Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 4-(E)-but-1-enyl-2,6-di­methoxy­phenyl pyridine-3-carboxyl­ate, C18H19NO4, the butenyl substituent is in the trans configuration. The mol­ecules are linked by weak intermolecular C—H...O hydrogen bonds, leading to the formation of a chain extending through the whole crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010766/wn6157sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010766/wn6157Isup2.hkl
Contains datablock I

CCDC reference: 214846

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.101
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

α-Asarone is a principal active ingredient of the bark extract of Guatteria gaumeri (Enriquez & Chàvez, 1980) and Acorus calamus (Gracza & Spaich, 1978). These extracts are used to prevent elevation of plasma lipids. It has been found, in earlier studies of α-asarone derivatives, that some of them could be effective hypolipidaemic agents (Popławski et al., 2000; Labarrios et al., 1999). α-Asarones have already been investigated by X-ray crystallography (Wolska et al., 1998). In those studies, the occurrence of weak intra- and intermolecular C—H···O hydrogen bonding was reported. In this paper, the crystal and molecular structure of a new α-asarone derivative, (I), is presented.

The molecule of (I) consists of two aromatic rings, viz. a pyridine ring present as a nicotinic acid fragment and a benzene ring forming the basic α-asarone moiety. The least-squares planes of these rings form a dihedral angle of 76.39 (6)°. The carboxylic acid group is almost coplanar with the pyridine ring; the plane through atoms C3/C30/O30/O31 forms an angle of 6.28 (7)° with the plane of the pyridine ring. The atoms of the methoxy groups do not deviate significantly from the benzene-ring plane, the maximum deviation being 0.274 (4) Å for atom C360. Such an arrangement of methoxy groups attached to the benzene ring is most advantageous energetically, as has been proved both experimentally and theoretically (Federsel et al., 2001). The butenyl group is in the trans configuration. The C34/C40/C50/C60 plane makes an angle of 3.9 (2)° with the plane of the benzene ring. Atom C70 deviates from the C34/C40/C50/C60 plane by 1.162 (4) Å.

Detailed geometrical analysis suggests the presence of a weak intermolecular C—H···O hydrogen bond (Table 2). Finally, the molecules link together, forming a chain whose topological motif corresponds to the first-order graph set descriptor C(4) (Bernstein et al., 1995).

Experimental top

Details of the synthesis will be published elsewere (Grabowski et al., 2003). Crystals were obtained by slow evaporation of an ethanol/hexane solution at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å. For methoxy H atoms, Uiso = 1.5Ueq(C); for all other H atoms, Uiso = 1.2Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacements ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding in the crystal structure of the title compound.
4-(E)-But-1-enyl-2,6-dimethoxyphenyl pyridine-3-carboxylate top
Crystal data top
C18H19NO4F(000) = 664
Mr = 313.34Dx = 1.247 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 9.105 (2) Åθ = 9.9–13.2°
b = 22.729 (3) ŵ = 0.72 mm1
c = 8.157 (3) ÅT = 293 K
β = 98.47 (2)°Needle, colourless
V = 1669.7 (8) Å30.43 × 0.15 × 0.08 mm
Z = 4
Data collection top
Rigaku AFC-5S
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 67.5°, θmin = 3.9°
Graphite monochromatorh = 1010
ω scansk = 027
2927 measured reflectionsl = 09
2927 independent reflections3 standard reflections every 150 reflections
1259 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 [exp(4(sinθ/λ)2)]/ [σ2(Fo2) + (0.0485P)2]
where P = 0.33333Fo2 + 0.66667Fc2
2927 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H19NO4V = 1669.7 (8) Å3
Mr = 313.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.105 (2) ŵ = 0.72 mm1
b = 22.729 (3) ÅT = 293 K
c = 8.157 (3) Å0.43 × 0.15 × 0.08 mm
β = 98.47 (2)°
Data collection top
Rigaku AFC-5S
diffractometer
Rint = 0.000
2927 measured reflections3 standard reflections every 150 reflections
2927 independent reflections intensity decay: <2%
1259 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2927 reflectionsΔρmin = 0.14 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.20148 (16)0.10903 (7)0.47890 (14)0.0668 (4)
O320.40686 (16)0.04210 (7)0.65119 (16)0.0737 (4)
O300.00077 (17)0.07045 (7)0.56448 (16)0.0771 (5)
C350.2795 (3)0.19614 (10)0.8588 (2)0.0692 (6)
H350.24780.23070.90340.083*
C30.0136 (2)0.07544 (8)0.2751 (2)0.0523 (5)
O360.10011 (19)0.20604 (7)0.60749 (17)0.0815 (5)
C360.2110 (2)0.17725 (10)0.7044 (2)0.0618 (6)
C330.4404 (2)0.11191 (10)0.8818 (2)0.0647 (6)
H330.51690.09010.94100.078*
C340.3942 (2)0.16426 (10)0.9475 (2)0.0647 (6)
C20.1282 (2)0.05528 (10)0.2252 (2)0.0654 (6)
H20.18400.04450.30700.079*
N10.1910 (2)0.05014 (9)0.0680 (2)0.0763 (6)
C310.2591 (2)0.12577 (10)0.6407 (2)0.0594 (6)
C320.3720 (2)0.09236 (10)0.7276 (2)0.0595 (6)
C300.0663 (2)0.08356 (9)0.4539 (2)0.0553 (5)
C40.0996 (2)0.08932 (9)0.1534 (2)0.0637 (6)
H40.19690.10240.18150.076*
C50.0366 (3)0.08318 (10)0.0106 (2)0.0705 (6)
H50.09150.09150.09540.085*
C400.4667 (3)0.18770 (11)1.1075 (3)0.0824 (7)
H400.42610.22221.14290.099*
C60.1064 (3)0.06485 (10)0.0462 (3)0.0737 (7)
H60.14820.06240.15710.088*
C500.5790 (3)0.16676 (12)1.2051 (3)0.0940 (8)
H500.61690.13101.17510.113*
C3200.5181 (3)0.00505 (10)0.7347 (3)0.0907 (8)
H3210.53130.02840.66630.136*
H3220.48880.00810.83700.136*
H3230.60980.02640.75760.136*
C600.6556 (4)0.19491 (14)1.3645 (3)0.1125 (10)
H610.75970.20101.35640.135*
H620.61120.23301.37870.135*
C3600.0277 (4)0.25154 (13)0.6809 (3)0.1189 (11)
H3610.04920.26780.60050.178*
H3620.09810.28170.71970.178*
H3630.01530.23610.77260.178*
C700.6432 (4)0.15872 (15)1.5069 (4)0.1374 (12)
H710.69260.17761.60500.206*
H720.68840.12121.49400.206*
H730.54030.15321.51660.206*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0654 (9)0.0930 (11)0.0419 (8)0.0160 (8)0.0071 (7)0.0082 (7)
O320.0762 (10)0.0849 (12)0.0582 (9)0.0032 (9)0.0044 (7)0.0165 (8)
O300.0826 (11)0.1025 (12)0.0486 (8)0.0225 (9)0.0173 (8)0.0002 (8)
C350.0794 (16)0.0680 (16)0.0594 (13)0.0046 (13)0.0073 (12)0.0046 (12)
C30.0557 (12)0.0590 (13)0.0415 (11)0.0010 (10)0.0042 (9)0.0005 (9)
O360.0979 (12)0.0818 (12)0.0614 (9)0.0092 (10)0.0011 (9)0.0045 (8)
C360.0680 (14)0.0708 (17)0.0451 (12)0.0064 (12)0.0037 (11)0.0020 (11)
C330.0633 (14)0.0780 (16)0.0513 (12)0.0075 (12)0.0032 (11)0.0030 (11)
C340.0731 (15)0.0707 (16)0.0500 (12)0.0121 (13)0.0082 (11)0.0090 (11)
C20.0617 (15)0.0865 (18)0.0483 (12)0.0023 (12)0.0087 (10)0.0025 (11)
N10.0656 (12)0.1054 (16)0.0561 (11)0.0040 (11)0.0031 (10)0.0069 (10)
C310.0637 (14)0.0765 (16)0.0376 (11)0.0133 (12)0.0065 (10)0.0035 (11)
C320.0594 (14)0.0707 (16)0.0495 (12)0.0122 (11)0.0118 (10)0.0076 (11)
C300.0589 (14)0.0594 (14)0.0469 (12)0.0027 (11)0.0052 (10)0.0026 (10)
C40.0676 (14)0.0746 (15)0.0491 (12)0.0101 (12)0.0095 (11)0.0025 (10)
C50.0873 (18)0.0817 (17)0.0432 (12)0.0144 (14)0.0122 (11)0.0019 (11)
C400.0931 (19)0.0897 (19)0.0610 (14)0.0007 (15)0.0003 (14)0.0165 (13)
C60.0775 (17)0.0890 (18)0.0508 (13)0.0031 (14)0.0029 (12)0.0027 (12)
C500.104 (2)0.101 (2)0.0690 (17)0.0065 (17)0.0133 (15)0.0206 (14)
C3200.0959 (19)0.0915 (19)0.0792 (17)0.0170 (16)0.0057 (15)0.0137 (14)
C600.134 (3)0.127 (3)0.0714 (17)0.010 (2)0.0006 (17)0.0137 (18)
C3600.134 (3)0.119 (3)0.097 (2)0.049 (2)0.0041 (18)0.0084 (18)
C700.177 (3)0.154 (3)0.083 (2)0.028 (3)0.028 (2)0.015 (2)
Geometric parameters (Å, º) top
O31—C301.348 (2)C4—C51.383 (3)
O31—C311.399 (2)C4—H40.9300
O32—C321.361 (2)C5—C61.357 (3)
O32—C3201.413 (2)C5—H50.9300
O30—C301.199 (2)C40—C501.291 (3)
C35—C341.384 (3)C40—H400.9300
C35—C361.389 (3)C6—H60.9300
C35—H350.9300C50—C601.523 (3)
C3—C21.373 (3)C50—H500.9300
C3—C41.388 (3)C320—H3210.9600
C3—C301.478 (3)C320—H3220.9600
O36—C361.356 (2)C320—H3230.9600
O36—C3601.407 (3)C60—C701.441 (4)
C36—C311.378 (3)C60—H610.9700
C33—C321.392 (3)C60—H620.9700
C33—C341.395 (3)C360—H3610.9600
C33—H330.9300C360—H3620.9600
C34—C401.473 (3)C360—H3630.9600
C2—N11.330 (2)C70—H710.9600
C2—H20.9300C70—H720.9600
N1—C61.336 (3)C70—H730.9600
C31—C321.386 (3)
C30—O31—C31117.81 (15)C6—C5—H5120.5
C32—O32—C320118.58 (16)C4—C5—H5120.5
C34—C35—C36121.0 (2)C50—C40—C34128.6 (3)
C34—C35—H35119.5C50—C40—H40115.7
C36—C35—H35119.5C34—C40—H40115.7
C2—C3—C4117.95 (18)N1—C6—C5124.1 (2)
C2—C3—C30119.23 (19)N1—C6—H6117.9
C4—C3—C30122.78 (19)C5—C6—H6117.9
C36—O36—C360117.53 (18)C40—C50—C60126.4 (3)
O36—C36—C31116.13 (19)C40—C50—H50116.8
O36—C36—C35125.2 (2)C60—C50—H50116.8
C31—C36—C35118.7 (2)O32—C320—H321109.5
C32—C33—C34120.0 (2)O32—C320—H322109.5
C32—C33—H33120.0H321—C320—H322109.5
C34—C33—H33120.0O32—C320—H323109.5
C35—C34—C33119.51 (19)H321—C320—H323109.5
C35—C34—C40118.6 (2)H322—C320—H323109.5
C33—C34—C40121.9 (2)C70—C60—C50111.6 (3)
N1—C2—C3124.6 (2)C70—C60—H61109.3
N1—C2—H2117.7C50—C60—H61109.3
C3—C2—H2117.7C70—C60—H62109.3
C2—N1—C6116.1 (2)C50—C60—H62109.3
C36—C31—C32121.66 (19)H61—C60—H62108.0
C36—C31—O31119.4 (2)O36—C360—H361109.5
C32—C31—O31118.7 (2)O36—C360—H362109.5
O32—C32—C31115.52 (18)H361—C360—H362109.5
O32—C32—C33125.3 (2)O36—C360—H363109.5
C31—C32—C33119.1 (2)H361—C360—H363109.5
O30—C30—O31123.18 (17)H362—C360—H363109.5
O30—C30—C3125.7 (2)C60—C70—H71109.5
O31—C30—C3111.08 (17)C60—C70—H72109.5
C5—C4—C3118.1 (2)H71—C70—H72109.5
C5—C4—H4120.9C60—C70—H73109.5
C3—C4—H4120.9H71—C70—H73109.5
C6—C5—C4119.1 (2)H72—C70—H73109.5
C360—O36—C36—C31167.2 (2)O31—C31—C32—O326.2 (3)
C360—O36—C36—C3513.9 (3)C36—C31—C32—C331.2 (3)
C34—C35—C36—O36178.69 (19)O31—C31—C32—C33173.48 (17)
C34—C35—C36—C310.2 (3)C34—C33—C32—O32179.8 (2)
C36—C35—C34—C330.9 (3)C34—C33—C32—C310.5 (3)
C36—C35—C34—C40177.5 (2)C31—O31—C30—O306.2 (3)
C32—C33—C34—C350.5 (3)C31—O31—C30—C3172.84 (18)
C32—C33—C34—C40177.9 (2)C2—C3—C30—O305.1 (3)
C4—C3—C2—N12.6 (3)C4—C3—C30—O30177.2 (2)
C30—C3—C2—N1175.2 (2)C2—C3—C30—O31173.82 (18)
C3—C2—N1—C61.4 (3)C4—C3—C30—O313.8 (3)
O36—C36—C31—C32179.86 (18)C2—C3—C4—C51.3 (3)
C35—C36—C31—C320.8 (3)C30—C3—C4—C5176.39 (19)
O36—C36—C31—O315.2 (3)C3—C4—C5—C61.0 (3)
C35—C36—C31—O31173.83 (18)C35—C34—C40—C50176.4 (3)
C30—O31—C31—C3679.5 (2)C33—C34—C40—C502.0 (4)
C30—O31—C31—C32105.7 (2)C2—N1—C6—C51.2 (4)
C320—O32—C32—C31178.25 (19)C4—C5—C6—N12.4 (4)
C320—O32—C32—C332.1 (3)C34—C40—C50—C60176.0 (2)
C36—C31—C32—O32179.06 (18)C40—C50—C60—C70117.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···O36i0.932.703.564 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H19NO4
Mr313.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.105 (2), 22.729 (3), 8.157 (3)
β (°) 98.47 (2)
V3)1669.7 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.43 × 0.15 × 0.08
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2927, 2927, 1259
Rint0.000
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.03
No. of reflections2927
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.14

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
O31—C301.348 (2)O36—C361.356 (2)
O31—C311.399 (2)O36—C3601.407 (3)
O32—C321.361 (2)C2—N11.330 (2)
O32—C3201.413 (2)N1—C61.336 (3)
O30—C301.199 (2)
C30—O31—C31117.81 (15)C36—C31—O31119.4 (2)
C32—O32—C320118.58 (16)C32—C31—O31118.7 (2)
C36—O36—C360117.53 (18)O32—C32—C31115.52 (18)
O36—C36—C31116.13 (19)O32—C32—C33125.3 (2)
O36—C36—C35125.2 (2)O30—C30—O31123.18 (17)
N1—C2—C3124.6 (2)O30—C30—C3125.7 (2)
C2—N1—C6116.1 (2)O31—C30—C3111.08 (17)
C360—O36—C36—C31167.2 (2)C320—O32—C32—C332.1 (3)
C360—O36—C36—C3513.9 (3)C36—C31—C32—O32179.06 (18)
C34—C35—C36—O36178.69 (19)O31—C31—C32—O326.2 (3)
O36—C36—C31—C32179.86 (18)O31—C31—C32—C33173.48 (17)
O36—C36—C31—O315.2 (3)C31—O31—C30—O306.2 (3)
C35—C36—C31—O31173.83 (18)C31—O31—C30—C3172.84 (18)
C30—O31—C31—C3679.5 (2)C2—C3—C30—O305.1 (3)
C30—O31—C31—C32105.7 (2)C4—C3—C30—O30177.2 (2)
C320—O32—C32—C31178.25 (19)C40—C50—C60—C70117.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···O36i0.932.703.564 (3)154
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds