Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Dimethyl (3,4-dichloro­benzo­yl)carbonohydrazonodithio­ate, C10H10Cl2N2OS2, (D1), dibenzyl (3,4-dichloro­benzo­yl)car­bono­hydrazonodithio­ate, C22H18Cl2N2OS2, (D2), dimethyl (3,4-dichloro­benzo­yl)-1-methyl­carbonohydrazonodithio­ate, C11H12Cl2N2OS2, (D3), 3,4-dichloro-N'-(1,3-dithio­lan-2-yl­idene)-N-methyl­benzohydrazide, C11H10Cl2N2OS2, (D4), were synthesized as potential tuberculostatics. Compound (D1) (with two molecules in the asymmetric unit) was the only one showing tuberculostatic activity of the same range as the common drugs isoniazid and pyrazinamide. The mol­ecular structures of the studied compounds depend on the substitution at the N atom adjacent to the carbonyl group. In the case of the unsubstituted derivatives (D1) and (D2), their central frames are generally planar with a twist of the 3,4-dichloro­phenyl ring by 30-40°. Until now, coplanarity of the aromatic ring with the (methyl­ene)carbonohydrazone fragment has been considered a prerequisite for tuberculostatic activity. The N-methyl­ated derivatives (D3) and (D4) show an additional twist along the N-C(=O) bond by 20-30° due to the spatial repulsion introduced by the methyl substituent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112001734/wq3009sup1.cif
Contains datablocks D1, D2, D3, D4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112001734/wq3009D1sup2.hkl
Contains datablock D1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112001734/wq3009D2sup3.hkl
Contains datablock D2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112001734/wq3009D3sup4.hkl
Contains datablock D3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112001734/wq3009D4sup5.hkl
Contains datablock D4

CCDC references: 873884; 873885; 873886; 873887

Comment top

Because of the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis in developed countries, significant efforts have been put into a search for new lead tuberculostatics. Among others, Foks and coworkers have synthesized hundreds of compounds, many of which showed reasonable activity against tuberculosis (Pancechowska-Ksepko et al., 1993; Milczarska et al., 1998, 1999; Foks et al., 2002; Gobis et al., 2011). Several crystal structures of selected representatives of these compounds were determined by our group in a search for relationships between activity and molecular structure (Główka et al., 2005; Olczak et al., 2007, 2011; Szczesio et al., 2011). The main working hypothesis tested in these studies was that planarity of a molecule is a prerequisite for tuberculostatic activity (Olczak et al., 2007). The hypothesis was based on an observation from our very first study on the molecular structure of 2-[amino(pyridine-2-yl)methylene]hydrazinecarbodithioic acid methyl ester in the crystalline state (Główka et al., 2005). This active compound in the crystal state exists in the zwitterionic form (formula A in Scheme 1) and it is planar (except for the terminal ester group) due to conjugations and intramolecular hydrogen bonds (Główka et al., 2005; Olczak et al., 2007; Orlewska et al., 2001). Surprisingly, overall planarity was also observed in the crystals of [amino(pyrazin-2-yl)methylene]carbonohydrazonodithioic acid diesters showing tuberculostatic activity (formula B in Scheme 1) (Olczak et al., 2011). Owing to the lack of an H atom at N3, the same intramolecular hydrogen-bond contacts as those observed in all type A (Scheme 1) structures could not be formed. Instead, another intramolecular hydrogen contact was observed, i.e. that between an amine group as a donor and an N atom at the ortho position of the pyrazine ring as an acceptor, similar to that observed in all pyrazinamide structures [Cambridge Structural Database (CSD), Version 5.32; Allen, 2002]. In the case of type B compounds (Scheme 1), planarity of the central structure frame (as evidenced by the torsion angle at the N—N bond) was secured by the conjugation alone (Olczak et al., 2011).

Next, the amine function in compounds of the types A and B has been replaced by a carbonyl group (compounds type C in Scheme 1), some of which also show promising activity (Foks et al., 2004; Sitarz et al., 2005). It was in accord with our hypothesis as the compounds could form similar intramolecular hydrogen bonds as in compounds of type A. The overall planarity of their molecules was confirmed in our studies on their crystal structures (Szczesio et al., 2011).

Our earlier observation that the conjugation in type B compounds was sufficient to secure planarity of the central molecular chain prompted us to synthesize the respective analogues D (Scheme 1), in which we have removed the last possibility of keeping the aromatic ring coplanar with the hydrazide fragment due to the intramolecular hydrogen bond N5—H···N(ring) (formula D in Scheme 1). We were encouraged by the structural characteristics of the well known agent isoniazid, in which also this intramolecular hydrogen bond could not be formed (Scheme 1). Most of the type B compounds show weak tuberculostatic activity (MIC about 50 mg ml-1) but for some the values are 20 times lower (Foks et al., 1992; Orlewska et al., 1995).

Here we report a study on the crystal structures of several type D compounds (Fig. 1–4), which differ in ester groups (Me, Bz or cyclic) or substitution by the methyl at the N3 atom (Scheme 2). There are seven diesters of benzoylcarbonohydrazonodithioic acid (CSD, Version 5.32; Allen, 2002). All are unsubstituted at the N3 atom. However, no mention has been made of their tuberculostatic activity in the papers.

In accord with our expectation, replacement of the aromatic ring containing an N atom in the ortho position by a phenyl resulted in its significant twist of 30–40° in comparison with planar 2-pyrazine or 2-pyrazine derivatives studied earlier. Similar values are observed in 19 benzamide structures found in the CSD, with an average of 22° (CSD, Version 5.32; Allen, 2002).

The other significant difference in the molecular structures of the D type and the formerly studied type C (Szczesio et al., 2011) compounds is the conformation around the N2—N3 bond. The absolute values of the respective torsion angle C1N2—N3—C4 are close to 177° in two planar diesters of (pyrazine-2-carbonyl)carbonohydrazonodithioic acid (type C) (Szczesio et al., 2011) as compared with 166.39 (15)° in (D2), -139.31 (18) and -150.87 (17)° in (D1), 131.65 (16)° in (D3) and 126.49 (17)° in (D4) (Table 4). This means that structures (D1) and (D2) maintain approximate planarity with the aid of the N3—H···S intramolecular hydrogen-bond contact (Table 2). The lack of the hydrogen at the N3 atom in (D3) and (D4) results also in their very different conformation around their N3—C4 bonds in comparison with N3-unsubstituted aroylcarbonohydrazonodithioic acids esters (Table 4). The crucial torsion angle N2—N3—C4—C41 is about 180° in (D1) and (D2) and only 21–31° in (D3) and (D4), due to spatial repulsion introduced by the methyl in the latter structures. A similar difference is seen in the related torsion angle N2—N3—C4O5, being about 4° in (D1) and (D2), and about 155° in (D3) and (D4), respectively (Table 4).

The question arises whether the observed differences in the molecular structures may be related to low tuberculostatic activity of the N3-substituted compounds. The fact is that only N3-unsubstituted derivatives show higher activity, especially (D1) (Gobis et al., 2011).

The differences in conformations along the main chain correlate with differences in the respective bond lengths (Table 4) indicating the change in conjugations. The largest difference is found for the N2—N3 bond length, which is 1.435 (2) Å (torsion about 130°) in (D3), 1.433 (2) Å (torsion about 125°) in (D4), 1.4143 (18) Å and 1.4017 (18) Å (torsion about -140° and -150°) in (D1) and 1.3703 (18) Å (torsion about 166°) in (D2) due to increasing (in the listed order) p(N3)—p(N2C1) conjugation for the antiperiplanar (torsion about 180°) conformation.

Another interesting issue concerns the intramolecular N3—H···S hydrogen-bond contact possible in (D1) and (D2). Although the H···S distances of 2.49 and 2.52 Å in (D1) and 2.59 Å in (D2) are significantly shorter than the sum of their van der Waals radii (2.89 Å), the angles at the H atom are only 104, 99 and 108°, respectively. So, despite the H···S distances indicating hydrogen bonds, there is some doubt in the literature concerning contribution of the contacts to the stabilization energy of the crystals, especially because of the low values of the N3—H···S angles (Wood et al., 2009; Galek et al., 2010; Bilton et al., 2000). Our view on the subject has been presented in Szczesio et al. (2011).

In the studied crystals there are several intermolecular hydrogen bonds, some of which are quite strong and important for crystal packing (Figs. 5–7). In (D1), the two independent molecules form an infinite C22(8) chain [according to the graph-set definition of Bernstein et al. (1995)] parallel to the [100] direction through two intermolecular hydrogen bonds, viz. N3—H···O5A and N3A—H···O5(x-1, y, z). In addition, in (D1), there exists a C21—H···Cl4A(x+1, y, z) contact taking part in the formation of two additional chains, viz. C22(14) parallel to the [101] direction with an N3—H···O5A hydrogen bond and C22(16) parallel to the [001] direction with an N3A—H···O5(x-1, y, z) hydrogen bond. At the third level of the graph-set theory, the R66(38) ring formed by N3—H···O5A, N3A—H···O5(x-1, y, z) and C21—H···Cl4A(x+1, y, z) can be identified (Fig. 5). In (D2), there is only one weak hydrogen bond, C16—H···O5(x, -y, z-1/2), forming a C11(11) chain parallel to the [001] direction (Fig. 6). In (D3), there is also one weak hydrogen bond, C11—H..O5(x, y+1, z), forming a C11(8) chain parallel to the [010] direction (Fig. 7). No significant intermolecular contacts were observed in (D4).

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Bilton et al. (2000); Foks et al. (1992, 2002, 2004); Główka et al. (2005); Galek et al. (2010); Gobis et al. (2011); Milczarska et al. (1998, 1999); Olczak et al. (2007, 2011); Orlewska et al. (1995, 2001); Pancechowska-Ksepko, Foks, Janowiec & Zwolska-Kwiek (1993); Sitarz et al. (2005); Szczesio et al. (2011); Wood et al. (2009).

Experimental top

The synthesis of (D1) was described previously by Gobis et al. (2011). The other compounds were obtained from 3,4-dichlorobenzohydrazide [for (D2)] or 3,4-dichloro-N-methylhydrazide [for (D3) and (D4)] according to the same method. Benzohydrazides were dissolved in a methanol solution of triethylamine and treated with carbon disulfide and the respective halide, viz. methyl iodide for (D3), benzyl chloride for (D2) or ethylene bromide for (D4). Single crystals of (D1), (D2), (D3) and (D4) suitable for X-ray diffraction were obtained from ethanol solutions by slow evaporation of the solvents at room temperature.

Refinement top

H atoms were located in difference Fourier maps and subsequently geometrically optimized and allowed for as riding atoms, with C—H = 0.93 Å for aromatic CH groups, 0.97 Å for secondary CH2 groups and 0.96 Å for methyl groups, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2002) for D1, D4; CrysAlis CCD (Oxford Diffraction, 2008) for D2, D3. Cell refinement: SAINT-Plus (Bruker, 2003) for D1, D4; CrysAlis RED (Oxford Diffraction, 2008) for D2, D3. Data reduction: SAINT-Plus (Bruker, 2003) for D1, D4; CrysAlis RED (Oxford Diffraction, 2008) for D2, D3. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (D1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (D2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of (D3), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The molecular structure of (D4), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. The intermolecular hydrogen bonds of (D1) determining the packing of molecules in the crystal. [Symmetry codes: (i) x+1, y, z+1; (ii) x-1, y, z.]
[Figure 6] Fig. 6. The intermolecular hydrogen bonds of (D2) determining the packing of molecules in the crystal. [Symmetry code: (i) x, -y, z-1/2.]
[Figure 7] Fig. 7. The intermolecular hydrogen bonds of (D3) determining the packing of molecules in the crystal. [Symmetry code: (i) x, y+1, z.]
(D1) Dimethyl (3,4-dichlorobenzoyl)carbonohydrazonodithioate top
Crystal data top
C10H10Cl2N2OS2F(000) = 632
Mr = 309.22Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9897 reflections
a = 9.2225 (4) Åθ = 2.4–29.7°
b = 11.2741 (5) ŵ = 0.77 mm1
c = 13.0892 (5) ÅT = 296 K
β = 95.367 (1)°Plate, colourless
V = 1354.99 (10) Å30.3 × 0.3 × 0.1 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
7766 independent reflections
Radiation source: fine-focus sealed tube7138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 29.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.914, Tmax = 1.000k = 1515
33334 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
7766 reflectionsΔρmax = 0.79 e Å3
312 parametersΔρmin = 0.31 e Å3
3 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C10H10Cl2N2OS2V = 1354.99 (10) Å3
Mr = 309.22Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.2225 (4) ŵ = 0.77 mm1
b = 11.2741 (5) ÅT = 296 K
c = 13.0892 (5) Å0.3 × 0.3 × 0.1 mm
β = 95.367 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7766 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7138 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.021
33334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.79 e Å3
S = 1.08Δρmin = 0.31 e Å3
7766 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
312 parametersAbsolute structure parameter: 0.02 (4)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30896 (5)0.00002 (5)0.86012 (4)0.04235 (10)
S20.41312 (6)0.00171 (5)1.08359 (4)0.05065 (12)
O50.73268 (13)0.22218 (15)0.85354 (11)0.0459 (3)
N20.49881 (17)0.15555 (15)0.95100 (12)0.0394 (3)
N30.48906 (15)0.19643 (15)0.84831 (12)0.0386 (3)
H30.40610.19940.81240.046*
Cl30.78955 (8)0.50855 (7)0.53377 (6)0.07311 (19)
Cl40.55301 (10)0.39896 (8)0.37062 (5)0.0796 (2)
C10.41683 (18)0.06603 (16)0.96262 (13)0.0341 (3)
C40.61023 (17)0.23034 (15)0.80782 (13)0.0332 (3)
C110.2299 (3)0.1285 (2)0.9157 (2)0.0619 (6)
H11A0.30600.17770.94780.093*
H11B0.17460.17270.86280.093*
H11C0.16700.10350.96610.093*
C210.5515 (4)0.0845 (4)1.1567 (2)0.0948 (12)
H21D0.64020.08081.12380.142*
H21E0.56760.05151.22440.142*
H21F0.52120.16561.16110.142*
C410.58754 (17)0.27608 (16)0.70005 (13)0.0339 (3)
C420.6826 (2)0.36172 (17)0.66960 (16)0.0399 (4)
H420.75460.39270.71670.048*
C430.6702 (2)0.40106 (18)0.56866 (17)0.0448 (4)
C440.5652 (3)0.3551 (2)0.49789 (16)0.0485 (4)
C450.4692 (2)0.2700 (2)0.52749 (15)0.0504 (5)
H450.39790.23910.47990.060*
C460.4798 (2)0.23091 (19)0.62859 (14)0.0425 (4)
H460.41470.17440.64870.051*
S1A0.01588 (7)0.10404 (5)1.03930 (4)0.05128 (13)
S2A0.18313 (6)0.28235 (5)1.15163 (4)0.04864 (12)
O5A0.21946 (13)0.29299 (15)0.76583 (11)0.0453 (3)
N2A0.11746 (16)0.28335 (15)0.95205 (11)0.0394 (3)
N3A0.04162 (15)0.23506 (16)0.86391 (11)0.0369 (3)
H3A0.04000.19900.86710.044*
Cl3A0.03349 (12)0.27259 (8)0.38492 (5)0.0869 (3)
Cl4A0.24765 (11)0.05505 (9)0.40157 (6)0.0921 (3)
C1A0.09641 (18)0.22930 (17)1.03549 (13)0.0355 (3)
C4A0.10054 (17)0.24678 (16)0.77423 (13)0.0337 (3)
C11A0.0027 (4)0.0564 (3)1.1690 (2)0.0697 (7)
H11D0.10420.05291.19320.105*
H11E0.03990.02081.17370.105*
H11F0.04590.11141.21020.105*
C21A0.2975 (3)0.3960 (2)1.10652 (19)0.0584 (6)
H21A0.35500.36331.05590.088*
H21B0.36070.42621.16300.088*
H21C0.23810.45921.07660.088*
C41A0.01085 (18)0.19624 (16)0.68325 (13)0.0352 (3)
C42A0.0258 (2)0.24797 (18)0.58829 (14)0.0428 (4)
H42A0.08980.31100.58320.051*
C43A0.0547 (3)0.2054 (2)0.50155 (15)0.0496 (5)
C44A0.1473 (3)0.1120 (2)0.50884 (17)0.0553 (5)
C45A0.1615 (3)0.0585 (2)0.60314 (19)0.0544 (5)
H45A0.22480.00510.60740.065*
C46A0.0814 (2)0.0998 (2)0.69042 (16)0.0449 (4)
H46A0.08930.06340.75340.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0440 (2)0.0435 (2)0.0386 (2)0.00481 (19)0.00149 (17)0.00038 (19)
S20.0576 (3)0.0578 (3)0.0363 (2)0.0071 (3)0.00302 (19)0.0130 (2)
O50.0262 (5)0.0689 (9)0.0421 (7)0.0028 (6)0.0002 (5)0.0006 (6)
N20.0338 (7)0.0495 (9)0.0341 (7)0.0043 (6)0.0014 (5)0.0083 (6)
N30.0291 (6)0.0528 (9)0.0329 (7)0.0053 (6)0.0032 (5)0.0115 (6)
Cl30.0707 (4)0.0616 (3)0.0894 (5)0.0168 (3)0.0206 (3)0.0247 (3)
Cl40.0990 (5)0.0949 (5)0.0450 (3)0.0032 (4)0.0076 (3)0.0258 (3)
C10.0318 (7)0.0403 (8)0.0301 (7)0.0025 (6)0.0031 (6)0.0037 (6)
C40.0288 (7)0.0355 (8)0.0351 (8)0.0005 (6)0.0020 (6)0.0004 (6)
C110.0653 (15)0.0477 (12)0.0713 (16)0.0152 (11)0.0015 (12)0.0041 (11)
C210.098 (2)0.134 (3)0.0460 (13)0.042 (2)0.0290 (14)0.0191 (17)
C410.0300 (7)0.0366 (8)0.0353 (7)0.0002 (6)0.0035 (6)0.0003 (6)
C420.0349 (8)0.0378 (9)0.0475 (10)0.0022 (7)0.0068 (7)0.0001 (7)
C430.0453 (10)0.0395 (9)0.0514 (11)0.0009 (7)0.0144 (8)0.0090 (8)
C440.0570 (11)0.0522 (11)0.0372 (9)0.0066 (9)0.0095 (8)0.0082 (8)
C450.0494 (10)0.0630 (13)0.0375 (9)0.0051 (9)0.0030 (8)0.0021 (9)
C460.0387 (8)0.0504 (10)0.0383 (9)0.0086 (8)0.0029 (7)0.0003 (8)
S1A0.0588 (3)0.0507 (3)0.0424 (2)0.0166 (2)0.0056 (2)0.0046 (2)
S2A0.0509 (3)0.0600 (3)0.0334 (2)0.0092 (2)0.00478 (18)0.0033 (2)
O5A0.0287 (5)0.0632 (9)0.0440 (7)0.0033 (6)0.0041 (5)0.0075 (6)
N2A0.0341 (7)0.0504 (8)0.0329 (7)0.0065 (6)0.0012 (5)0.0031 (6)
N3A0.0265 (6)0.0519 (8)0.0318 (7)0.0042 (6)0.0004 (5)0.0020 (6)
Cl3A0.1448 (8)0.0808 (5)0.0338 (3)0.0009 (5)0.0016 (3)0.0053 (3)
Cl4A0.1035 (6)0.1088 (6)0.0583 (4)0.0104 (5)0.0234 (4)0.0303 (4)
C1A0.0300 (7)0.0425 (8)0.0331 (8)0.0004 (7)0.0012 (6)0.0028 (7)
C4A0.0260 (7)0.0412 (8)0.0336 (8)0.0053 (6)0.0006 (6)0.0027 (6)
C11A0.105 (2)0.0596 (14)0.0440 (12)0.0181 (14)0.0059 (13)0.0118 (10)
C21A0.0540 (12)0.0643 (14)0.0542 (12)0.0193 (11)0.0083 (10)0.0029 (11)
C41A0.0308 (7)0.0415 (9)0.0334 (8)0.0051 (6)0.0028 (6)0.0022 (7)
C42A0.0480 (10)0.0460 (10)0.0349 (9)0.0040 (8)0.0068 (7)0.0020 (7)
C43A0.0634 (12)0.0533 (11)0.0317 (9)0.0106 (10)0.0022 (8)0.0029 (8)
C44A0.0546 (11)0.0659 (14)0.0435 (10)0.0098 (10)0.0057 (9)0.0209 (10)
C45A0.0536 (12)0.0565 (12)0.0525 (12)0.0103 (10)0.0025 (9)0.0149 (10)
C46A0.0450 (9)0.0510 (10)0.0393 (9)0.0027 (8)0.0067 (7)0.0034 (8)
Geometric parameters (Å, º) top
S1—C11.7589 (18)S1A—C1A1.7547 (19)
S1—C111.806 (2)S1A—C11A1.773 (2)
S2—C11.7447 (17)S2A—C1A1.7552 (18)
S2—C211.785 (3)S2A—C21A1.794 (3)
O5—C41.231 (2)O5A—C4A1.228 (2)
N2—C11.279 (2)N2A—C1A1.281 (2)
N2—N31.416 (2)N2A—N3A1.402 (2)
N3—C41.337 (2)N3A—C4A1.345 (2)
N3—H30.8600N3A—H3A0.8600
Cl3—C431.727 (2)Cl3A—C43A1.732 (2)
Cl4—C441.731 (2)Cl4A—C44A1.731 (2)
C4—C411.498 (2)C4A—C41A1.498 (2)
C11—H11A0.9600C11A—H11D0.9600
C11—H11B0.9600C11A—H11E0.9600
C11—H11C0.9600C11A—H11F0.9600
C21—H21D0.9600C21A—H21A0.9600
C21—H21E0.9600C21A—H21B0.9600
C21—H21F0.9600C21A—H21C0.9600
C41—C421.388 (2)C41A—C46A1.389 (3)
C41—C461.396 (2)C41A—C42A1.392 (3)
C42—C431.388 (3)C42A—C43A1.383 (3)
C42—H420.9300C42A—H42A0.9300
C43—C441.377 (3)C43A—C44A1.365 (4)
C44—C451.386 (3)C44A—C45A1.391 (4)
C45—C461.389 (3)C45A—C46A1.382 (3)
C45—H450.9300C45A—H45A0.9300
C46—H460.9300C46A—H46A0.9300
C1—S1—C11104.65 (11)C1A—S1A—C11A105.45 (11)
C1—S2—C21101.27 (12)C1A—S2A—C21A101.11 (10)
C1—N2—N3112.59 (15)C1A—N2A—N3A114.40 (15)
C4—N3—N2119.23 (14)C4A—N3A—N2A117.95 (14)
C4—N3—H3120.4C4A—N3A—H3A121.0
N2—N3—H3120.4N2A—N3A—H3A121.0
N2—C1—S2119.87 (14)N2A—C1A—S2A118.89 (14)
N2—C1—S1122.80 (13)N2A—C1A—S1A122.95 (14)
S2—C1—S1117.30 (10)S2A—C1A—S1A118.16 (10)
O5—C4—N3123.28 (16)O5A—C4A—N3A123.83 (16)
O5—C4—C41121.63 (15)O5A—C4A—C41A121.44 (15)
N3—C4—C41115.05 (14)N3A—C4A—C41A114.73 (15)
S1—C11—H11A109.5S1A—C11A—H11D109.5
S1—C11—H11B109.5S1A—C11A—H11E109.5
H11A—C11—H11B109.5H11D—C11A—H11E109.5
S1—C11—H11C109.5S1A—C11A—H11F109.5
H11A—C11—H11C109.5H11D—C11A—H11F109.5
H11B—C11—H11C109.5H11E—C11A—H11F109.5
S2—C21—H21D109.5S2A—C21A—H21A109.5
S2—C21—H21E109.5S2A—C21A—H21B109.5
H21D—C21—H21E109.5H21A—C21A—H21B109.5
S2—C21—H21F109.5S2A—C21A—H21C109.5
H21D—C21—H21F109.5H21A—C21A—H21C109.5
H21E—C21—H21F109.5H21B—C21A—H21C109.5
C42—C41—C46119.40 (17)C46A—C41A—C42A120.06 (17)
C42—C41—C4118.26 (16)C46A—C41A—C4A122.71 (16)
C46—C41—C4122.24 (16)C42A—C41A—C4A117.21 (17)
C43—C42—C41119.81 (18)C43A—C42A—C41A119.8 (2)
C43—C42—H42120.1C43A—C42A—H42A120.1
C41—C42—H42120.1C41A—C42A—H42A120.1
C44—C43—C42120.71 (18)C44A—C43A—C42A120.1 (2)
C44—C43—Cl3120.77 (16)C44A—C43A—Cl3A121.48 (17)
C42—C43—Cl3118.52 (17)C42A—C43A—Cl3A118.40 (19)
C43—C44—C45120.01 (19)C43A—C44A—C45A120.5 (2)
C43—C44—Cl4121.22 (17)C43A—C44A—Cl4A121.3 (2)
C45—C44—Cl4118.75 (18)C45A—C44A—Cl4A118.1 (2)
C46—C45—C44119.72 (19)C44A—C45A—C46A120.0 (2)
C46—C45—H45120.1C44A—C45A—H45A120.0
C44—C45—H45120.1C46A—C45A—H45A120.0
C45—C46—C41120.33 (18)C45A—C46A—C41A119.4 (2)
C45—C46—H46119.8C45A—C46A—H46A120.3
C41—C46—H46119.8C41A—C46A—H46A120.3
C1—N2—N3—C4139.31 (18)C1A—N2A—N3A—C4A150.87 (17)
N3—N2—C1—S2179.83 (13)N3A—N2A—C1A—S2A179.09 (12)
N3—N2—C1—S11.8 (2)N3A—N2A—C1A—S1A0.8 (2)
C21—S2—C1—N25.0 (2)C21A—S2A—C1A—N2A6.41 (19)
C21—S2—C1—S1173.20 (18)C21A—S2A—C1A—S1A173.66 (13)
C11—S1—C1—N2174.84 (17)C11A—S1A—C1A—N2A175.46 (19)
C11—S1—C1—S23.28 (15)C11A—S1A—C1A—S2A4.61 (17)
N2—N3—C4—O54.0 (3)N2A—N3A—C4A—O5A3.1 (3)
N2—N3—C4—C41177.95 (16)N2A—N3A—C4A—C41A178.19 (15)
O5—C4—C41—C4232.5 (3)O5A—C4A—C41A—C46A148.78 (19)
N3—C4—C41—C42149.38 (17)N3A—C4A—C41A—C46A30.0 (2)
O5—C4—C41—C46143.93 (19)O5A—C4A—C41A—C42A29.5 (3)
N3—C4—C41—C4634.2 (2)N3A—C4A—C41A—C42A151.70 (17)
C46—C41—C42—C430.3 (3)C46A—C41A—C42A—C43A2.0 (3)
C4—C41—C42—C43176.23 (17)C4A—C41A—C42A—C43A179.69 (17)
C41—C42—C43—C440.7 (3)C41A—C42A—C43A—C44A0.8 (3)
C41—C42—C43—Cl3179.51 (15)C41A—C42A—C43A—Cl3A179.76 (15)
C42—C43—C44—C451.0 (3)C42A—C43A—C44A—C45A0.2 (3)
Cl3—C43—C44—C45179.19 (17)Cl3A—C43A—C44A—C45A179.23 (19)
C42—C43—C44—Cl4177.39 (16)C42A—C43A—C44A—Cl4A178.97 (17)
Cl3—C43—C44—Cl42.4 (3)Cl3A—C43A—C44A—Cl4A0.4 (3)
C43—C44—C45—C460.3 (3)C43A—C44A—C45A—C46A0.0 (4)
Cl4—C44—C45—C46178.13 (18)Cl4A—C44A—C45A—C46A178.86 (18)
C44—C45—C46—C410.7 (3)C44A—C45A—C46A—C41A1.1 (3)
C42—C41—C46—C451.0 (3)C42A—C41A—C46A—C45A2.1 (3)
C4—C41—C46—C45175.40 (18)C4A—C41A—C46A—C45A179.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21E···Cl4Ai0.962.753.565 (3)144
N3A—H3A···O5ii0.862.102.8434 (18)144
N3—H3···O5A0.862.062.834 (2)149
N3—H3···S10.862.522.7810 (17)99
N3A—H3A···S1A0.862.492.8216 (16)104
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
(D2) dibenzyl (3,4-dichlorobenzoyl)carbonohydrazonodithioate top
Crystal data top
C22H18Cl2N2OS2F(000) = 1904
Mr = 461.40Dx = 1.401 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21835 reflections
a = 28.6760 (11) Åθ = 2.0–36.3°
b = 10.3705 (3) ŵ = 0.50 mm1
c = 14.7176 (6) ÅT = 292 K
β = 90.900 (4)°Prism, colourless
V = 4376.2 (3) Å30.55 × 0.4 × 0.3 mm
Z = 8
Data collection top
Kuma KM-4 CCD
diffractometer
3868 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and π scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 3431
Tmin = 0.942, Tmax = 1.000k = 1212
17461 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
3868 reflections(Δ/σ)max = 0.002
262 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H18Cl2N2OS2V = 4376.2 (3) Å3
Mr = 461.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.6760 (11) ŵ = 0.50 mm1
b = 10.3705 (3) ÅT = 292 K
c = 14.7176 (6) Å0.55 × 0.4 × 0.3 mm
β = 90.900 (4)°
Data collection top
Kuma KM-4 CCD
diffractometer
3868 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3021 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 1.000Rint = 0.022
17461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.94Δρmax = 0.22 e Å3
3868 reflectionsΔρmin = 0.29 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89267 (5)0.29944 (17)0.81737 (11)0.0432 (4)
C40.90756 (6)0.01453 (16)0.73969 (11)0.0414 (4)
C110.88299 (7)0.47072 (18)0.67553 (14)0.0614 (5)
H11A0.85970.50870.71450.074*
H11B0.89670.53950.64010.074*
C120.85989 (6)0.37698 (16)0.61288 (12)0.0487 (4)
C130.81801 (7)0.3195 (2)0.63567 (14)0.0587 (5)
H130.80380.34170.68980.070*
C140.79741 (9)0.2307 (2)0.57976 (19)0.0800 (7)
H140.76950.19210.59590.096*
C150.81815 (12)0.1989 (3)0.4998 (2)0.0923 (9)
H150.80410.13870.46150.111*
C160.85962 (12)0.2548 (3)0.47545 (16)0.0873 (9)
H160.87350.23270.42090.105*
C170.88032 (8)0.3436 (2)0.53221 (14)0.0631 (6)
H170.90840.38150.51610.076*
C210.82591 (7)0.2802 (2)0.95176 (13)0.0656 (5)
H21A0.83950.19490.95730.079*
H21B0.81790.30911.01220.079*
C220.78256 (7)0.27180 (19)0.89508 (12)0.0541 (5)
C230.75253 (8)0.3758 (2)0.88893 (14)0.0665 (6)
H230.75930.45020.92190.080*
C240.71304 (8)0.3717 (2)0.83530 (17)0.0788 (7)
H240.69350.44310.83150.095*
C250.70248 (8)0.2622 (3)0.78734 (17)0.0793 (7)
H250.67570.25880.75100.095*
C260.73147 (9)0.1580 (2)0.79312 (17)0.0786 (7)
H260.72420.08350.76080.094*
C270.77146 (8)0.1622 (2)0.84644 (15)0.0666 (6)
H270.79100.09070.84960.080*
C410.92802 (5)0.07165 (15)0.65635 (10)0.0365 (4)
C420.95180 (6)0.18712 (15)0.66551 (11)0.0413 (4)
H420.95360.22760.72180.050*
C430.97284 (6)0.24233 (15)0.59168 (12)0.0418 (4)
C440.96955 (5)0.18406 (16)0.50760 (10)0.0397 (4)
C450.94445 (6)0.07142 (16)0.49729 (11)0.0457 (4)
H450.94130.03350.44030.055*
C460.92416 (6)0.01533 (16)0.57120 (10)0.0432 (4)
H460.90760.06130.56410.052*
Cl31.003610 (19)0.38412 (5)0.60745 (4)0.06910 (17)
Cl40.996849 (15)0.25042 (5)0.41501 (3)0.05514 (14)
N20.88577 (5)0.17874 (13)0.81121 (9)0.0429 (3)
N30.90549 (5)0.11577 (13)0.73954 (9)0.0420 (3)
H30.91650.15880.69470.050*
O50.89500 (5)0.07987 (13)0.80290 (9)0.0670 (4)
S10.928623 (15)0.39529 (4)0.74647 (3)0.05024 (14)
S20.868881 (19)0.38921 (5)0.90532 (4)0.06536 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (9)0.0442 (10)0.0473 (10)0.0024 (7)0.0007 (7)0.0127 (8)
C40.0479 (9)0.0376 (9)0.0386 (9)0.0008 (7)0.0020 (7)0.0028 (7)
C110.0582 (12)0.0384 (10)0.0873 (14)0.0044 (8)0.0031 (10)0.0042 (10)
C120.0501 (11)0.0407 (9)0.0551 (11)0.0096 (8)0.0017 (8)0.0110 (8)
C130.0547 (12)0.0626 (13)0.0586 (12)0.0006 (9)0.0006 (9)0.0055 (10)
C140.0765 (15)0.0728 (16)0.0897 (17)0.0124 (12)0.0258 (14)0.0036 (14)
C150.122 (2)0.0674 (16)0.0853 (19)0.0185 (16)0.0551 (18)0.0155 (14)
C160.122 (2)0.093 (2)0.0470 (12)0.0580 (18)0.0124 (14)0.0022 (13)
C170.0672 (13)0.0668 (13)0.0555 (12)0.0254 (10)0.0075 (10)0.0217 (11)
C210.0715 (13)0.0794 (15)0.0463 (10)0.0154 (11)0.0151 (9)0.0054 (10)
C220.0572 (11)0.0588 (12)0.0470 (10)0.0039 (9)0.0202 (8)0.0039 (9)
C230.0691 (14)0.0589 (13)0.0718 (14)0.0053 (10)0.0133 (11)0.0012 (10)
C240.0663 (15)0.0719 (16)0.0984 (18)0.0057 (11)0.0047 (13)0.0141 (13)
C250.0638 (14)0.093 (2)0.0815 (16)0.0151 (13)0.0027 (12)0.0134 (14)
C260.0741 (16)0.0746 (16)0.0876 (16)0.0222 (13)0.0202 (13)0.0112 (13)
C270.0684 (14)0.0561 (13)0.0761 (14)0.0001 (10)0.0245 (11)0.0010 (11)
C410.0394 (9)0.0308 (8)0.0391 (8)0.0002 (6)0.0021 (7)0.0031 (7)
C420.0507 (10)0.0344 (8)0.0388 (9)0.0021 (7)0.0015 (7)0.0036 (7)
C430.0414 (9)0.0312 (8)0.0527 (10)0.0047 (6)0.0003 (7)0.0004 (7)
C440.0380 (9)0.0407 (9)0.0404 (9)0.0003 (7)0.0010 (7)0.0089 (7)
C450.0574 (11)0.0451 (10)0.0344 (9)0.0045 (8)0.0044 (7)0.0022 (7)
C460.0529 (10)0.0354 (9)0.0409 (9)0.0105 (7)0.0060 (7)0.0009 (7)
Cl30.0829 (4)0.0453 (3)0.0796 (4)0.0294 (2)0.0159 (3)0.0084 (2)
Cl40.0530 (3)0.0620 (3)0.0507 (3)0.0041 (2)0.0078 (2)0.0163 (2)
N20.0453 (8)0.0432 (8)0.0403 (8)0.0035 (6)0.0040 (6)0.0102 (6)
N30.0530 (9)0.0344 (7)0.0390 (7)0.0019 (6)0.0109 (6)0.0051 (6)
O50.1092 (12)0.0441 (8)0.0484 (7)0.0026 (7)0.0231 (7)0.0029 (6)
S10.0421 (3)0.0425 (2)0.0661 (3)0.00378 (18)0.0001 (2)0.0080 (2)
S20.0633 (3)0.0652 (3)0.0678 (3)0.0036 (2)0.0078 (2)0.0361 (3)
Geometric parameters (Å, º) top
C1—N21.270 (2)C22—C271.378 (3)
C1—S21.7421 (16)C22—C231.383 (3)
C1—S11.7815 (18)C23—C241.371 (3)
C4—O51.210 (2)C23—H230.9300
C4—N31.353 (2)C24—C251.369 (3)
C4—C411.491 (2)C24—H240.9300
C11—C121.488 (3)C25—C261.365 (3)
C11—S11.8363 (19)C25—H250.9300
C11—H11A0.9700C26—C271.380 (3)
C11—H11B0.9700C26—H260.9300
C12—C171.377 (3)C27—H270.9300
C12—C131.387 (3)C41—C421.384 (2)
C13—C141.363 (3)C41—C461.385 (2)
C13—H130.9300C42—C431.376 (2)
C14—C151.367 (4)C42—H420.9300
C14—H140.9300C43—C441.379 (2)
C15—C161.376 (4)C43—Cl31.7287 (15)
C15—H150.9300C44—C451.379 (2)
C16—C171.372 (4)C44—Cl41.7254 (16)
C16—H160.9300C45—C461.371 (2)
C17—H170.9300C45—H450.9300
C21—C221.489 (3)C46—H460.9300
C21—S21.814 (2)N2—N31.3703 (18)
C21—H21A0.9700N3—H30.8600
C21—H21B0.9700
N2—C1—S2121.15 (13)C24—C23—C22121.4 (2)
N2—C1—S1126.79 (12)C24—C23—H23119.3
S2—C1—S1111.96 (10)C22—C23—H23119.3
O5—C4—N3123.16 (15)C25—C24—C23119.8 (2)
O5—C4—C41122.39 (15)C25—C24—H24120.1
N3—C4—C41114.42 (14)C23—C24—H24120.1
C12—C11—S1112.36 (13)C26—C25—C24119.7 (2)
C12—C11—H11A109.1C26—C25—H25120.2
S1—C11—H11A109.1C24—C25—H25120.2
C12—C11—H11B109.1C25—C26—C27120.7 (2)
S1—C11—H11B109.1C25—C26—H26119.6
H11A—C11—H11B107.9C27—C26—H26119.6
C17—C12—C13118.84 (19)C22—C27—C26120.3 (2)
C17—C12—C11120.49 (18)C22—C27—H27119.9
C13—C12—C11120.65 (18)C26—C27—H27119.9
C14—C13—C12120.9 (2)C42—C41—C46119.03 (15)
C14—C13—H13119.6C42—C41—C4117.61 (14)
C12—C13—H13119.6C46—C41—C4123.36 (14)
C13—C14—C15119.5 (2)C43—C42—C41120.32 (15)
C13—C14—H14120.3C43—C42—H42119.8
C15—C14—H14120.3C41—C42—H42119.8
C14—C15—C16120.8 (2)C42—C43—C44120.11 (14)
C14—C15—H15119.6C42—C43—Cl3118.50 (13)
C16—C15—H15119.6C44—C43—Cl3121.39 (13)
C17—C16—C15119.4 (2)C43—C44—C45119.88 (15)
C17—C16—H16120.3C43—C44—Cl4120.56 (13)
C15—C16—H16120.3C45—C44—Cl4119.56 (13)
C16—C17—C12120.5 (2)C46—C45—C44119.95 (15)
C16—C17—H17119.7C46—C45—H45120.0
C12—C17—H17119.7C44—C45—H45120.0
C22—C21—S2113.05 (14)C45—C46—C41120.66 (15)
C22—C21—H21A109.0C45—C46—H46119.7
S2—C21—H21A109.0C41—C46—H46119.7
C22—C21—H21B109.0C1—N2—N3117.31 (14)
S2—C21—H21B109.0C4—N3—N2119.57 (14)
H21A—C21—H21B107.8C4—N3—H3120.2
C27—C22—C23118.1 (2)N2—N3—H3120.2
C27—C22—C21121.56 (19)C1—S1—C1199.03 (9)
C23—C22—C21120.32 (19)C1—S2—C21102.90 (9)
S1—C11—C12—C1781.40 (19)C46—C41—C42—C432.6 (2)
S1—C11—C12—C1397.03 (18)C4—C41—C42—C43177.73 (14)
C17—C12—C13—C140.4 (3)C41—C42—C43—C441.3 (2)
C11—C12—C13—C14178.04 (18)C41—C42—C43—Cl3178.06 (12)
C12—C13—C14—C150.6 (3)C42—C43—C44—C451.1 (2)
C13—C14—C15—C160.3 (4)Cl3—C43—C44—C45179.57 (13)
C14—C15—C16—C170.0 (3)C42—C43—C44—Cl4178.56 (12)
C15—C16—C17—C120.2 (3)Cl3—C43—C44—Cl40.8 (2)
C13—C12—C17—C160.1 (3)C43—C44—C45—C462.2 (2)
C11—C12—C17—C16178.41 (17)Cl4—C44—C45—C46177.47 (13)
S2—C21—C22—C27109.86 (19)C44—C45—C46—C410.9 (3)
S2—C21—C22—C2369.2 (2)C42—C41—C46—C451.5 (2)
C27—C22—C23—C240.8 (3)C4—C41—C46—C45178.85 (15)
C21—C22—C23—C24178.2 (2)S2—C1—N2—N3179.53 (11)
C22—C23—C24—C250.8 (4)S1—C1—N2—N34.4 (2)
C23—C24—C25—C260.2 (4)O5—C4—N3—N24.1 (2)
C24—C25—C26—C270.4 (4)C41—C4—N3—N2177.63 (13)
C23—C22—C27—C260.3 (3)C1—N2—N3—C4166.39 (15)
C21—C22—C27—C26178.79 (19)N2—C1—S1—C11102.89 (16)
C25—C26—C27—C220.3 (3)S2—C1—S1—C1180.72 (10)
O5—C4—C41—C4228.8 (2)C12—C11—S1—C169.67 (16)
N3—C4—C41—C42149.45 (15)N2—C1—S2—C2114.24 (16)
O5—C4—C41—C46150.88 (17)S1—C1—S2—C21169.14 (9)
N3—C4—C41—C4630.8 (2)C22—C21—S2—C177.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S10.862.592.9751 (14)108
C16—H16···O5i0.932.443.294 (3)153
Symmetry code: (i) x, y, z1/2.
(D3) dimethyl (3,4-dichlorobenzoyl)-1-methylcarbonohydrazonodithioate top
Crystal data top
C11H12Cl2N2OS2Z = 2
Mr = 323.25F(000) = 332
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9307 (4) ÅCell parameters from 7920 reflections
b = 9.0858 (7) Åθ = 2.2–36.1°
c = 10.3873 (5) ŵ = 0.74 mm1
α = 65.039 (6)°T = 291 K
β = 69.172 (4)°Prism, colourless
γ = 74.892 (5)°0.5 × 0.35 × 0.2 mm
V = 708.08 (7) Å3
Data collection top
Kuma KM-4 CCD
diffractometer
2494 independent reflections
Radiation source: fine-focus sealed tube2181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 109
Tmin = 0.447, Tmax = 1.000k = 1010
10270 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
2494 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C11H12Cl2N2OS2γ = 74.892 (5)°
Mr = 323.25V = 708.08 (7) Å3
Triclinic, P1Z = 2
a = 8.9307 (4) ÅMo Kα radiation
b = 9.0858 (7) ŵ = 0.74 mm1
c = 10.3873 (5) ÅT = 291 K
α = 65.039 (6)°0.5 × 0.35 × 0.2 mm
β = 69.172 (4)°
Data collection top
Kuma KM-4 CCD
diffractometer
2494 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2181 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 1.000Rint = 0.034
10270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.15Δρmax = 0.24 e Å3
2494 reflectionsΔρmin = 0.42 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34457 (5)0.64354 (5)0.39398 (5)0.03415 (16)
S20.55683 (6)0.41504 (6)0.24205 (5)0.04409 (17)
Cl30.01705 (7)0.22745 (7)0.98208 (6)0.0633 (2)
Cl40.29864 (8)0.15136 (8)1.04992 (6)0.0642 (2)
N20.24742 (16)0.39595 (16)0.39517 (15)0.0317 (3)
N30.27827 (18)0.26883 (17)0.33799 (15)0.0341 (3)
O50.20495 (17)0.02531 (16)0.39643 (15)0.0452 (3)
C10.3683 (2)0.47383 (19)0.34812 (17)0.0288 (4)
C30.2550 (3)0.3256 (3)0.1920 (2)0.0510 (5)
H3A0.29570.23910.15360.076*
H3B0.31220.41800.12690.076*
H3C0.14190.35710.19910.076*
C40.2390 (2)0.1188 (2)0.43512 (19)0.0324 (4)
C110.1332 (2)0.6634 (3)0.4821 (3)0.0526 (5)
H11A0.07520.68130.41360.079*
H11B0.10350.75460.51400.079*
H11C0.10680.56500.56620.079*
C210.6750 (2)0.5691 (3)0.2005 (2)0.0523 (5)
H21A0.63190.67250.13860.078*
H21B0.78470.54040.14980.078*
H21C0.67170.57700.29070.078*
C410.24920 (19)0.06592 (19)0.58904 (18)0.0297 (4)
C420.1396 (2)0.0342 (2)0.70192 (19)0.0342 (4)
H420.05650.05720.68190.041*
C430.1531 (2)0.0998 (2)0.8434 (2)0.0379 (4)
C440.2777 (2)0.0674 (2)0.87326 (19)0.0384 (4)
C450.3871 (2)0.0300 (2)0.7616 (2)0.0386 (4)
H450.47150.05050.78170.046*
C460.3736 (2)0.0980 (2)0.6196 (2)0.0342 (4)
H460.44780.16550.54430.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0358 (3)0.0255 (2)0.0420 (3)0.01139 (19)0.00882 (19)0.01049 (19)
S20.0378 (3)0.0416 (3)0.0486 (3)0.0114 (2)0.0010 (2)0.0197 (2)
Cl30.0585 (4)0.0588 (4)0.0508 (3)0.0313 (3)0.0033 (2)0.0041 (3)
Cl40.0743 (4)0.0669 (4)0.0420 (3)0.0148 (3)0.0256 (3)0.0002 (3)
N20.0354 (8)0.0212 (7)0.0374 (8)0.0078 (6)0.0100 (6)0.0076 (6)
N30.0445 (9)0.0264 (7)0.0339 (7)0.0124 (6)0.0123 (6)0.0078 (6)
O50.0603 (9)0.0348 (7)0.0512 (8)0.0205 (6)0.0165 (6)0.0165 (6)
C10.0327 (9)0.0214 (8)0.0287 (8)0.0066 (7)0.0098 (6)0.0029 (6)
C30.0724 (15)0.0456 (12)0.0403 (10)0.0184 (11)0.0216 (10)0.0097 (9)
C40.0318 (9)0.0270 (9)0.0396 (9)0.0074 (7)0.0093 (7)0.0117 (7)
C110.0389 (11)0.0379 (11)0.0822 (15)0.0053 (9)0.0067 (10)0.0312 (11)
C210.0406 (11)0.0613 (14)0.0505 (11)0.0256 (10)0.0006 (9)0.0163 (10)
C410.0312 (9)0.0191 (8)0.0380 (9)0.0039 (7)0.0102 (7)0.0091 (7)
C420.0316 (9)0.0253 (9)0.0446 (10)0.0070 (7)0.0100 (7)0.0106 (8)
C430.0371 (10)0.0254 (9)0.0418 (10)0.0085 (7)0.0055 (8)0.0056 (7)
C440.0434 (11)0.0295 (9)0.0372 (9)0.0020 (8)0.0146 (8)0.0064 (8)
C450.0391 (10)0.0310 (9)0.0482 (10)0.0070 (8)0.0185 (8)0.0103 (8)
C460.0331 (9)0.0245 (9)0.0422 (9)0.0093 (7)0.0093 (7)0.0075 (7)
Geometric parameters (Å, º) top
S1—C11.7400 (17)C11—H11A0.9600
S1—C111.7796 (19)C11—H11B0.9600
S2—C11.7446 (17)C11—H11C0.9600
S2—C211.787 (2)C21—H21A0.9600
Cl3—C431.7254 (17)C21—H21B0.9600
Cl4—C441.7241 (17)C21—H21C0.9600
N2—C11.279 (2)C41—C421.382 (2)
N2—N31.435 (2)C41—C461.385 (2)
N3—C41.355 (2)C42—C431.371 (2)
N3—C31.455 (2)C42—H420.9300
O5—C41.219 (2)C43—C441.383 (3)
C3—H3A0.9600C44—C451.365 (3)
C3—H3B0.9600C45—C461.375 (2)
C3—H3C0.9600C45—H450.9300
C4—C411.493 (2)C46—H460.9300
C1—S1—C11100.95 (9)S2—C21—H21A109.5
C1—S2—C21103.86 (9)S2—C21—H21B109.5
C1—N2—N3113.06 (13)H21A—C21—H21B109.5
C4—N3—N2117.87 (14)S2—C21—H21C109.5
C4—N3—C3118.05 (15)H21A—C21—H21C109.5
N2—N3—C3114.10 (14)H21B—C21—H21C109.5
N2—C1—S1118.69 (13)C42—C41—C46119.55 (16)
N2—C1—S2122.66 (13)C42—C41—C4117.54 (15)
S1—C1—S2118.64 (9)C46—C41—C4122.50 (15)
N3—C3—H3A109.5C43—C42—C41120.11 (16)
N3—C3—H3B109.5C43—C42—H42119.9
H3A—C3—H3B109.5C41—C42—H42119.9
N3—C3—H3C109.5C42—C43—C44120.10 (16)
H3A—C3—H3C109.5C42—C43—Cl3119.35 (14)
H3B—C3—H3C109.5C44—C43—Cl3120.52 (14)
O5—C4—N3121.20 (16)C45—C44—C43119.84 (16)
O5—C4—C41120.43 (16)C45—C44—Cl4119.35 (15)
N3—C4—C41118.24 (15)C43—C44—Cl4120.80 (14)
S1—C11—H11A109.5C44—C45—C46120.58 (17)
S1—C11—H11B109.5C44—C45—H45119.7
H11A—C11—H11B109.5C46—C45—H45119.7
S1—C11—H11C109.5C45—C46—C41119.81 (16)
H11A—C11—H11C109.5C45—C46—H46120.1
H11B—C11—H11C109.5C41—C46—H46120.1
C1—N2—N3—C4131.65 (16)N3—C4—C41—C4640.2 (2)
C1—N2—N3—C383.33 (18)C46—C41—C42—C430.7 (3)
N3—N2—C1—S1174.34 (10)C4—C41—C42—C43173.53 (16)
N3—N2—C1—S26.62 (19)C41—C42—C43—C440.7 (3)
C11—S1—C1—N26.69 (16)C41—C42—C43—Cl3178.87 (14)
C11—S1—C1—S2174.23 (11)C42—C43—C44—C450.0 (3)
C21—S2—C1—N2177.38 (14)Cl3—C43—C44—C45178.12 (15)
C21—S2—C1—S13.59 (13)C42—C43—C44—Cl4178.98 (14)
N2—N3—C4—O5152.86 (16)Cl3—C43—C44—Cl40.9 (2)
C3—N3—C4—O59.2 (3)C43—C44—C45—C460.8 (3)
N2—N3—C4—C4131.2 (2)Cl4—C44—C45—C46179.77 (14)
C3—N3—C4—C41174.87 (16)C44—C45—C46—C410.8 (3)
O5—C4—C41—C4236.9 (2)C42—C41—C46—C450.1 (2)
N3—C4—C41—C42147.19 (16)C4—C41—C46—C45172.39 (17)
O5—C4—C41—C46135.75 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O5i0.962.493.200 (2)131
Symmetry code: (i) x, y+1, z.
(D4) 3,4-dichloro-N'-(1,3-dithiolan-2-ylidene)-N-methylbenzohydrazide top
Crystal data top
C11H10Cl2N2OS2F(000) = 656
Mr = 321.23Dx = 1.497 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9990 reflections
a = 13.3680 (2) Åθ = 3.4–69.4°
b = 8.1817 (1) ŵ = 6.76 mm1
c = 13.5158 (2) ÅT = 296 K
β = 105.415 (1)°Plate, colourless
V = 1425.08 (3) Å30.3 × 0.2 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2643 independent reflections
Radiation source: fine-focus sealed tube2589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 69.8°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1615
Tmin = 0.423, Tmax = 0.753k = 99
15835 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.5411P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2643 reflectionsΔρmax = 0.48 e Å3
165 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (6)
Crystal data top
C11H10Cl2N2OS2V = 1425.08 (3) Å3
Mr = 321.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.3680 (2) ŵ = 6.76 mm1
b = 8.1817 (1) ÅT = 296 K
c = 13.5158 (2) Å0.3 × 0.2 × 0.05 mm
β = 105.415 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2589 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.753Rint = 0.034
15835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
2643 reflectionsΔρmin = 0.36 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83398 (12)0.10963 (19)0.62822 (12)0.0388 (4)
C31.02049 (16)0.0263 (3)0.80548 (17)0.0591 (5)
H3A1.05850.07390.80810.089*
H3B1.03480.09660.75400.089*
H3C1.04120.07950.87110.089*
C40.87322 (16)0.1061 (2)0.84450 (14)0.0493 (4)
C110.8095 (2)0.2119 (3)0.44131 (16)0.0639 (6)
H11A0.87560.26650.44920.077*
H11B0.76180.25000.37830.077*
C210.8232 (2)0.0316 (3)0.43692 (16)0.0679 (6)
H21A0.75620.02070.41100.081*
H21B0.86580.00580.39100.081*
C410.75852 (16)0.1172 (2)0.83001 (14)0.0485 (4)
C420.72354 (18)0.1218 (3)0.91825 (16)0.0584 (5)
H420.77120.11820.98240.070*
C430.6195 (2)0.1316 (3)0.91151 (19)0.0732 (7)
H430.59700.13190.97090.088*
C440.54807 (19)0.1410 (3)0.8166 (2)0.0736 (7)
C450.58224 (18)0.1418 (3)0.72798 (17)0.0657 (6)
C460.68686 (16)0.1289 (3)0.73480 (15)0.0561 (5)
H460.70940.12800.67540.067*
Cl40.41784 (6)0.15325 (17)0.80980 (7)0.1283 (4)
Cl50.49472 (5)0.15578 (13)0.60858 (5)0.1029 (3)
N20.84424 (11)0.11848 (17)0.72499 (11)0.0432 (3)
N30.90917 (11)0.00931 (19)0.77988 (11)0.0453 (3)
O50.93346 (13)0.1847 (2)0.91231 (12)0.0700 (4)
S10.75887 (4)0.25764 (6)0.54888 (3)0.04834 (17)
S20.88505 (4)0.04250 (6)0.56470 (3)0.05213 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (8)0.0359 (8)0.0427 (9)0.0021 (6)0.0149 (7)0.0013 (6)
C30.0490 (10)0.0629 (12)0.0616 (12)0.0018 (9)0.0077 (9)0.0093 (10)
C40.0621 (11)0.0403 (9)0.0437 (9)0.0033 (8)0.0109 (8)0.0023 (7)
C110.0866 (15)0.0639 (13)0.0463 (11)0.0067 (11)0.0266 (10)0.0087 (9)
C210.0981 (17)0.0641 (13)0.0442 (10)0.0131 (12)0.0237 (11)0.0016 (9)
C410.0633 (11)0.0384 (9)0.0452 (9)0.0059 (8)0.0166 (8)0.0024 (7)
C420.0764 (13)0.0541 (11)0.0463 (10)0.0046 (9)0.0191 (9)0.0048 (8)
C430.0893 (17)0.0839 (17)0.0576 (12)0.0076 (13)0.0393 (12)0.0056 (11)
C440.0665 (14)0.0930 (18)0.0698 (14)0.0143 (12)0.0330 (11)0.0036 (13)
C450.0616 (12)0.0822 (16)0.0546 (12)0.0188 (11)0.0179 (10)0.0024 (10)
C460.0616 (12)0.0640 (12)0.0462 (10)0.0137 (9)0.0202 (9)0.0014 (9)
Cl40.0730 (5)0.2172 (12)0.1092 (6)0.0254 (6)0.0495 (4)0.0057 (7)
Cl50.0651 (4)0.1753 (9)0.0641 (4)0.0303 (4)0.0098 (3)0.0085 (4)
N20.0502 (8)0.0405 (8)0.0403 (7)0.0036 (6)0.0145 (6)0.0032 (6)
N30.0492 (8)0.0432 (8)0.0421 (7)0.0018 (6)0.0101 (6)0.0055 (6)
O50.0707 (9)0.0658 (9)0.0661 (9)0.0011 (8)0.0050 (7)0.0276 (8)
S10.0532 (3)0.0483 (3)0.0446 (3)0.01043 (18)0.0151 (2)0.00656 (17)
S20.0676 (3)0.0443 (3)0.0466 (3)0.01131 (19)0.0189 (2)0.00167 (17)
Geometric parameters (Å, º) top
C1—N21.280 (2)C21—H21A0.9700
C1—S11.7470 (17)C21—H21B0.9700
C1—S21.7504 (16)C41—C461.388 (3)
C3—N31.465 (2)C41—C421.392 (3)
C3—H3A0.9600C42—C431.371 (3)
C3—H3B0.9600C42—H420.9300
C3—H3C0.9600C43—C441.383 (4)
C4—O51.229 (2)C43—H430.9300
C4—N31.358 (2)C44—C451.391 (3)
C4—C411.496 (3)C44—Cl41.722 (2)
C11—C211.489 (3)C45—C461.381 (3)
C11—S11.799 (2)C45—Cl51.727 (2)
C11—H11A0.9700C46—H460.9300
C11—H11B0.9700N2—N31.433 (2)
C21—S21.810 (2)
N2—C1—S1118.42 (13)C46—C41—C42119.08 (19)
N2—C1—S2126.25 (13)C46—C41—C4123.79 (17)
S1—C1—S2115.30 (9)C42—C41—C4117.09 (18)
N3—C3—H3A109.5C43—C42—C41120.7 (2)
N3—C3—H3B109.5C43—C42—H42119.7
H3A—C3—H3B109.5C41—C42—H42119.7
N3—C3—H3C109.5C42—C43—C44120.2 (2)
H3A—C3—H3C109.5C42—C43—H43119.9
H3B—C3—H3C109.5C44—C43—H43119.9
O5—C4—N3120.73 (18)C43—C44—C45119.7 (2)
O5—C4—C41120.79 (17)C43—C44—Cl4119.49 (18)
N3—C4—C41118.47 (16)C45—C44—Cl4120.8 (2)
C21—C11—S1108.36 (15)C46—C45—C44120.0 (2)
C21—C11—H11A110.0C46—C45—Cl5119.34 (16)
S1—C11—H11A110.0C44—C45—Cl5120.61 (19)
C21—C11—H11B110.0C45—C46—C41120.28 (18)
S1—C11—H11B110.0C45—C46—H46119.9
H11A—C11—H11B108.4C41—C46—H46119.9
C11—C21—S2108.89 (15)C1—N2—N3111.92 (14)
C11—C21—H21A109.9C4—N3—N2119.29 (15)
S2—C21—H21A109.9C4—N3—C3118.37 (15)
C11—C21—H21B109.9N2—N3—C3114.50 (14)
S2—C21—H21B109.9C1—S1—C1194.22 (9)
H21A—C21—H21B108.3C1—S2—C2195.22 (9)
S1—C11—C21—S245.5 (2)C42—C41—C46—C451.2 (3)
O5—C4—C41—C46137.3 (2)C4—C41—C46—C45178.8 (2)
N3—C4—C41—C4641.6 (3)S1—C1—N2—N3179.03 (11)
O5—C4—C41—C4240.3 (3)S2—C1—N2—N33.2 (2)
N3—C4—C41—C42140.79 (18)O5—C4—N3—N2159.99 (18)
C46—C41—C42—C432.4 (3)C41—C4—N3—N221.1 (2)
C4—C41—C42—C43179.9 (2)O5—C4—N3—C312.5 (3)
C41—C42—C43—C441.6 (4)C41—C4—N3—C3168.55 (17)
C42—C43—C44—C450.5 (4)C1—N2—N3—C4126.49 (17)
C42—C43—C44—Cl4180.0 (2)C1—N2—N3—C384.84 (19)
C43—C44—C45—C461.7 (4)N2—C1—S1—C11163.57 (15)
Cl4—C44—C45—C46178.8 (2)S2—C1—S1—C1118.41 (12)
C43—C44—C45—Cl5179.3 (2)C21—C11—S1—C138.39 (19)
Cl4—C44—C45—Cl50.2 (4)N2—C1—S2—C21174.89 (17)
C44—C45—C46—C410.8 (4)S1—C1—S2—C212.95 (13)
Cl5—C45—C46—C41179.89 (17)C11—C21—S2—C129.4 (2)

Experimental details

(D1)(D2)(D3)(D4)
Crystal data
Chemical formulaC10H10Cl2N2OS2C22H18Cl2N2OS2C11H12Cl2N2OS2C11H10Cl2N2OS2
Mr309.22461.40323.25321.23
Crystal system, space groupMonoclinic, P21Monoclinic, C2/cTriclinic, P1Monoclinic, P21/c
Temperature (K)296292291296
a, b, c (Å)9.2225 (4), 11.2741 (5), 13.0892 (5)28.6760 (11), 10.3705 (3), 14.7176 (6)8.9307 (4), 9.0858 (7), 10.3873 (5)13.3680 (2), 8.1817 (1), 13.5158 (2)
α, β, γ (°)90, 95.367 (1), 9090, 90.900 (4), 9065.039 (6), 69.172 (4), 74.892 (5)90, 105.415 (1), 90
V3)1354.99 (10)4376.2 (3)708.08 (7)1425.08 (3)
Z4824
Radiation typeMo KαMo KαMo KαCu Kα
µ (mm1)0.770.500.746.76
Crystal size (mm)0.3 × 0.3 × 0.10.55 × 0.4 × 0.30.5 × 0.35 × 0.20.3 × 0.2 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.914, 1.0000.942, 1.0000.447, 1.0000.423, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
33334, 7766, 7138 17461, 3868, 3021 10270, 2494, 2181 15835, 2643, 2589
Rint0.0210.0220.0340.034
(sin θ/λ)max1)0.7000.5950.5950.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.08 0.030, 0.084, 0.94 0.033, 0.097, 1.15 0.034, 0.100, 1.06
No. of reflections7766386824942643
No. of parameters312262166165
No. of restraints3000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.310.22, 0.290.24, 0.420.48, 0.36
Absolute structureFlack (1983), ???? Friedel pairs???
Absolute structure parameter0.02 (4)???

Computer programs: APEX2 (Bruker, 2002), CrysAlis CCD (Oxford Diffraction, 2008), SAINT-Plus (Bruker, 2003), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (D1) top
D—H···AD—HH···AD···AD—H···A
C21—H21E···Cl4Ai0.962.753.565 (3)143.5
N3A—H3A···O5ii0.862.102.8434 (18)143.9
N3—H3···O5A0.862.062.834 (2)148.9
N3—H3···S10.862.522.7810 (17)99
N3A—H3A···S1A0.862.492.8216 (16)104
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (D2) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S10.862.592.9751 (14)108.3
C16—H16···O5i0.932.443.294 (3)153.1
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) for (D3) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O5i0.962.493.200 (2)130.7
Symmetry code: (i) x, y+1, z.
Selected bond lengths (Å) and torsion angles (°) for the title compounds top
StructureC1—N2—-N3–C4N2—N3—C4—C41N2—N3—C4—O5N2—N3
(D1)-139.31 (18)-177.95 (16)4.0 (3)1.416 (2)
-150.87 (17)-178.19 (15)3.1 (3)1.402 (2)
(D2)166.39 (15)177.63 (13)-4.1 (2)1.3703 (18)
(D3)131.65 (16)-31.2 (2)152.86 (16)1.435 (2)
(D4)126.49 (17)-21.1 (2)159.99 (18)1.433 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds