii180
S1—Pt1—C394.72 (10)C4—N4—Pt2108.9 (3)
C2—Pt1—C330.16 (12)C4—N4—H4A109.9
C2i—Pt1—C3149.84 (12)Pt2—N4—H4A109.9
C3i—Pt1—C3180C4—N4—H4B109.9
C1—S1—Pt1101.44 (14)Pt2—N4—H4B109.9
C1—S1—Pt277.77 (13)H4A—N4—H4B108.3
Pt1—S1—Pt2171.97 (4)C5—N5—Pt2109.9 (3)
N1—C1—S1178.3 (4)C5—N5—H5A109.7
C2—N2—Pt1108.6 (3)Pt2—N5—H5A109.7
C2—N2—H2A110C5—N5—H5B109.7
Pt1—N2—H2A110Pt2—N5—H5B109.7
C2—N2—H2B110H5A—N5—H5B108.2
Pt1—N2—H2B110N4—C4—C5108.8 (3)
H2A—N2—H2B108.3N4—C4—Pt241.87 (18)
C3—N3—Pt1109.7 (3)C5—C4—Pt275.8 (2)
C3—N3—H3A109.7N4—C4—H4C109.9
Pt1—N3—H3A109.7C5—C4—H4C109.9
C3—N3—H3B109.7Pt2—C4—H4C98.7
Pt1—N3—H3B109.7N4—C4—H4D109.9
H3A—N3—H3B108.2C5—C4—H4D109.9
N2—C2—C3108.9 (3)Pt2—C4—H4D147.6
N2—C2—Pt142.25 (18)H4C—C4—H4D108.3
C3—C2—Pt175.5 (2)N5—C5—C4107.7 (4)
N2—C2—H2C109.9N5—C5—Pt241.3 (2)
C3—C2—H2C109.9C4—C5—Pt274.4 (2)
Pt1—C2—H2C147.8N5—C5—H5C110.2
N2—C2—H2D109.9C4—C5—H5C110.2
C3—C2—H2D109.9Pt2—C5—H5C100.3
Pt1—C2—H2D98.7N5—C5—H5D110.2
H2C—C2—H2D108.3C4—C5—H5D110.2
N3—C3—C2107.4 (4)Pt2—C5—H5D146.4
N3—C3—Pt141.70 (19)H5C—C5—H5D108.5
C2—C3—Pt174.3 (2)O4—Cl1—O1109.9 (3)
N3—C3—H3C110.2O4—Cl1—O3111.4 (2)
C2—C3—H3C110.2O1—Cl1—O3108.0 (2)
Pt1—C3—H3C147.3O4—Cl1—O2109.4 (2)
N3—C3—H3D110.2O1—Cl1—O2110.2 (3)
C2—C3—H3D110.2O3—Cl1—O2108.0 (2)
Pt1—C3—H3D99.3O8—Cl2—O6109.9 (3)
H3C—C3—H3D108.5O8—Cl2—O5110.2 (3)
N4—Pt2—N4ii180O6—Cl2—O5109.6 (2)
N4—Pt2—N5ii96.56 (15)O8—Cl2—O7109.9 (2)
N4ii—Pt2—N5ii83.44 (15)O6—Cl2—O7108.6 (2)
N4—Pt2—N583.44 (15)O5—Cl2—O7108.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.92.323.142 (6)152
N2—H2A···O30.92.263.041 (5)145
N2—H2B···O50.92.463.045 (5)123
N2—H2B···N1i0.92.463.231 (5)144
N3—H3B···O5i0.92.362.969 (6)125
N3—H3B···O7iii0.92.333.053 (5)138
N3—H3A···O2i0.92.33.132 (6)153
N4—H4A···O6iv0.92.393.008 (5)126
N4—H4A···N1ii0.92.483.220 (5)140
N4—H4B···O10.92.233.093 (6)161
N4—H4B···O30.92.53.225 (5)138
N5—H5B···O2iii0.92.463.131 (5)131
N5—H5B···O1ii0.92.513.324 (6)150
N5—H5A···O6i0.92.373.007 (5)128
N5—H5A···O7iii0.92.33.044 (5)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x, y1, z1.
(II) Bis(ethane-1,2-diamine-κ2N,N')bis(thiocyanato- κS)platinum(IV) bis(perchlorate) 1.5-hydrate top
Crystal data top
[Pt(NCS)2(C4H8N2)2](ClO4)2·1.5H2OF(000) = 1268
Mr = 657.38Dx = 2.315 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 10279 reflections
a = 30.515 (2) Åθ = 3.2–30.0°
b = 8.3572 (9) ŵ = 8.00 mm1
c = 7.4430 (7) ÅT = 296 K
β = 96.507 (3)°Block, orange
V = 1885.9 (3) Å30.27 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5351 independent reflections
Radiation source: sealed x-ray tube5147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10 pixels mm-1θmax = 30.0°, θmin = 3.2°
ω oscillation scansh = 4142
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Rigaku, 1995)
k = 1111
Tmin = 0.708, Tmax = 1.000l = 109
11343 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.02H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.001
5348 reflectionsΔρmax = 1.18 e Å3
249 parametersΔρmin = 0.93 e Å3
5 restraintsAbsolute structure: Flack (1983), 2424 Friedel Pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.001 (4)
Crystal data top
[Pt(NCS)2(C4H8N2)2](ClO4)2·1.5H2OV = 1885.9 (3) Å3
Mr = 657.38Z = 4
Monoclinic, C2Mo Kα radiation
a = 30.515 (2) ŵ = 8.00 mm1
b = 8.3572 (9) ÅT = 296 K
c = 7.4430 (7) Å0.27 × 0.18 × 0.17 mm
β = 96.507 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5351 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Rigaku, 1995)
5147 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 1.000Rint = 0.032
11343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042Δρmax = 1.18 e Å3
S = 0.84Δρmin = 0.93 e Å3
5348 reflectionsAbsolute structure: Flack (1983), 2424 Friedel Pairs
249 parametersAbsolute structure parameter: 0.001 (4)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction measurements were performed with a Rigaku Rapid IP [for (I)] and a Rigaku SCX-mini CCD [for (II)] diffractometers, using graphite-monochromated Mo Kα (λ = 0.71073 Å) radiation. Pt atoms were located by the Patterson method. The other atoms were located from successive Fourier syntheses. All atoms were found and refined by full-matrix least-squares technique. Anisotropic displacement parameters are applied for all non-H atoms. All calculations were carried out using SHELX program (Sheldrick, 2008).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.123749 (3)0.00001 (3)0.336629 (11)0.01800 (3)
S10.16671 (3)0.20031 (12)0.50651 (12)0.02863 (18)
S20.08149 (3)0.20672 (12)0.17844 (12)0.03200 (19)
N10.15331 (10)0.1022 (5)0.8598 (4)0.0423 (8)
N20.05881 (16)0.0669 (6)0.1625 (5)0.0820 (16)
N30.10435 (8)0.1793 (3)0.1541 (4)0.0231 (6)
H3A0.12750.24270.13890.028*
H3B0.09440.13630.04630.028*
N40.06729 (8)0.0670 (4)0.4474 (3)0.0251 (6)
H4A0.05240.02040.47640.03*
H4B0.07450.12460.54860.03*
N50.14446 (9)0.1790 (4)0.5201 (4)0.0277 (6)
H5A0.15530.13520.62640.033*
H5B0.12140.24160.53940.033*
N60.17919 (8)0.0682 (3)0.2203 (3)0.0244 (5)
H6A0.17130.12670.12040.029*
H6B0.19370.0190.1880.029*
C10.15848 (10)0.1431 (4)0.7161 (5)0.0276 (7)
C20.06799 (13)0.1265 (5)0.0237 (5)0.0418 (9)
C30.06841 (11)0.2764 (5)0.2241 (5)0.0348 (8)
H3C0.08110.35470.31120.042*
H3D0.05150.33250.12530.042*
C40.03955 (11)0.1644 (5)0.3111 (5)0.0370 (9)
H4C0.02410.0950.22070.044*
H4D0.01780.22410.36950.044*
C50.17929 (11)0.2773 (5)0.4464 (5)0.0333 (8)
H5C0.16590.35560.3610.04*
H5D0.19670.33360.54370.04*
C60.20821 (10)0.1643 (5)0.3532 (5)0.0331 (8)
H6C0.22440.09440.44130.04*
H6D0.22930.22450.2920.04*
Cl10.06506 (2)0.48336 (14)0.26516 (10)0.03273 (18)
O10.09461 (10)0.5096 (6)0.1078 (4)0.0724 (10)
O20.05912 (10)0.3151 (4)0.2913 (5)0.0624 (9)
O30.02348 (10)0.5524 (4)0.2432 (6)0.0760 (11)
O40.08258 (11)0.5551 (4)0.4167 (4)0.0644 (10)
Cl20.22289 (2)0.37715 (10)0.13460 (11)0.02829 (16)
O50.24858 (8)0.4858 (5)0.2510 (4)0.0564 (8)
O60.23536 (8)0.2152 (4)0.1831 (4)0.0482 (7)
O70.17687 (8)0.3996 (4)0.1562 (4)0.0416 (6)
O80.22938 (10)0.4068 (5)0.0473 (4)0.0569 (8)
O90.17119 (8)0.2811 (4)0.0943 (4)0.0376 (6)
H9A0.1966 (7)0.320 (5)0.088 (6)0.045*
H9B0.1531 (10)0.350 (4)0.063 (6)0.045*
O1000.8277 (5)0.50.0362 (8)
H10A0.0113 (14)0.764 (5)0.414 (5)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02019 (5)0.01966 (5)0.01458 (5)0.00150 (5)0.00390 (3)0.00110 (6)
S10.0326 (5)0.0318 (5)0.0218 (4)0.0100 (4)0.0044 (3)0.0037 (4)
S20.0423 (5)0.0283 (5)0.0250 (4)0.0108 (4)0.0018 (4)0.0045 (4)
N10.0504 (18)0.052 (2)0.0265 (16)0.0031 (15)0.0109 (13)0.0032 (16)
N20.128 (4)0.061 (3)0.045 (2)0.039 (3)0.039 (2)0.010 (2)
N30.0246 (13)0.0271 (15)0.0185 (13)0.0015 (11)0.0063 (11)0.0013 (11)
N40.0236 (12)0.0305 (15)0.0227 (13)0.0018 (10)0.0089 (10)0.0006 (11)
N50.0357 (15)0.0246 (16)0.0230 (14)0.0006 (12)0.0047 (12)0.0023 (11)
N60.0259 (13)0.0275 (15)0.0208 (12)0.0007 (10)0.0068 (10)0.0008 (11)
C10.0256 (16)0.0311 (19)0.0256 (17)0.0008 (12)0.0003 (12)0.0077 (14)
C20.056 (2)0.032 (2)0.033 (2)0.0094 (17)0.0128 (16)0.0054 (16)
C30.0392 (18)0.035 (2)0.0310 (18)0.0142 (16)0.0089 (14)0.0040 (17)
C40.0292 (17)0.044 (2)0.039 (2)0.0114 (15)0.0107 (15)0.0076 (17)
C50.0410 (19)0.032 (2)0.0277 (18)0.0144 (15)0.0064 (14)0.0014 (15)
C60.0291 (16)0.037 (2)0.0333 (19)0.0104 (14)0.0025 (13)0.0024 (15)
Cl10.0331 (3)0.0269 (5)0.0384 (4)0.0041 (4)0.0047 (3)0.0063 (4)
O10.081 (2)0.076 (2)0.0539 (16)0.036 (3)0.0169 (14)0.001 (3)
O20.0599 (18)0.0301 (17)0.099 (3)0.0101 (14)0.0193 (17)0.0282 (18)
O30.0579 (18)0.057 (3)0.119 (3)0.0203 (15)0.035 (2)0.013 (2)
O40.080 (2)0.074 (3)0.0430 (17)0.0217 (17)0.0215 (15)0.0021 (16)
Cl20.0264 (4)0.0248 (4)0.0348 (4)0.0039 (3)0.0081 (3)0.0013 (3)
O50.0457 (13)0.047 (2)0.0732 (18)0.0116 (18)0.0086 (12)0.0113 (19)
O60.0371 (14)0.0315 (16)0.076 (2)0.0007 (11)0.0074 (13)0.0118 (15)
O70.0314 (13)0.0401 (17)0.0555 (18)0.0010 (11)0.0144 (11)0.0014 (14)
O80.072 (2)0.062 (2)0.0409 (17)0.0012 (16)0.0269 (15)0.0104 (16)
O90.0358 (14)0.0333 (15)0.0443 (15)0.0009 (11)0.0067 (12)0.0002 (13)
O100.0395 (19)0.034 (2)0.034 (2)00.0015 (15)0
Geometric parameters (Å, º) top
Pt1—N32.064 (3)C3—C41.483 (5)
Pt1—N62.066 (2)C3—H3C0.97
Pt1—N42.070 (2)C3—H3D0.97
Pt1—N52.076 (3)C4—H4C0.97
Pt1—S22.3853 (9)C4—H4D0.97
Pt1—S12.3966 (9)C5—C61.514 (5)
S1—C11.678 (4)C5—H5C0.97
S2—C21.656 (4)C5—H5D0.97
N1—C11.151 (4)C6—H6C0.97
N2—C21.152 (5)C6—H6D0.97
N3—C31.504 (4)Cl1—O11.412 (3)
N3—H3A0.9Cl1—O31.420 (3)
N3—H3B0.9Cl1—O21.429 (3)
N4—C41.488 (4)Cl1—O41.433 (3)
N4—H4A0.9Cl2—O81.412 (3)
N4—H4B0.9Cl2—O51.427 (3)
N5—C51.496 (4)Cl2—O61.441 (3)
N5—H5A0.9Cl2—O71.444 (2)
N5—H5B0.9O9—H9A0.837 (18)
N6—C61.486 (4)O9—H9B0.847 (19)
N6—H6A0.9O10—H10A0.871 (18)
N6—H6B0.9
N3—Pt1—N696.42 (10)H6A—N6—H6B108.3
N3—Pt1—N482.90 (11)N1—C1—S1179.0 (3)
N6—Pt1—N4178.62 (9)N2—C2—S2178.3 (4)
N3—Pt1—N5178.95 (11)C4—C3—N3107.7 (3)
N6—Pt1—N582.77 (11)C4—C3—H3C110.2
N4—Pt1—N597.92 (11)N3—C3—H3C110.2
N3—Pt1—S295.87 (8)C4—C3—H3D110.2
N6—Pt1—S290.90 (8)N3—C3—H3D110.2
N4—Pt1—S287.98 (8)H3C—C3—H3D108.5
N5—Pt1—S284.83 (9)C3—C4—N4108.8 (3)
N3—Pt1—S186.51 (8)C3—C4—H4C109.9
N6—Pt1—S189.37 (8)N4—C4—H4C109.9
N4—Pt1—S191.79 (8)C3—C4—H4D109.9
N5—Pt1—S192.80 (8)N4—C4—H4D109.9
S2—Pt1—S1177.56 (3)H4C—C4—H4D108.3
C1—S1—Pt199.27 (12)N5—C5—C6107.5 (3)
C2—S2—Pt1102.72 (14)N5—C5—H5C110.2
C3—N3—Pt1109.2 (2)C6—C5—H5C110.2
C3—N3—H3A109.8N5—C5—H5D110.2
Pt1—N3—H3A109.8C6—C5—H5D110.2
C3—N3—H3B109.8H5C—C5—H5D108.5
Pt1—N3—H3B109.8N6—C6—C5107.9 (3)
H3A—N3—H3B108.3N6—C6—H6C110.1
C4—N4—Pt1108.14 (19)C5—C6—H6C110.1
C4—N4—H4A110.1N6—C6—H6D110.1
Pt1—N4—H4A110.1C5—C6—H6D110.1
C4—N4—H4B110.1H6C—C6—H6D108.4
Pt1—N4—H4B110.1O1—Cl1—O3109.7 (3)
H4A—N4—H4B108.4O1—Cl1—O2109.0 (3)
C5—N5—Pt1109.3 (2)O3—Cl1—O2108.3 (2)
C5—N5—H5A109.8O1—Cl1—O4109.1 (2)
Pt1—N5—H5A109.8O3—Cl1—O4109.8 (2)
C5—N5—H5B109.8O2—Cl1—O4111.0 (2)
Pt1—N5—H5B109.8O8—Cl2—O5110.1 (2)
H5A—N5—H5B108.3O8—Cl2—O6110.1 (2)
C6—N6—Pt1108.94 (19)O5—Cl2—O6109.5 (2)
C6—N6—H6A109.9O8—Cl2—O7109.12 (17)
Pt1—N6—H6A109.9O5—Cl2—O7108.92 (18)
C6—N6—H6B109.9O6—Cl2—O7109.06 (17)
Pt1—N6—H6B109.9H9A—O9—H9B111 (4)
N3—Pt1—S1—C1141.12 (13)S1—Pt1—N4—C4102.3 (2)
N6—Pt1—S1—C1122.40 (13)N3—Pt1—N5—C553 (7)
N4—Pt1—S1—C158.35 (14)N6—Pt1—N5—C512.7 (2)
N5—Pt1—S1—C139.67 (15)N4—Pt1—N5—C5166.1 (2)
S2—Pt1—S1—C126.1 (9)S2—Pt1—N5—C578.8 (2)
N3—Pt1—S2—C214.88 (19)S1—Pt1—N5—C5101.7 (2)
N6—Pt1—S2—C281.67 (19)N3—Pt1—N6—C6163.0 (2)
N4—Pt1—S2—C297.53 (18)N4—Pt1—N6—C6136 (4)
N5—Pt1—S2—C2164.33 (18)N5—Pt1—N6—C616.3 (2)
S1—Pt1—S2—C218E1 (7)S2—Pt1—N6—C6101.0 (2)
N6—Pt1—N3—C3169.0 (2)S1—Pt1—N6—C676.6 (2)
N4—Pt1—N3—C312.2 (2)Pt1—S1—C1—N18E1 (2)
N5—Pt1—N3—C3129 (7)Pt1—S2—C2—N220 (16)
S2—Pt1—N3—C399.4 (2)Pt1—N3—C3—C438.4 (3)
S1—Pt1—N3—C380.1 (2)N3—C3—C4—N453.4 (4)
N3—Pt1—N4—C416.1 (2)Pt1—N4—C4—C342.2 (4)
N6—Pt1—N4—C445 (5)Pt1—N5—C5—C638.8 (3)
N5—Pt1—N4—C4164.6 (2)Pt1—N6—C6—C542.1 (3)
S2—Pt1—N4—C480.1 (2)N5—C5—C6—N653.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O70.91.992.877 (4)168
N3—H3B···N1i0.92.412.861 (4)111
N3—H3B···N20.92.473.313 (5)156
N4—H4A···O10ii0.92.062.924 (4)160
N4—H4A···N2iii0.92.73.149 (5)112
N4—H4B···O2iii0.92.072.873 (4)147
N5—H5A···O9iii0.92.413.016 (4)125
N5—H5A···N10.92.643.440 (4)148
N5—H5B···O4iv0.92.122.987 (4)162
N6—H6A···O90.92.052.929 (4)164
N6—H6B···O60.92.082.955 (4)165
N6—H6B···N1i0.92.73.061 (4)105
O9—H9A···O6v0.84 (2)2.29 (3)3.000 (4)143 (4)
O9—H9B···O1ii0.85 (2)2.13 (2)2.912 (4)153 (4)
O9—H9A···O8ii0.84 (2)2.50 (4)3.153 (5)136 (4)
O10—H10A···O3vi0.87 (2)2.19 (2)3.025 (5)161 (4)
O10—H10A···N2vii0.87 (2)2.65 (4)3.047 (3)109 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y1, z+1; (v) x+1/2, y1/2, z; (vi) x, y, z; (vii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt2(NCS)2(C2H8N2)4](ClO4)4[Pt(NCS)2(C4H8N2)2](ClO4)2·1.5H2O
Mr1144.56657.38
Crystal system, space groupTriclinic, P1Monoclinic, C2
Temperature (K)296296
a, b, c (Å)9.0535 (13), 9.6033 (14), 9.6034 (14)30.515 (2), 8.3572 (9), 7.4430 (7)
α, β, γ (°)104.944 (4), 91.574 (4), 113.765 (4)90, 96.507 (3), 90
V3)730.11 (18)1885.9 (3)
Z14
Radiation typeMo KαMo Kα
µ (mm1)10.178.00
Crystal size (mm)0.30 × 0.27 × 0.270.27 × 0.18 × 0.17
Data collection
DiffractometerRigaku SCX-MINI
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Empirical (using intensity measurements)
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.565, 1.0000.708, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7690, 3333, 3014 11343, 5351, 5147
Rint0.0370.032
(sin θ/λ)max1)0.6490.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.18 0.02, 0.042, 0.84
No. of reflections33335348
No. of parameters202249
No. of restraints05
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.20, 2.431.18, 0.93
Absolute structure?Flack (1983), 2424 Friedel Pairs
Absolute structure parameter?0.001 (4)

Computer programs: , CrystalClear (Rigaku, 2008) and SORTAV (Blessing, 1995), RAPID-AUTO (Rigaku, 2006) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.92.263.041 (5)144.7
N2—H2B···O50.92.463.045 (5)123.1
N3—H3B···O5i0.92.362.969 (6)125.3
N3—H3B···O7ii0.92.333.053 (5)137.8
N4—H4A···O6iii0.92.393.008 (5)125.6
N5—H5A···O6i0.92.373.007 (5)128.1
N5—H5A···O7ii0.92.33.044 (5)139.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y1, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O70.91.992.877 (4)168.1
N4—H4A···O10i0.92.062.924 (4)159.6
N4—H4B···O2ii0.92.072.873 (4)147.4
N5—H5A···O9ii0.92.413.016 (4)124.7
N5—H5B···O4iii0.92.122.987 (4)162
N6—H6A···O90.92.052.929 (4)163.9
N6—H6B···O60.92.082.955 (4)164.8
O9—H9A···O6iv0.837 (18)2.29 (3)3.000 (4)143 (4)
O9—H9B···O1i0.847 (19)2.13 (2)2.912 (4)153 (4)
O10—H10A···O3v0.871 (18)2.19 (2)3.025 (5)161 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y1, z+1; (iv) x+1/2, y1/2, z; (v) x, y, z.
Comparative geometric parameters (Å) and deviation parameters (d) for bridging atoms in selected [PtII(en)2][PtIVX2(en)2](ClO4)2 (X = bridging atom) complexes top
XPtIV···PtIIPtIVXPtII···Xda
NCSb5.8499 (7)2.3933 (10)3.471 (1)0.184
Clc5.4282.327 (4)3.101 (4)0.143
Brd5.4702.473 (1)2.996 (1)0.096
Ie5.8272.791 (3)3.036 (8)0.042
Notes: (a) d = [l(PtII···X) - l(PtIV—X)]/ l(Pt···Pt). References: (b) this work; (c) Huckett et al. (1993); (d) Toriumi et al. (1993); (e) Endres et al. (1979).
Selected geometric parameters (Å, °) for (I) and (II) top
(I)(II)
Pt1—N22.057 (4)Pt1—N32.064 (3)
Pt1—N32.060 (4)Pt1—N42.070 (2)
Pt1—N52.071 (3)
Pt1—N62.064 (3)
Pt1—S12.3933 (10)Pt1—S12.3966 (9)
Pt1—S22.3853 (9)
S1—Pt23.4705 (11)
S1—C11.676 (4)S1—C11.678 (4)
S2—C21.656 (4)
C1—N11.135 (5)C1—N11.151 (4)
C2—N21.152 (5)
N2—Pt1—N383.28 (15)N4—Pt1—N382.90 (11)
N6—Pt1—N582.77 (11)
C1—S1—Pt1101.44 (14)C1—S1—Pt199.27 (12)
C2—S2—Pt1102.72 (14)
Pt1—S1—Pt2171.97 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds