Download citation
Download citation
link to html
Hydro­thermal reactions of rare-earth cerium with L-tartaric acid afford a new coordination polymer, namely, poly[[tri­aqua­(μ4-L-tartrato)cerium(III)] chlo­ride], {[Ce(C4H4O6)(H2O)3]Cl}n, (1). The structure was determined by single-crystal X-ray diffraction analysis and further characterized by IR and UV–Vis spectroscopy, powder X-ray diffraction and thermogravimetric analysis. Single-crystal X-ray diffraction analysis revealed that the com­pound is a new two-dimensional (2D) double-layered structure with one-dimensional left-handed helical chains. The different inter­molecular inter­actions were confirmed using Hirshfeld surface analysis and mol­ecular fingerprint plots. Mol­ecular 2D fingerprint plots qu­antify the different inter­actions and highlight that H...H (24.8%), H...O/O...H (26.3%), Cl...H/H...Cl (19.6%), O...O (13.8%) and Ce...O/O...Ce (13.6%) inter­actions account for 99.8% of all contacts. Additionally, the photoluminescence properties of the com­pound were investigated in the solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622004302/wp3026sup1.cif
Contains datablocks TCH, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622004302/wp3026Isup2.hkl
Contains datablock I

CCDC reference: 2123532

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: APEX2 (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[triaqua(µ4-L-tartrato)cerium(III)] chloride] top
Crystal data top
[Ce(C4H4O6)(H2O)3]ClF(000) = 362
Mr = 377.69Dx = 2.344 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9267 reflections
a = 5.9097 (1) Åθ = 3.2–42.0°
b = 7.7974 (2) ŵ = 4.53 mm1
c = 11.7206 (3) ÅT = 296 K
β = 97.816 (1)°Prism, colorless
V = 535.07 (2) Å30.17 × 0.09 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 77
Tmin = 0.609, Tmax = 0.750k = 1010
8182 measured reflectionsl = 1515
2403 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0034P)2 + 0.091P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.73 e Å3
2403 reflectionsΔρmin = 0.42 e Å3
162 parametersAbsolute structure: Flack x determined using 1056 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
11 restraintsAbsolute structure parameter: 0.003 (14)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3911 (6)1.1276 (6)1.8203 (4)0.0212 (9)
C21.2482 (6)0.9622 (5)1.8126 (4)0.0172 (8)
H21.28890.89091.74960.021*
C31.2903 (6)0.8596 (5)1.9267 (4)0.0170 (9)
H31.43890.80271.93020.02*
C41.1066 (7)0.7203 (5)1.9243 (4)0.0205 (8)
O11.6021 (5)1.1110 (5)1.8436 (4)0.0338 (9)
O21.2879 (5)1.2663 (4)1.8031 (4)0.0303 (8)
O1W2.0287 (9)1.4819 (6)1.6265 (4)0.0445 (11)
H1WA1.981 (14)1.579 (5)1.602 (6)0.053*
H1WB2.073 (13)1.428 (7)1.570 (4)0.053*
O31.0899 (7)0.6120 (5)1.8464 (4)0.0320 (8)
O2W1.5657 (6)1.5371 (6)1.7316 (4)0.0392 (10)
H2WA1.559 (10)1.617 (8)1.682 (5)0.047*
H2WB1.431 (5)1.507 (8)1.739 (7)0.047*
O40.9802 (5)0.7276 (5)2.0031 (3)0.0236 (7)
O3W1.6957 (9)1.2091 (6)1.6093 (5)0.0534 (13)
H3WA1.634 (11)1.115 (5)1.622 (8)0.064*
H3WB1.600 (9)1.271 (8)1.568 (6)0.064*
O51.0151 (5)1.0140 (4)1.7870 (4)0.0216 (7)
O61.2940 (5)0.9618 (4)2.0260 (3)0.0198 (6)
Cl11.7297 (2)1.8177 (3)1.57477 (12)0.0390 (3)
Ce1.88278 (2)1.33133 (5)1.79949 (2)0.01726 (8)
H50.952 (8)0.931 (6)1.751 (5)0.022 (13)*
H61.207 (10)1.056 (8)2.008 (6)0.025 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0168 (17)0.021 (2)0.028 (2)0.0069 (13)0.0097 (16)0.0017 (18)
C20.0147 (15)0.0145 (19)0.023 (2)0.0020 (13)0.0056 (15)0.0018 (15)
C30.0163 (13)0.014 (3)0.0210 (18)0.0003 (12)0.0022 (12)0.0004 (15)
C40.0236 (17)0.0135 (19)0.024 (2)0.0017 (14)0.0022 (16)0.0004 (16)
O10.0152 (13)0.0302 (19)0.056 (3)0.0047 (12)0.0060 (14)0.0021 (17)
O20.0209 (14)0.0183 (14)0.052 (2)0.0027 (10)0.0074 (15)0.0035 (15)
O1W0.070 (3)0.036 (2)0.032 (2)0.011 (2)0.024 (2)0.0069 (18)
O30.045 (2)0.0218 (18)0.031 (2)0.0154 (15)0.0113 (17)0.0091 (16)
O2W0.0246 (14)0.038 (2)0.056 (3)0.0041 (15)0.0099 (17)0.022 (2)
O40.0243 (13)0.0252 (18)0.0219 (17)0.0070 (12)0.0052 (12)0.0004 (14)
O3W0.081 (3)0.030 (2)0.039 (3)0.006 (2)0.031 (2)0.004 (2)
O50.0148 (12)0.0151 (15)0.033 (2)0.0021 (10)0.0021 (13)0.0012 (14)
O60.0228 (13)0.0138 (15)0.0224 (17)0.0010 (11)0.0020 (12)0.0015 (12)
Cl10.0554 (6)0.0265 (7)0.0337 (6)0.0087 (8)0.0008 (4)0.0046 (8)
Ce0.01925 (10)0.01291 (11)0.01951 (12)0.00122 (12)0.00225 (7)0.00055 (13)
Geometric parameters (Å, º) top
C1—O21.244 (6)O2W—Ce2.512 (4)
C1—O11.247 (5)O2W—H2WA0.849 (14)
C1—C21.538 (6)O2W—H2WB0.845 (14)
C2—O51.428 (5)O4—Ceiii2.481 (4)
C2—C31.548 (6)O3W—Ce2.535 (5)
C2—H20.98O3W—H3WA0.841 (15)
C3—O61.408 (5)O3W—H3WB0.843 (14)
C3—C41.534 (6)O5—Cei2.605 (3)
C3—H30.98O5—H50.83 (3)
C4—O31.238 (6)O6—Ceiii2.625 (3)
C4—O41.265 (5)O6—H60.90 (7)
O1—Ce2.490 (3)Ce—O2iv2.442 (3)
O2—Cei2.442 (3)Ce—O4v2.481 (4)
O1W—Ce2.590 (4)Ce—O3vi2.531 (4)
O1W—H1WA0.847 (14)Ce—O5iv2.605 (3)
O1W—H1WB0.850 (14)Ce—O6v2.625 (3)
O3—Ceii2.531 (3)
O2—C1—O1125.4 (4)O2iv—Ce—O4v73.81 (12)
O2—C1—C2117.8 (3)O2iv—Ce—O1122.16 (11)
O1—C1—C2116.8 (4)O4v—Ce—O173.95 (13)
O5—C2—C1106.3 (3)O2iv—Ce—O2W145.62 (12)
O5—C2—C3111.4 (3)O4v—Ce—O2W129.66 (13)
C1—C2—C3111.1 (4)O1—Ce—O2W90.98 (12)
O5—C2—H2109.3O2iv—Ce—O3vi74.42 (13)
C1—C2—H2109.3O4v—Ce—O3vi89.58 (15)
C3—C2—H2109.3O1—Ce—O3vi150.16 (13)
O6—C3—C4110.3 (3)O2W—Ce—O3vi80.48 (15)
O6—C3—C2113.8 (3)O2iv—Ce—O3W104.28 (16)
C4—C3—C2108.7 (3)O4v—Ce—O3W138.18 (16)
O6—C3—H3107.9O1—Ce—O3W72.54 (17)
C4—C3—H3107.9O2W—Ce—O3W75.20 (17)
C2—C3—H3107.9O3vi—Ce—O3W131.01 (16)
O3—C4—O4125.0 (4)O2iv—Ce—O1W71.20 (15)
O3—C4—C3118.8 (4)O4v—Ce—O1W140.97 (15)
O4—C4—C3116.2 (4)O1—Ce—O1W141.00 (17)
C1—O1—Ce123.9 (3)O2W—Ce—O1W77.07 (14)
C1—O2—Cei129.9 (2)O3vi—Ce—O1W64.87 (16)
Ce—O1W—H1WA123 (5)O3W—Ce—O1W68.54 (19)
Ce—O1W—H1WB124 (5)O2iv—Ce—O5iv60.18 (10)
H1WA—O1W—H1WB108 (2)O4v—Ce—O5iv71.34 (12)
C4—O3—Ceii137.5 (3)O1—Ce—O5iv64.53 (10)
Ce—O2W—H2WA130 (4)O2W—Ce—O5iv143.65 (15)
Ce—O2W—H2WB118 (4)O3vi—Ce—O5iv133.89 (14)
H2WA—O2W—H2WB108 (2)O3W—Ce—O5iv72.06 (14)
C4—O4—Ceiii123.0 (3)O1W—Ce—O5iv104.60 (13)
Ce—O3W—H3WA108 (6)O2iv—Ce—O6v124.05 (13)
Ce—O3W—H3WB118 (6)O4v—Ce—O6v60.90 (10)
H3WA—O3W—H3WB109 (3)O1—Ce—O6v76.04 (12)
C2—O5—Cei123.1 (2)O2W—Ce—O6v68.93 (13)
C2—O5—H5104 (4)O3vi—Ce—O6v74.20 (11)
Cei—O5—H5131 (4)O3W—Ce—O6v131.18 (15)
C3—O6—Ceiii117.5 (2)O1W—Ce—O6v130.12 (14)
C3—O6—H6109 (5)O5iv—Ce—O6v124.48 (11)
Ceiii—O6—H6102 (4)
O2—C1—C2—O50.6 (6)O2—C1—O1—Ce21.3 (7)
O1—C1—C2—O5179.2 (4)C2—C1—O1—Ce158.9 (3)
O2—C1—C2—C3122.0 (4)O1—C1—O2—Cei164.6 (4)
O1—C1—C2—C357.8 (5)C2—C1—O2—Cei15.2 (7)
O5—C2—C3—O674.5 (4)O4—C4—O3—Ceii11.7 (9)
C1—C2—C3—O643.9 (4)C3—C4—O3—Ceii169.3 (4)
O5—C2—C3—C448.8 (4)O3—C4—O4—Ceiii147.8 (4)
C1—C2—C3—C4167.2 (3)C3—C4—O4—Ceiii33.2 (5)
O6—C3—C4—O3175.5 (4)C1—C2—O5—Cei12.0 (4)
C2—C3—C4—O359.1 (5)C3—C2—O5—Cei109.3 (3)
O6—C3—C4—O45.5 (5)C4—C3—O6—Ceiii21.0 (4)
C2—C3—C4—O4119.9 (4)C2—C3—O6—Ceiii143.5 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+3, y1/2, z+4; (iv) x+1, y, z; (v) x+3, y+1/2, z+4; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl10.852.373.1710 (1)157
O1W—H1WB···Cl1vii0.852.353.1871 (1)167
O3W—H3WA···Cl1viii0.842.463.0884 (1)132
O3W—H3WB···Cl1ix0.842.423.1966 (1)154
O5—H5···Cl1ii0.83 (3)2.46 (3)3.1991 (1)149
O2W—H2WA···Cl10.852.323.0973 (1)152
O6—H6···O4x0.90 (7)1.73 (7)2.6241 (7)170.00
O2W—H2WB···O1Wi0.852.563.2728 (1)142
O2W—H2WB···O20.852.232.8685 (1)132
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (vii) x+4, y1/2, z+3; (viii) x, y1, z; (ix) x+3, y1/2, z+3; (x) x+2, y+1/2, z+4.
FT–IR peaks and their assignments [νC(O—H) OK?] top
WavenumberAssignmentWavenumberAssignment
3436ν(O—H) of water and acid1135νC(O—H)
1594νasy(COO-)1068δ(C—H)
1317νsy(COO-)936ν(C—C)
1267ρ(CH2)669ν(Ce—O)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds