Download citation
Download citation
link to html
The compound described in this paper, bis{1-[2-(N,N-di­methyl­amino)­ethyl­amino]­ethaniminato}dicopper(I,II) per­chlor­ate, [Cu2(C6H13N3)2]ClO4, is the product of the reaction of [(H3CCN)4Cu]ClO4 with a substituted triazine ring system. The complex is a copper(I)/copper(II) compound in which each Cu atom has a square-planar coordination environment; the Cu-Cu distance is 2.4552 (14) Å. The two Cu atoms are bridged by an amidate ligand, which was apparently formed in a ring-cleavage reaction of the triazine ring. Each cation has a twofold axis perpendicular to the Cu-amidate plane, bisecting the Cu-Cu bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002519/wn6080sup1.cif
Contains datablocks I, gkkm9

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002519/wn6080Isup2.hkl
Contains datablock I

CCDC reference: 174673

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.042
  • wR factor = 0.125
  • Data-to-parameter ratio = 9.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
THETM_01 Alert A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5001 PLAT_030 Alert A Refined Extinction parameter within range .... 0.50 Sigma
Yellow Alert Alert Level C:
DENSD_01 Alert C The ratio of the submitted crystal density and that calculated from the formula is outside the range 0.99 <> 1.01 Crystal density given = 1.600 Calculated crystal density = 1.580 REFNR_01 Alert C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.5001 Proportion of unique data used 1.0000 Ratio reflections to parameters 9.1938 PLAT_320 Alert C Check Hybridisation of C(8) in main residue ? PLAT_320 Alert C Check Hybridisation of C(16) in main residue ? PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 3 CU1 -CU1 -N1 -C2 -128.70 1.00 3.667 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 6 CU1 -CU1 -N1 -C3 105.70 1.10 3.667 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 9 CU1 -CU1 -N1 -C4 -10.00 1.30 3.667 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 14 N6 -CU1 -N7 -C7 -30.00 2.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 19 N7 -CU1 -N6 -C7 31.00 2.00 1.555 1.555 1.555 3.667 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 22 N7 -CU1 -N6 -C5 -149.70 1.90 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 29 CU2 -CU2 -N9 -C11 -118.90 1.30 3.666 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 32 CU2 -CU2 -N9 -C10 116.10 1.20 3.666 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 35 CU2 -CU2 -N9 -C12 -0.40 1.50 3.666 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 42 N17 -CU2 -N14 -C15 -21.00 2.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 45 N17 -CU2 -N14 -C13 160.00 2.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 52 N14 -CU2 -N17 -C15 18.00 2.00 1.555 1.555 1.555 3.666 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C12 H20 Cl1 Cu2 N6 O4 Atom count from _chemical_formula_moiety:C12 H26 Cl1 Cu2 N6 O4
2 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
16 Alert Level C = Please check

Comment top

Amine ligands with a high number of coordination sites have attracted much interest due to their complexation of specific metals, depending on the nature of the ligand, such as number of coordination sites, ring structure, rigidity, etc. Widely known compounds, such as crown ethers or cryptands, are expensive, often toxic, and difficult to synthesize; accordingly, there is a search for new classes of multidentate ligands. Promising systems include derivatives of 1,3,5-triazacyclohexanes (triazines) due to their straightforward preparation, starting from cheap reagents (Kaufman 1975; Köhn et al., 1996). We are interested in ligands which contain additional coordination sites at substituents attached to the heterocyclic atoms. N,N',N''-Tris(dimethylaminoethyl)hexahydro-s-triazine is one example of such a ligand which has already been used in our group in the complexation of CuBr (Kickelbick et al., 2002).

For a comparison of different Cu(I) sources, [(CH3CN)4Cu]ClO4 was also used as a CuI source. Surprisingly, the molecular structure of a dicopper complex with an amidate ligand as cation and a perchlorate anion was obtained from this reaction (Fig. 1).

The asymmetric unit of the title compound, (I), consists of two half-cations and one anion. In this paper, the structural parameters of only one cation are discussed. The bond lengths and angles of the second cation differ only within experimental error. The complex shows a structure similar to other dicopper–amidate complexes (Hathaway et al., 1980). Each Cu atom has a square-planar coordination sphere. Each metal is coordinated by three N atoms, with bonding distances of 2.116 (5) (Cu1—N1), 1.879 (5) (Cu1—N6) and 1.872 (5) Å (Cu1—N7), and one Cu atom at a distance of 2.4552 (14) Å. The rather short and nearly equal C—N distances of 1.322 (8) (C7—N6A) and 1.346 (8) Å (N7—C7), as well as the N6A—C7—N7 angle of 118.5 (5)°, are typical for the amidate bonding situation with a delocalized negative charge. For reasons of charge balance, viz. two negative charges per cation from the amidate ligands and one negative charge from the perchlorate anion, the compound has to be a CuI/CuII complex.

Layers of copper complexes are stacked along the b axis of the crystal, with amidate–copper planes perpendicular to each other (Fig. 2).

The mechanism of formation of the complex is, as yet, unclear. A possible explanation of the cleavage is a reaction of free or coordinated acetonitrile with the triazine ring N atoms, followed by a cleavage of the ring and coordination of the product to the CuI atoms. However, we do not have any information supporting this speculation and additional experiments are needed to clarify the issue.

Experimental top

N,N',N''-Tris(dimethylaminoethyl)hexahydro-s-triazine was prepared following the procedure of Kaufman (1975). 0.375 g (1 mmol) of [(CH3CCN)4Cu]ClO4, 7.5 ml of acetonitrile and 0.300 g (1 mmol) of the triazine were mixed and stirred until a clear solution was obtained. The solution was allowed to stand for several weeks under an argon atmosphere, yielding a green suspension from which green crystals were isolated.

Refinement top

H atoms were located from difference Fourier maps and were refined as riding.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the anion and one of the two cations, with displacement ellipsoids at the 50% probability level. For clarity, H atoms have been omitted.
[Figure 2] Fig. 2. Projection of the structure along [010], showing displacement ellipsoids at the 40% probability level. For clarity, H atoms have been omitted.
(I) top
Crystal data top
[Cu2(C6H13N3)2]ClO4F(000) = 964
Mr = 474.87Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6752 (3) ÅCell parameters from 4499 reflections
b = 16.2561 (6) Åθ = 2.5–25.1°
c = 16.0299 (6) ŵ = 2.29 mm1
β = 93.365 (1)°T = 293 K
V = 1996.58 (13) Å3Irregular, green
Z = 40.42 × 0.07 × 0.05 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2087 independent reflections
Radiation source: fine-focus sealed tube1737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 20.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.446, Tmax = 0.894k = 1616
10319 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0734P)2 + 3.6797P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2087 reflectionsΔρmax = 0.68 e Å3
227 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0002 (4)
Crystal data top
[Cu2(C6H13N3)2]ClO4V = 1996.58 (13) Å3
Mr = 474.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6752 (3) ŵ = 2.29 mm1
b = 16.2561 (6) ÅT = 293 K
c = 16.0299 (6) Å0.42 × 0.07 × 0.05 mm
β = 93.365 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1737 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.894Rint = 0.031
10319 measured reflectionsθmax = 20.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.08Δρmax = 0.68 e Å3
2087 reflectionsΔρmin = 0.30 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48030 (9)0.42514 (4)0.99578 (4)0.0372 (3)
N10.4719 (7)0.2953 (3)1.0040 (3)0.0509 (15)
Cu20.51180 (9)0.49576 (4)0.57643 (4)0.0372 (3)
C20.5052 (15)0.2609 (5)0.9237 (5)0.115 (4)
H2A0.50190.20200.92690.172*
H2B0.61820.27820.90790.172*
H2C0.41770.27970.88280.172*
C30.3117 (12)0.2623 (6)1.0356 (7)0.120 (4)
H3A0.31830.20341.03730.180*
H3B0.21380.27870.99930.180*
H3C0.29770.28321.09080.180*
C40.6144 (10)0.2779 (4)1.0672 (5)0.079 (2)
H4A0.64780.22051.06340.095*
H4B0.57330.28721.12250.095*
C50.7709 (9)0.3312 (4)1.0554 (4)0.0592 (19)
H5A0.85310.32701.10350.071*
H5B0.82910.31411.00620.071*
N70.2611 (6)0.4444 (3)0.9419 (3)0.0427 (13)
N60.7072 (6)0.4158 (3)1.0456 (3)0.0432 (13)
C70.1966 (8)0.5206 (4)0.9287 (4)0.0416 (16)
C80.0184 (8)0.5313 (5)0.8854 (4)0.0596 (19)
N90.5055 (8)0.5001 (3)0.7074 (3)0.0553 (16)
C100.4516 (19)0.4190 (6)0.7360 (6)0.147 (5)
H10A0.44780.41930.79570.220*
H10B0.53380.37830.71970.220*
H10C0.33800.40610.71120.220*
C110.6612 (14)0.5258 (9)0.7513 (7)0.153 (5)
H11A0.64490.52540.81020.230*
H11B0.69010.58050.73410.230*
H11C0.75420.48890.73940.230*
C120.3663 (11)0.5622 (6)0.7199 (5)0.087 (3)
H12A0.32250.55460.77500.104*
H12B0.41630.61690.71780.104*
C130.2210 (9)0.5559 (5)0.6570 (4)0.061 (2)
H13A0.14800.50920.66930.074*
H13B0.15010.60530.65770.074*
N140.2900 (6)0.5457 (3)0.5750 (3)0.0412 (13)
C150.2045 (8)0.5708 (3)0.5058 (4)0.0415 (16)
C160.0329 (8)0.6166 (4)0.5078 (4)0.0558 (19)
N170.7275 (6)0.4438 (3)0.5673 (3)0.0426 (13)
Cl200.0185 (3)0.28742 (12)0.76753 (11)0.0647 (6)
O210.0078 (11)0.3103 (4)0.8500 (4)0.134 (3)
O220.0164 (10)0.3555 (5)0.7152 (5)0.146 (3)
O230.1905 (11)0.2550 (5)0.7590 (5)0.150 (3)
O240.0905 (13)0.2263 (6)0.7480 (6)0.192 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0419 (5)0.0290 (5)0.0403 (5)0.0038 (3)0.0011 (4)0.0006 (3)
N10.058 (4)0.033 (3)0.060 (4)0.001 (3)0.006 (3)0.001 (3)
Cu20.0410 (5)0.0368 (5)0.0340 (5)0.0001 (3)0.0031 (4)0.0006 (3)
C20.202 (12)0.055 (5)0.084 (7)0.039 (6)0.018 (7)0.022 (5)
C30.095 (7)0.070 (6)0.195 (11)0.018 (5)0.001 (7)0.048 (7)
C40.092 (6)0.041 (4)0.101 (6)0.006 (4)0.016 (5)0.010 (4)
C50.060 (4)0.039 (4)0.077 (5)0.010 (4)0.013 (4)0.004 (4)
N70.044 (3)0.037 (3)0.046 (3)0.006 (3)0.002 (2)0.003 (2)
N60.047 (3)0.033 (3)0.049 (3)0.010 (3)0.003 (3)0.004 (2)
C70.042 (4)0.052 (5)0.031 (4)0.000 (3)0.007 (3)0.002 (3)
C80.037 (4)0.069 (5)0.071 (5)0.006 (3)0.016 (3)0.001 (4)
N90.060 (4)0.069 (4)0.037 (3)0.007 (3)0.002 (3)0.001 (3)
C100.272 (16)0.086 (8)0.091 (8)0.032 (9)0.086 (9)0.033 (6)
C110.093 (8)0.281 (16)0.084 (8)0.008 (9)0.017 (6)0.071 (9)
C120.085 (6)0.115 (8)0.060 (6)0.018 (5)0.010 (5)0.013 (5)
C130.061 (5)0.072 (5)0.052 (5)0.014 (4)0.015 (4)0.002 (4)
N140.045 (3)0.044 (3)0.036 (3)0.006 (3)0.009 (3)0.004 (3)
C150.042 (4)0.026 (3)0.055 (5)0.005 (3)0.003 (3)0.000 (3)
C160.044 (4)0.054 (5)0.070 (5)0.019 (3)0.009 (3)0.003 (3)
N170.046 (3)0.043 (3)0.039 (3)0.003 (2)0.004 (3)0.002 (2)
Cl200.0805 (14)0.0545 (12)0.0575 (12)0.0120 (10)0.0102 (9)0.0011 (10)
O210.202 (8)0.122 (5)0.074 (4)0.031 (5)0.039 (4)0.017 (4)
O220.146 (6)0.149 (7)0.143 (7)0.016 (6)0.001 (5)0.093 (6)
O230.140 (7)0.153 (7)0.152 (7)0.063 (6)0.017 (5)0.009 (5)
O240.212 (10)0.176 (9)0.191 (9)0.104 (8)0.028 (7)0.025 (7)
Geometric parameters (Å, º) top
Cu1—N71.872 (5)C7—N6i1.322 (8)
Cu1—N61.879 (5)C7—C81.507 (9)
Cu1—N12.116 (5)N9—C111.414 (11)
Cu1—Cu1i2.4552 (14)N9—C101.464 (10)
N1—C21.440 (9)N9—C121.491 (9)
N1—C31.459 (10)C12—C131.463 (10)
N1—C41.474 (9)C13—N141.455 (8)
Cu2—N171.872 (5)N14—C151.320 (7)
Cu2—N141.884 (5)C15—N17ii1.332 (7)
Cu2—N92.104 (5)C15—C161.515 (8)
Cu2—Cu2ii2.4502 (14)N17—C15ii1.332 (7)
C4—C51.502 (10)Cl20—O241.347 (8)
C5—N61.466 (8)Cl20—O211.376 (6)
N7—C71.346 (8)Cl20—O221.389 (6)
N6—C7i1.322 (8)Cl20—O231.421 (7)
N7—Cu1—N6174.3 (2)N6i—C7—N7118.5 (5)
N7—Cu1—N199.5 (2)N6i—C7—C8121.9 (6)
N6—Cu1—N185.7 (2)N7—C7—C8119.6 (6)
N7—Cu1—Cu1i87.95 (15)C11—N9—C10110.8 (9)
N6—Cu1—Cu1i87.04 (15)C11—N9—C12108.9 (7)
N1—Cu1—Cu1i171.68 (14)C10—N9—C12110.4 (7)
C2—N1—C3111.4 (8)C11—N9—Cu2116.0 (6)
C2—N1—C4112.1 (7)C10—N9—Cu2107.8 (5)
C3—N1—C4107.3 (6)C12—N9—Cu2102.5 (4)
C2—N1—Cu1108.9 (5)C13—C12—N9112.5 (6)
C3—N1—Cu1114.7 (5)N14—C13—C12109.1 (6)
C4—N1—Cu1102.1 (4)C15—N14—C13122.3 (5)
N17—Cu2—N14174.7 (2)C15—N14—Cu2123.2 (4)
N17—Cu2—N999.5 (2)C13—N14—Cu2114.5 (4)
N14—Cu2—N985.6 (2)N14—C15—N17ii118.9 (5)
N17—Cu2—Cu2ii87.77 (16)N14—C15—C16121.7 (6)
N14—Cu2—Cu2ii87.14 (15)N17ii—C15—C16119.4 (6)
N9—Cu2—Cu2ii172.41 (16)C15ii—N17—Cu2122.9 (4)
N1—C4—C5111.7 (6)O24—Cl20—O21111.3 (6)
N6—C5—C4106.9 (5)O24—Cl20—O22114.7 (6)
C7—N7—Cu1122.6 (4)O21—Cl20—O22111.0 (5)
C7i—N6—C5121.6 (5)O24—Cl20—O23106.8 (6)
C7i—N6—Cu1123.8 (4)O21—Cl20—O23106.0 (5)
C5—N6—Cu1114.6 (4)O22—Cl20—O23106.3 (5)
N7—Cu1—N1—C277.7 (6)N14—Cu2—N9—C11136.4 (8)
N6—Cu1—N1—C2100.1 (6)Cu2ii—Cu2—N9—C11118.9 (13)
Cu1i—Cu1—N1—C2128.7 (10)N17—Cu2—N9—C1079.9 (7)
N7—Cu1—N1—C348.0 (6)N14—Cu2—N9—C1098.7 (7)
N6—Cu1—N1—C3134.3 (6)Cu2ii—Cu2—N9—C10116.1 (12)
Cu1i—Cu1—N1—C3105.7 (11)N17—Cu2—N9—C12163.6 (5)
N7—Cu1—N1—C4163.6 (5)N14—Cu2—N9—C1217.8 (5)
N6—Cu1—N1—C418.7 (5)Cu2ii—Cu2—N9—C120.4 (15)
Cu1i—Cu1—N1—C410.0 (13)C11—N9—C12—C13161.3 (8)
C2—N1—C4—C575.7 (8)C10—N9—C12—C1376.7 (10)
C3—N1—C4—C5161.7 (7)Cu2—N9—C12—C1337.9 (8)
Cu1—N1—C4—C540.8 (7)N9—C12—C13—N1444.1 (9)
N1—C4—C5—N648.4 (8)C12—C13—N14—C15151.9 (6)
N6—Cu1—N7—C730 (2)C12—C13—N14—Cu227.0 (8)
N1—Cu1—N7—C7173.9 (5)N17—Cu2—N14—C1521 (2)
Cu1i—Cu1—N7—C72.4 (4)N9—Cu2—N14—C15174.4 (5)
C4—C5—N6—C7i148.7 (6)Cu2ii—Cu2—N14—C153.4 (4)
C4—C5—N6—Cu130.6 (7)N17—Cu2—N14—C13160 (2)
N7—Cu1—N6—C7i31 (2)N9—Cu2—N14—C134.6 (5)
N1—Cu1—N6—C7i172.4 (5)Cu2ii—Cu2—N14—C13177.7 (4)
Cu1i—Cu1—N6—C7i3.6 (5)C13—N14—C15—N17ii177.2 (5)
N7—Cu1—N6—C5149.7 (19)Cu2—N14—C15—N17ii4.0 (7)
N1—Cu1—N6—C56.8 (4)C13—N14—C15—C163.7 (9)
Cu1i—Cu1—N6—C5177.2 (4)Cu2—N14—C15—C16175.1 (4)
Cu1—N7—C7—N6i0.6 (8)N14—Cu2—N17—C15ii18 (2)
Cu1—N7—C7—C8179.5 (4)N9—Cu2—N17—C15ii177.5 (4)
N17—Cu2—N9—C1145.0 (8)Cu2ii—Cu2—N17—C15ii0.4 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C6H13N3)2]ClO4
Mr474.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6752 (3), 16.2561 (6), 16.0299 (6)
β (°) 93.365 (1)
V3)1996.58 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.42 × 0.07 × 0.05
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.446, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
10319, 2087, 1737
Rint0.031
θmax (°)20.8
(sin θ/λ)max1)0.500
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.08
No. of reflections2087
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N71.872 (5)C5—N61.466 (8)
Cu1—N61.879 (5)N7—C71.346 (8)
Cu1—N12.116 (5)N6—C7i1.322 (8)
Cu1—Cu1i2.4552 (14)C7—C81.507 (9)
N7—Cu1—N6174.3 (2)C7i—N6—C5121.6 (5)
N7—Cu1—N199.5 (2)C7i—N6—Cu1123.8 (4)
N6—Cu1—N185.7 (2)C5—N6—Cu1114.6 (4)
N7—Cu1—Cu1i87.95 (15)N6i—C7—N7118.5 (5)
N6—Cu1—Cu1i87.04 (15)N6i—C7—C8121.9 (6)
N1—Cu1—Cu1i171.68 (14)N7—C7—C8119.6 (6)
C7—N7—Cu1122.6 (4)
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds