Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C16H11NO2F6, the two aromatic rings are somewhat twisted with respect to each other, forming a dihedral angle of 35.12 (4)°. The N=C bond distance of 1.287 (5) Å is typical for a double bond. In the crystal structure, the mol­ecules are linked by intramolecular O—H...N and intermolecular C—H...F hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010730/wn6153sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010730/wn6153Isup2.hkl
Contains datablock I

CCDC reference: 214845

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.069
  • wR factor = 0.195
  • Data-to-parameter ratio = 10.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
SHFSU_01 Alert C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.060 Additional refinement cycles may be required. PLAT_213 Alert C Atom F6B has ADP max/min Ratio ........... 3.10 prolate
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Solvent extraction is now widely accepted as a process for the recovery of metal ions from aqueous solution in hydrometallurgical and environmental applications (El Aamrani et al., 1999), with new interest in the processing of heavy metals by chelation in combination with supercritical fluid (SCF) extraction processing. Carbon dioxide is commonly employed in SCF processing because it is readly available, inexpensive, non-toxic and non-flammable (Yazdı et al., 1996; Cross et al., 1996). Solubilities of known ligands in sc CO2 are generally low compared to solubilities in organic solvents. Data indicate that fluorination of chelating agents results in dramatic enhancement of solubility. In this work, we have designed a novel Schiff base type chelating agent, by attaching a CO2-philic fluoroalkyl group; this has been synthesized, and characterized for sc CO2 extraction of heavy metals.

Most aromatic compounds which contain a trifluoromethyl group are known to have higher melting points, in some cases significantly higher, than the corresponding methyl-substituted compounds. The latter, however, despite their lower molecular weight, generally have higher boiling points. Apparently, forces exist in the crystalline state between molecules containing a CF3 group which are stronger than in the corresponding methyl-substituted compounds, but which are absent in the liquid state (Boitsov et al., 2002).

The molecular structure of (I) is shown in Fig. 1. The C9—N1 and C7—C6 bond lengths are 1.412 (4) and 1.442 (4) Å; these are in agreement with the corresponding distances in trans-4-[(4-dimethylaminophenyl)iminomethyl]-N-methylpyridinium p-toluenesulfonate [1.413 (3) and 1.461 (3) Å; Coe et al., 2001] and N-[3,5-bis(trifluoromethyl)phenyl]salicylaldimine [1.417 (4) and 1.439 (4) Å; Karadayı et al., 2003]. The O1—C5, O2—C4 and O2—C8 bond lengths are 1.352 (3), 1.361 (4) and 1.430 (4) Å, respectively, and agree with the corresponding distances in (E)-2-hydroxy-3,3',4'-trimethoxystilbene [1.369 (2), 1.371 (2) and 1.427 (3) Å; Stomberg et al., 1998]. The N1C7 bond length is 1.287 (5) Å, approximately equal to previously reported CN double-bond lengths (Elerman & Elmalı, 1998; Karadayı et al., 2003; Kazak et al., 2000).

One intramolecular O—H···N hydrogen bond and one intermolecular C—H···F hydrogen bond are present in the crystal structure (Table 2).

Experimental top

An ethanol solution of 3,5-bis(trifluoromethyl)aminobenzene (2,29 g/20 ml e thanol) was added dropwise, at room temperature, to a solution of 3-methoxysalicylaldehyde (o-vanillin) (1.52 g, 0.01 mol) in ethanol (20 ml), yielding large amounts of a pale yellow precipitate. The mixture was stirred for 30 min at this temperature and filtered under vacuum. Crystallization from toluene gave a spectroscopically pure product as a pale yellow plate-like crystalline compound (yield: 91%, m.p.: 394–396 K); elemental analysis calculated for C16H11F6N: C 52.89, H 3.03, N 3.85%; found: C 52.82, H 2.89, N 3.83%; 1H NMR (CDCl3, 400 MHz): δ = 3.8 (s, 3H, O—CH3), 6.6–7.4 (m, 6H, Ar—H), 8.4 (s, 1H, H—CN), 12.4 (s, 1H, OH). IR (KBr): 3600–3300 (br, Ph—OH), 2950 (H—CN), 1650 (CN), 1600 (Ar—CH). UV-vis (CHCl3): λ = 245 (ε: 2125), 305 (max., ε: 3163), 368 nm (ε: 1088).

Refinement top

The H atoms were refined with independent isotropic displacement parameters. One of the CF3 groups showed rotational disorder. The disordered F atoms were refined anisotropically, using distance and angle restraints. For atoms F4A, F5A and F6A the site-occupancy factor is 0.62 (1) and for atoms F4B, F5B and F6B the site-occupancy factor is 0.38 (1).

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Bruker,2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Burnett & Johnson, 1996) drawing of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. PLATON plot (Spek, 1997), viewed down the c axis, showing part of the hydrogen bond network and the stacking of molecules.
N-[3,5-bis(trifluoromethyl)phenyl]-3-methoxysalicylaldimine top
Crystal data top
C16H11F6NO2F(000) = 736
Mr = 363.26Dx = 1.618 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 35 reflections
a = 7.2130 (14) Åθ = 5–25°
b = 29.196 (4) ŵ = 0.16 mm1
c = 7.8870 (16) ÅT = 180 K
β = 116.140 (5)°Plate, yellow
V = 1491.0 (5) Å30.20 × 0.20 × 0.01 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 3.6°
Graphite monochromatorh = 88
ω scansk = 3434
17689 measured reflectionsl = 99
2591 independent reflections1 standard reflections every 120 min
1891 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0926P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.060
2591 reflectionsΔρmax = 0.40 e Å3
255 parametersΔρmin = 0.30 e Å3
179 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (3)
Crystal data top
C16H11F6NO2V = 1491.0 (5) Å3
Mr = 363.26Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.2130 (14) ŵ = 0.16 mm1
b = 29.196 (4) ÅT = 180 K
c = 7.8870 (16) Å0.20 × 0.20 × 0.01 mm
β = 116.140 (5)°
Data collection top
Siemens P4
diffractometer
Rint = 0.044
17689 measured reflections1 standard reflections every 120 min
2591 independent reflections intensity decay: none
1891 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.070179 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.13Δρmax = 0.40 e Å3
2591 reflectionsΔρmin = 0.30 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.5012 (5)0.42955 (10)0.2477 (5)0.0494 (8)
C160.6443 (6)0.46950 (12)0.3042 (6)0.0666 (10)
F4A0.7690 (12)0.4688 (2)0.2219 (11)0.095 (3)0.616 (17)
F5A0.7613 (10)0.4715 (2)0.4821 (9)0.081 (2)0.616 (17)
F6A0.5399 (10)0.5091 (2)0.2567 (18)0.116 (4)0.616 (17)
F4B0.8416 (13)0.4581 (4)0.360 (4)0.161 (9)0.384 (17)
F5B0.652 (5)0.4894 (7)0.459 (3)0.162 (8)0.384 (17)
F6B0.608 (2)0.5015 (5)0.1866 (16)0.116 (6)0.384 (17)
O10.4825 (3)0.21511 (7)0.3284 (3)0.0472 (6)
H10.45340.24140.28940.071*
O20.6126 (4)0.13593 (7)0.4965 (3)0.0589 (7)
N10.5042 (4)0.30521 (8)0.3468 (3)0.0404 (6)
C10.8777 (5)0.25443 (12)0.7857 (5)0.0530 (8)
H1A0.93550.28140.85000.064*
C20.9467 (5)0.21297 (14)0.8728 (5)0.0591 (10)
H21.05230.21200.99520.071*
C30.8608 (5)0.17307 (13)0.7802 (5)0.0541 (9)
H30.90760.14520.84090.065*
C40.7063 (5)0.17384 (10)0.5987 (5)0.0459 (8)
C50.6345 (4)0.21577 (10)0.5071 (4)0.0400 (7)
C60.7209 (4)0.25630 (10)0.6010 (4)0.0425 (7)
C70.6489 (5)0.30035 (10)0.5142 (4)0.0435 (7)
H70.71060.32650.58320.052*
C80.7141 (7)0.09310 (12)0.5656 (6)0.0729 (11)
H8A0.63460.06890.48330.109*
H8B0.72680.08780.69040.109*
H8C0.84890.09390.56950.109*
C90.4415 (4)0.34986 (9)0.2761 (4)0.0394 (7)
C100.5772 (5)0.38647 (11)0.3171 (5)0.0481 (8)
H100.71800.38210.39050.058*
C120.2946 (5)0.43644 (10)0.1331 (4)0.0489 (8)
H120.24520.46550.08730.059*
C130.1622 (4)0.39965 (10)0.0874 (4)0.0430 (7)
C140.2343 (4)0.35660 (10)0.1592 (4)0.0420 (7)
H140.14290.33210.12860.050*
C150.0591 (5)0.40608 (12)0.0418 (5)0.0598 (9)
F10.1019 (4)0.39142 (11)0.2155 (4)0.1065 (10)
F20.1826 (3)0.38267 (10)0.0063 (4)0.1091 (11)
F30.1187 (4)0.44886 (8)0.0660 (4)0.1055 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0527 (18)0.0379 (18)0.0528 (19)0.0082 (14)0.0188 (16)0.0001 (14)
C160.063 (2)0.050 (2)0.074 (3)0.0132 (17)0.019 (2)0.0028 (18)
F4A0.094 (5)0.099 (5)0.102 (5)0.045 (4)0.052 (4)0.003 (3)
F5A0.082 (4)0.068 (4)0.066 (3)0.033 (3)0.008 (2)0.009 (2)
F6A0.072 (3)0.036 (2)0.192 (9)0.012 (2)0.013 (4)0.008 (4)
F4B0.072 (5)0.094 (7)0.26 (2)0.035 (4)0.018 (8)0.019 (9)
F5B0.27 (2)0.108 (12)0.130 (10)0.120 (13)0.112 (13)0.066 (9)
F6B0.103 (9)0.099 (9)0.095 (6)0.062 (7)0.002 (5)0.049 (6)
O10.0510 (12)0.0376 (11)0.0488 (13)0.0070 (9)0.0181 (10)0.0019 (9)
O20.0706 (15)0.0412 (13)0.0665 (15)0.0131 (11)0.0319 (13)0.0097 (11)
N10.0417 (13)0.0362 (14)0.0456 (15)0.0002 (10)0.0215 (12)0.0002 (11)
C10.0461 (17)0.063 (2)0.0486 (19)0.0059 (15)0.0195 (15)0.0014 (16)
C20.0422 (17)0.083 (3)0.0482 (19)0.0028 (17)0.0159 (15)0.0180 (19)
C30.0471 (17)0.064 (2)0.057 (2)0.0133 (16)0.0284 (16)0.0226 (17)
C40.0469 (17)0.0444 (18)0.055 (2)0.0078 (14)0.0305 (16)0.0074 (15)
C50.0330 (14)0.0467 (17)0.0421 (16)0.0060 (12)0.0181 (13)0.0071 (13)
C60.0384 (15)0.0510 (18)0.0420 (16)0.0018 (13)0.0212 (13)0.0031 (14)
C70.0446 (16)0.0401 (17)0.0500 (18)0.0041 (13)0.0248 (15)0.0033 (14)
C80.091 (3)0.049 (2)0.090 (3)0.026 (2)0.050 (2)0.022 (2)
C90.0448 (16)0.0334 (15)0.0426 (16)0.0013 (12)0.0217 (13)0.0012 (12)
C100.0435 (16)0.0466 (18)0.0525 (19)0.0054 (13)0.0194 (14)0.0017 (14)
C120.0571 (19)0.0339 (16)0.0516 (19)0.0006 (13)0.0203 (16)0.0008 (14)
C130.0451 (16)0.0384 (16)0.0427 (17)0.0005 (13)0.0167 (13)0.0023 (13)
C140.0443 (16)0.0366 (16)0.0433 (17)0.0054 (12)0.0177 (13)0.0054 (13)
C150.0520 (19)0.046 (2)0.065 (2)0.0001 (16)0.0111 (17)0.0034 (16)
F10.0835 (17)0.132 (2)0.0635 (16)0.0026 (15)0.0051 (13)0.0167 (15)
F20.0465 (12)0.119 (2)0.139 (2)0.0020 (13)0.0198 (14)0.0519 (18)
F30.0679 (14)0.0559 (15)0.148 (3)0.0164 (11)0.0063 (15)0.0013 (15)
Geometric parameters (Å, º) top
C11—C121.375 (5)C3—C41.373 (4)
C11—C101.385 (4)C3—H30.9300
C11—C161.489 (5)C4—C51.400 (4)
C16—F6B1.260 (8)C5—C61.390 (4)
C16—F5A1.281 (7)C6—C71.442 (4)
C16—F4A1.322 (6)C7—H70.9300
C16—F5B1.328 (10)C8—H8A0.9600
C16—F4B1.333 (9)C8—H8B0.9600
C16—F6A1.340 (6)C8—H8C0.9600
O1—C51.352 (3)C9—C141.382 (4)
O1—H10.8200C9—C101.388 (4)
O2—C41.361 (4)C10—H100.9300
O2—C81.430 (4)C12—C131.376 (4)
N1—C71.280 (4)C12—H120.9300
N1—C91.412 (4)C13—C141.382 (4)
C1—C21.372 (5)C13—C151.479 (4)
C1—C61.398 (4)C14—H140.9300
C1—H1A0.9300C15—F21.305 (4)
C2—C31.369 (5)C15—F31.307 (4)
C2—H20.9300C15—F11.336 (4)
C12—C11—C10121.2 (3)C3—C4—C5119.9 (3)
C12—C11—C16119.3 (3)O1—C5—C6122.4 (3)
C10—C11—C16119.5 (3)O1—C5—C4118.1 (3)
F6B—C16—F5A126.5 (7)C6—C5—C4119.5 (3)
F6B—C16—F4A67.3 (8)C5—C6—C1119.3 (3)
F5A—C16—F4A106.0 (5)C5—C6—C7121.6 (3)
F6B—C16—F5B105.3 (10)C1—C6—C7119.1 (3)
F5A—C16—F5B39.9 (12)N1—C7—C6123.2 (3)
F4A—C16—F5B133.9 (9)N1—C7—H7118.4
F6B—C16—F4B105.8 (9)C6—C7—H7118.4
F5A—C16—F4B63.7 (10)O2—C8—H8A109.5
F4A—C16—F4B45.6 (10)O2—C8—H8B109.5
F5B—C16—F4B101.3 (11)H8A—C8—H8B109.5
F6B—C16—F6A41.0 (7)O2—C8—H8C109.5
F5A—C16—F6A106.5 (6)H8A—C8—H8C109.5
F4A—C16—F6A107.2 (6)H8B—C8—H8C109.5
F5B—C16—F6A70.9 (11)C14—C9—C10119.4 (3)
F4B—C16—F6A133.9 (6)C14—C9—N1117.3 (3)
F6B—C16—C11117.9 (6)C10—C9—N1123.3 (3)
F5A—C16—C11113.6 (4)C9—C10—C11119.5 (3)
F4A—C16—C11111.9 (4)C9—C10—H10120.3
F5B—C16—C11111.2 (7)C11—C10—H10120.3
F4B—C16—C11113.7 (5)C13—C12—C11119.0 (3)
F6A—C16—C11111.2 (4)C13—C12—H12120.5
C5—O1—H1109.5C11—C12—H12120.5
C4—O2—C8116.6 (3)C12—C13—C14120.7 (3)
C7—N1—C9118.9 (3)C12—C13—C15119.7 (3)
C2—C1—C6120.3 (3)C14—C13—C15119.6 (3)
C2—C1—H1A119.8C9—C14—C13120.3 (3)
C6—C1—H1A119.8C9—C14—H14119.9
C1—C2—C3120.3 (3)C13—C14—H14119.9
C1—C2—H2119.9F2—C15—F3108.7 (3)
C3—C2—H2119.9F2—C15—F1104.6 (3)
C4—C3—C2120.7 (3)F3—C15—F1104.1 (3)
C4—C3—H3119.6F2—C15—C13113.6 (3)
C2—C3—H3119.6F3—C15—C13114.1 (3)
O2—C4—C3124.6 (3)F1—C15—C13110.9 (3)
O2—C4—C5115.5 (3)
C12—C11—C16—F6B34.5 (13)C2—C1—C6—C50.5 (4)
C10—C11—C16—F6B147.9 (12)C2—C1—C6—C7178.9 (3)
C12—C11—C16—F5A130.3 (5)C9—N1—C7—C6178.5 (3)
C10—C11—C16—F5A47.2 (6)C5—C6—C7—N10.7 (4)
C12—C11—C16—F4A109.6 (6)C1—C6—C7—N1179.0 (3)
C10—C11—C16—F4A72.8 (6)C7—N1—C9—C14144.5 (3)
C12—C11—C16—F5B87.1 (16)C7—N1—C9—C1036.1 (4)
C10—C11—C16—F5B90.4 (16)C14—C9—C10—C113.1 (5)
C12—C11—C16—F4B159.3 (14)N1—C9—C10—C11177.5 (3)
C10—C11—C16—F4B23.2 (14)C12—C11—C10—C92.4 (5)
C12—C11—C16—F6A10.2 (9)C16—C11—C10—C9175.1 (3)
C10—C11—C16—F6A167.3 (7)C10—C11—C12—C130.0 (5)
C6—C1—C2—C30.8 (5)C16—C11—C12—C13177.5 (3)
C1—C2—C3—C40.7 (5)C11—C12—C13—C141.7 (5)
C8—O2—C4—C315.4 (4)C11—C12—C13—C15177.6 (3)
C8—O2—C4—C5165.0 (3)C10—C9—C14—C131.5 (4)
C2—C3—C4—O2180.0 (3)N1—C9—C14—C13179.1 (3)
C2—C3—C4—C50.4 (5)C12—C13—C14—C90.9 (5)
O2—C4—C5—O10.5 (4)C15—C13—C14—C9178.3 (3)
C3—C4—C5—O1179.9 (3)C12—C13—C15—F2141.0 (3)
O2—C4—C5—C6179.8 (2)C14—C13—C15—F239.7 (5)
C3—C4—C5—C60.1 (4)C12—C13—C15—F315.6 (5)
O1—C5—C6—C1180.0 (2)C14—C13—C15—F3165.1 (3)
C4—C5—C6—C10.2 (4)C12—C13—C15—F1101.5 (4)
O1—C5—C6—C71.7 (4)C14—C13—C15—F177.7 (4)
C4—C5—C6—C7178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.635 (3)146
C7—H7···F1i0.932.463.387 (4)175
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H11F6NO2
Mr363.26
Crystal system, space groupMonoclinic, P21/a
Temperature (K)180
a, b, c (Å)7.2130 (14), 29.196 (4), 7.8870 (16)
β (°) 116.140 (5)
V3)1491.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.20 × 0.01
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17689, 2591, 1891
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.195, 1.13
No. of reflections2591
No. of parameters255
No. of restraints179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXTL (Bruker,2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Selected geometric parameters (Å, º) top
O1—C51.352 (3)N1—C71.280 (4)
O2—C41.361 (4)N1—C91.412 (4)
O2—C81.430 (4)C6—C71.442 (4)
C12—C11—C16119.3 (3)C5—C6—C7121.6 (3)
C10—C11—C16119.5 (3)C1—C6—C7119.1 (3)
C4—O2—C8116.6 (3)N1—C7—C6123.2 (3)
C7—N1—C9118.9 (3)C14—C9—N1117.3 (3)
O2—C4—C5115.5 (3)C10—C9—N1123.3 (3)
O1—C5—C6122.4 (3)C12—C13—C15119.7 (3)
O1—C5—C4118.1 (3)C14—C13—C15119.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.635 (3)146
C7—H7···F1i0.932.463.387 (4)175
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds