Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [SnCl(CH3)2(C6H5)(H2O)]2·C12H24O8, the crown ether, which lies on a center of inversion, interacts with the five-coordinate trans-C3SnClO trigonal-bipyramidal aqua­chloro­di­methyl­phenyl­tin moieties; the coordinated water mol­ecule, at a distance of 2.445 (4) Å from Sn, forms two hydrogen bonds with the O atoms of the crown ether [Owater...Ocrown = 2.851 (6) and 2.884 (5) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802013557/wn6108sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802013557/wn6108Isup2.hkl
Contains datablock I

CCDC reference: 197449

Key indicators

  • Single-crystal X-ray study
  • T = 168 K
  • Mean [sigma](C-C) = 0.010 Å
  • Disorder in main residue
  • R factor = 0.060
  • wR factor = 0.107
  • Data-to-parameter ratio = 19.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.50 From the CIF: _reflns_number_total 3392 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3676 Completeness (_total/calc) 92.27% Alert C: < 95% complete RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.104 PLAT_731 Alert C Bond Calc 0.84(4), Rep 0.850(10) .... 4.00 s.u-Ratio O1W -H1W2 1.555 1.555 PLAT_732 Alert C Angle Calc 110(5), Rep 110(2) .... 2.50 s.u-Ratio H1W1 -O1W -H1W2 1.555 1.555 1.555 PLAT_735 Alert C D-H Calc 0.86(3), Rep 0.850(10) .... 3.00 s.u-Ratio O1W -H1W1 1.555 1.555 PLAT_735 Alert C D-H Calc 0.84(4), Rep 0.850(10) .... 4.00 s.u-Ratio O1W -H1W2 1.555 1.555 PLAT_736 Alert C H...A Calc 2.01(4), Rep 2.010(10) .... 4.00 s.u-Ratio H1W2 -O3 1.555 1.555 General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.939 Tmax scaled 0.553 Tmin scaled 0.471
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
7 Alert Level C = Please check

Comment top

The coordination status of the Sn atom in mixed triorganotin compounds featuring one methyl group can be investigated from the magnitude of the tin–methyl coupling constants in the NMR. Unfortunately, the synthesis of the mixed triorganotin entity presents difficulties, and only a few such compounds have been synthesized. Earlier, we reported the 2:1 methyldiphenyltin trifluoroacetate complex of 18-crown-6; this exists as a dihydrate in which the coordinated water molecules interact with the centrosymmetric cyclic polyether through hydrogen bonds [Sn—Owater = 2.483 (5) Å; Owater···O18-crown-6 = 2.901 (8) and 2.983 (7) Å; Amini et al., 2002]. In this compound, the trifluoroacetate anion serves to increase the Lewis acidity of the Sn atom through its electron-withdrawing ability.

In the title compound, (I), the dimethylphenyltin chloride moiety is also coordinated by a water molecule [Sn—O = 2.445 (4) Å], and the water molecule similarly interacts with the cyclic polyether [Owater···O18-crown-6 = 2.851 (6) and 2.884 (5) Å]. The two-bond coupling constant of the adduct in solution (83 Hz) is significantly larger than that of the parent Lewis acid (59 Hz), so that the water molecule probably remains attached to the Sn atom even in solution.

Experimental top

The title adduct was synthesized from the reaction of equimolar quantities of dimethylphenyltin chloride (0.20 g, 0.75 mmol) and 18-crown-6 (0.20 g, 0.75 mmol) in chloroform. The reagents were dissolved in the solvent and crystals of the 2:1 complex (m.p. 344–349 K) separated when the solvent was allowed to evaporate. IR: 3440 (H2O), 2880 (C—H), 1099 (C—O—C), 550 (Sn—C, asymmetric), 520 (Sn—C, symmetric) cm−1. 1H NMR in CDCl3: 0.90 (CH3, 12H), 2.45 (H2O, 4H), 3.65 (CH2, 24H), 7.46–7.60 (C6H5, 10H) p.p.m. 2J|1191H| = 83 Hz. Dimethylphenyltin chloride was synthesizd by the cleavage of dimethyldiphenyltin with hydrogen chloride in a methanol–carbon tetrachloride mixture at 283 K, and was purified by distillation at 363 K/1 Torr (Simmones, 1977).

Refinement top

The minor disorder in the 18-crown-6 ring was treated by constraining the C—O distances to be approximated equal by a SADI 0.01 instruction in SHELXL97; the C—C distances were also constrained by another SADI 0.01 instruction. The phenyl ring was refined as a rigid hexagon. The carbon-bound H atoms were positioned geometrically, and were allowed to ride on the parent C atoms, with U(H) = 1.2Ueq(C). The water H atoms were located and their positions refined, subject to O—H = 0.85±0.01, H···H = 1.39±0.01 Å, and Uiso(H) = 1.2Ueq(O). The final difference map had a large peak/hole at about 1 Å from atom Sn1.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title dinuclear complex, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
Bis(aquachlorodimethylphenyltin).18-crown-6 top
Crystal data top
[SnCl(CH3)2(C6H5)(H2O)]2·C12H24O8F(000) = 832
Mr = 822.96Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6395 (6) ÅCell parameters from 4938 reflections
b = 19.472 (1) Åθ = 2.4–26.5°
c = 10.5110 (7) ŵ = 1.60 mm1
β = 116.015 (1)°T = 168 K
V = 1773.0 (2) Å3Block, colorless
Z = 20.50 × 0.48 × 0.37 mm
Data collection top
Siemens CCD area-detector
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.502, Tmax = 0.589k = 2424
9926 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 2.62 e Å3
21 restraintsΔρmin = 1.76 e Å3
Crystal data top
[SnCl(CH3)2(C6H5)(H2O)]2·C12H24O8V = 1773.0 (2) Å3
Mr = 822.96Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6395 (6) ŵ = 1.60 mm1
b = 19.472 (1) ÅT = 168 K
c = 10.5110 (7) Å0.50 × 0.48 × 0.37 mm
β = 116.015 (1)°
Data collection top
Siemens CCD area-detector
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2495 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.589Rint = 0.104
9926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06021 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 2.62 e Å3
3392 reflectionsΔρmin = 1.76 e Å3
177 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.36801 (5)0.11313 (2)0.25316 (5)0.0261 (2)
Cl10.6100 (2)0.18146 (8)0.3566 (2)0.0379 (4)
O10.1800 (5)0.1056 (2)0.1746 (4)0.035 (1)
O20.0522 (5)0.0498 (2)0.2397 (4)0.038 (1)
O30.1683 (5)0.0761 (2)0.0958 (5)0.036 (1)
O1w0.1378 (5)0.0411 (2)0.1432 (5)0.036 (1)
C10.2951 (8)0.1546 (3)0.0483 (7)0.045 (2)
C20.4793 (7)0.0165 (3)0.3101 (7)0.034 (2)
C30.2772 (5)0.1511 (2)0.3949 (4)0.028 (2)
C40.1233 (4)0.1702 (2)0.3452 (4)0.032 (2)
C50.0676 (4)0.1933 (2)0.4392 (5)0.043 (2)
C60.1659 (6)0.1973 (2)0.5830 (5)0.048 (2)
C70.3198 (6)0.1783 (2)0.6327 (3)0.050 (2)
C80.3755 (4)0.1552 (2)0.5387 (4)0.041 (2)
C90.1272 (8)0.1370 (3)0.2686 (7)0.044 (2)
C100.0834 (8)0.0817 (3)0.3427 (7)0.044 (2)
C110.1049 (8)0.0044 (3)0.2975 (7)0.044 (2)
C120.2286 (8)0.0426 (3)0.1818 (7)0.050 (2)
C130.2773 (8)0.1215 (3)0.0037 (7)0.048 (2)
C140.2066 (9)0.1554 (3)0.0883 (7)0.047 (2)
H1w10.148 (6)0.001 (1)0.125 (7)0.043*
H1w20.047 (3)0.048 (2)0.133 (7)0.043*
H1a0.38030.15250.02130.067*
H1b0.26390.20250.04790.067*
H1c0.20750.12800.01930.067*
H2a0.41030.01660.32350.051*
H2b0.57410.02100.39850.051*
H2c0.50510.00030.23480.051*
H40.05610.16740.24690.039*
H50.03760.20630.40520.052*
H60.12790.21310.64720.058*
H70.38700.18110.73100.060*
H80.48070.14210.57270.049*
H9a0.21010.16580.33870.052*
H9b0.03700.16660.21450.052*
H10a0.06310.10160.41960.053*
H10b0.16780.04770.38440.053*
H11a0.01830.03580.35220.052*
H11b0.14480.01450.36250.052*
H12a0.31170.01050.12300.060*
H12b0.27340.07720.22210.060*
H13a0.30880.15670.04650.057*
H13b0.37040.09560.06730.057*
H14a0.27650.19160.14880.057*
H14b0.10770.17720.02400.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0353 (3)0.0215 (2)0.0182 (2)0.0007 (2)0.0086 (2)0.0004 (2)
Cl10.041 (1)0.0354 (9)0.0283 (10)0.0104 (7)0.0071 (9)0.0027 (7)
O10.047 (3)0.020 (2)0.032 (3)0.001 (2)0.011 (3)0.002 (2)
O20.048 (3)0.041 (3)0.018 (3)0.005 (2)0.010 (3)0.003 (2)
O30.032 (3)0.040 (3)0.031 (3)0.002 (2)0.010 (3)0.008 (2)
O1w0.042 (3)0.026 (2)0.043 (3)0.003 (2)0.020 (3)0.006 (2)
C10.049 (5)0.042 (4)0.020 (4)0.011 (3)0.007 (4)0.006 (3)
C20.032 (4)0.028 (3)0.029 (4)0.002 (3)0.003 (4)0.004 (3)
C30.037 (4)0.019 (3)0.026 (4)0.002 (3)0.011 (4)0.002 (3)
C40.037 (4)0.025 (3)0.024 (4)0.008 (3)0.005 (4)0.003 (3)
C50.049 (5)0.023 (3)0.071 (6)0.005 (3)0.039 (5)0.006 (3)
C60.080 (6)0.031 (4)0.047 (5)0.007 (4)0.040 (5)0.007 (3)
C70.068 (6)0.047 (4)0.032 (4)0.004 (4)0.019 (5)0.006 (4)
C80.049 (5)0.039 (4)0.030 (4)0.001 (3)0.013 (4)0.005 (3)
C90.050 (5)0.034 (3)0.027 (4)0.009 (3)0.001 (4)0.011 (3)
C100.058 (5)0.046 (4)0.021 (4)0.017 (4)0.010 (4)0.001 (3)
C110.057 (5)0.057 (5)0.019 (4)0.008 (4)0.019 (4)0.004 (3)
C120.058 (5)0.053 (5)0.061 (6)0.010 (4)0.045 (5)0.019 (4)
C130.048 (5)0.039 (4)0.056 (5)0.007 (4)0.023 (5)0.015 (4)
C140.058 (5)0.025 (4)0.043 (5)0.010 (3)0.007 (4)0.002 (3)
Geometric parameters (Å, º) top
Sn1—C12.111 (6)C1—H1b0.9800
Sn1—C22.119 (5)C1—H1c0.9800
Sn1—C32.163 (3)C2—H2a0.9800
Sn1—O1w2.445 (4)C2—H2b0.9800
Sn1—Cl12.484 (2)C2—H2c0.9800
O1—C14i1.426 (6)C4—H40.9500
O1—C91.431 (6)C5—H50.9500
O2—C111.419 (6)C6—H60.9500
O2—C101.423 (6)C7—H70.9500
O3—C131.419 (6)C8—H80.9500
O3—C121.429 (6)C9—H9a0.9900
C3—C41.3900C9—H9b0.9900
C3—C81.3900C10—H10a0.9900
C4—C51.3900C10—H10b0.9900
C5—C61.3900C11—H11a0.9900
C6—C71.3900C11—H11b0.9900
C7—C81.3900C12—H12a0.9900
C9—C101.494 (7)C12—H12b0.9900
C11—C121.477 (7)C13—H13a0.9900
C13—C141.491 (7)C13—H13b0.9900
O1w—H1w10.85 (1)C14—H14a0.9900
O1w—H1w20.85 (1)C14—H14b0.9900
C1—H1a0.9800
C1—Sn1—C2121.9 (3)H2b—C2—H2c109.5
C1—Sn1—C3121.2 (2)C5—C4—H4120.0
C1—Sn1—O1w84.9 (2)C3—C4—H4120.0
C1—Sn1—Cl194.0 (2)C4—C5—H5120.0
C2—Sn1—C3114.6 (2)C6—C5—H5120.0
C2—Sn1—O1w82.3 (2)C7—C6—H6120.0
C2—Sn1—Cl195.2 (2)C5—C6—H6120.0
C3—Sn1—O1w88.0 (2)C6—C7—H7120.0
C3—Sn1—Cl195.8 (1)C8—C7—H7120.0
O1w—Sn1—Cl1176.1 (1)C7—C8—H8120.0
C14i—O1—C9111.5 (5)C3—C8—H8120.0
C11—O2—C10112.4 (5)O1—C9—H9a110.0
C13—O3—C12112.0 (5)C10—C9—H9a110.0
C4—C3—C8120.0O1—C9—H9b110.0
C4—C3—Sn1121.3 (2)C10—C9—H9b110.0
C8—C3—Sn1118.7 (2)H9a—C9—H9b108.3
C5—C4—C3120.0O2—C10—H10a110.3
C4—C5—C6120.0C9—C10—H10a110.3
C7—C6—C5120.0O2—C10—H10b110.3
C6—C7—C8120.0C9—C10—H10b110.3
C7—C8—C3120.0H10a—C10—H10b108.6
O1—C9—C10108.6 (5)O2—C11—H11a109.8
O2—C10—C9107.0 (5)C12—C11—H11a109.8
O2—C11—C12109.5 (5)O2—C11—H11b109.8
O3—C12—C11110.2 (5)C12—C11—H11b109.8
O3—C13—C14109.3 (5)H11a—C11—H11b108.2
O1i—C14—C13109.6 (5)O3—C12—H12a109.6
Sn1—O1w—H1w1119 (3)C11—C12—H12a109.6
Sn1—O1w—H1w2130 (3)O3—C12—H12b109.6
H1w1—O1w—H1w2110 (2)C11—C12—H12b109.6
Sn1—C1—H1a109.5H12a—C12—H12b108.1
Sn1—C1—H1b109.5O3—C13—H13a109.8
H1a—C1—H1b109.5C14—C13—H13a109.8
Sn1—C1—H1c109.5O3—C13—H13b109.8
H1a—C1—H1c109.5C14—C13—H13b109.8
H1b—C1—H1c109.5H13a—C13—H13b108.3
Sn1—C2—H2a109.5O1i—C14—H14a109.7
Sn1—C2—H2b109.5C13—C14—H14a109.7
H2a—C2—H2b109.5O1i—C14—H14b109.7
Sn1—C2—H2c109.5C13—C14—H14b109.7
H2a—C2—H2c109.5H14a—C14—H14b108.2
C1—Sn1—C3—C437.7 (3)C5—C6—C7—C80.0
C2—Sn1—C3—C4125.6 (3)C6—C7—C8—C30.0
O1w—Sn1—C3—C445.0 (2)C4—C3—C8—C70.0
Cl1—Sn1—C3—C4136.0 (2)Sn1—C3—C8—C7178.9 (3)
C1—Sn1—C3—C8143.4 (3)C14i—O1—C9—C10173.2 (5)
C2—Sn1—C3—C853.3 (3)C11—O2—C10—C9179.5 (5)
O1w—Sn1—C3—C8133.9 (2)O1—C9—C10—O269.4 (7)
Cl1—Sn1—C3—C845.1 (2)C10—O2—C11—C12170.4 (5)
C8—C3—C4—C50.0C13—O3—C12—C11171.3 (5)
Sn1—C3—C4—C5178.9 (3)O2—C11—C12—O365.5 (7)
C3—C4—C5—C60.0C12—O3—C13—C14179.2 (5)
C4—C5—C6—C70.0O3—C13—C14—O1i67.0 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.85 (1)2.10 (3)2.884 (5)153 (6)
O1w—H1w2···O30.85 (1)2.01 (1)2.851 (6)172 (6)

Experimental details

Crystal data
Chemical formula[SnCl(CH3)2(C6H5)(H2O)]2·C12H24O8
Mr822.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)168
a, b, c (Å)9.6395 (6), 19.472 (1), 10.5110 (7)
β (°) 116.015 (1)
V3)1773.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.50 × 0.48 × 0.37
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.502, 0.589
No. of measured, independent and
observed [I > 2σ(I)] reflections
9926, 3392, 2495
Rint0.104
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.107, 0.95
No. of reflections3392
No. of parameters177
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.62, 1.76

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Sn1—C12.111 (6)Sn1—O1w2.445 (4)
Sn1—C22.119 (5)Sn1—Cl12.484 (2)
Sn1—C32.163 (3)
C1—Sn1—C2121.9 (3)C2—Sn1—O1w82.3 (2)
C1—Sn1—C3121.2 (2)C2—Sn1—Cl195.2 (2)
C1—Sn1—O1w84.9 (2)C3—Sn1—O1w88.0 (2)
C1—Sn1—Cl194.0 (2)C3—Sn1—Cl195.8 (1)
C2—Sn1—C3114.6 (2)O1w—Sn1—Cl1176.1 (1)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds