Download citation
Download citation
link to html
FJ6, N-methyl-N-(4-nitro-2-phenoxy­phenyl)­methanesulfon­amide, C14H14N2O5S, is an analogue of nimesulide, a selective inhibitor of cyclo­oxy­genase-2. The structure of the title compound has been characterized to understand its inactivity towards cyclo­oxy­genase-2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015823/wn6057sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015823/wn6057Isup2.hkl
Contains datablock I

CCDC reference: 175998

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.118
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The crystal structure of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide, nimesulide, (I), has been previously described (Dupont et al., 1995). It is reported as a selective inhibitor of cyclooxygenase-2 (COX-2) (Tavares & Bishai, 1995). In order to study the importance of the NH proton, an analogue of nimesulide, N-methyl-N-(4-nitro-2-phenoxyphenyl)methanesulfonamide, (FJ6), (II), was synthesized and its structure solved (Fig. 1). FJ6 appeared to be inactive as a COX inhibitor (Julémont, 2001). The sole difference between the two compounds is that the sulfonamide N atom is protonated in nimesulide, while it is methylated in FJ6. The molecular conformation of nimesulide is stabilized by an intramolecular N17—H···O7 hydrogen bond, not available in FJ6. As a result, the orientation of the sulfonamide group differs from that in nimesulide, while the position of the phenoxy group remains unchanged. This can be seen in the superposition of the two compounds (Fig. 2). The inactivity of FJ6 could be partly explained by this change in orientation. Indeed, the displacement of one of the O atoms of the sulfonamide group (O20) could prevent the formation of an hydrogen bond inside the COX-2 active site and consequently yield a less stable enzyme–ligand complex. Furthermore, the two methyl groups in FJ6 could lead to steric clashes in the COX-2 enzyme. Moreover, S—O bond lengths are observed to be longer in nimesulide [1.431 (2) Å] than in FJ6 [1.418 (2) Å]. This suggests that electronic delocalization is more important for the O atoms of the sulfonamide group in nimesulide than in FJ6. Thus, O atoms of nimesulide will be able to form stronger hydrogen bonds with COX-2 residues, increasing the interaction between the inhibitor and the enzyme. In conclusion, the COX inactivity of the title compound could be partially related to its sulfonamide conformation and electronic properties, different from those observed in nimesulide.

Experimental top

Crystal source: slow evaporation of a solution of FJ6 with methanol at 277 K gave colorless crystals suitable for X-ray analysis.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: PLATON (Spek, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid (50% probability) representation of FJ6.
[Figure 2] Fig. 2. Superposition of nimesulide (in black) and FJ6 (in grey).
N-methyl-N-(4-nitro-2-phenoxyphenyl)methanesulfonamide top
Crystal data top
C14H14N2O5SF(000) = 672
Mr = 322.33Dx = 1.423 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.522 (1) ÅCell parameters from 24 reflections
b = 10.439 (1) Åθ = 32–40°
c = 10.523 (1) ŵ = 2.16 mm1
β = 109.460 (4)°T = 293 K
V = 1504.1 (2) Å3Polyhedral, colorless
Z = 40.46 × 0.36 × 0.15 mm
Data collection top
Nonius
diffractometer
2747 reflections with I > 2σ(I)
Radiation source: long fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 71.9°, θmin = 3.2°
ω/θ scansh = 170
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1112
Tmin = 0.411, Tmax = 0.743l = 1212
5119 measured reflections3 standard reflections every 200 reflections
2951 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.061P)2 + 0.373P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
2951 reflectionsΔρmax = 0.23 e Å3
203 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0139 (8)
Crystal data top
C14H14N2O5SV = 1504.1 (2) Å3
Mr = 322.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.522 (1) ŵ = 2.16 mm1
b = 10.439 (1) ÅT = 293 K
c = 10.523 (1) Å0.46 × 0.36 × 0.15 mm
β = 109.460 (4)°
Data collection top
Nonius
diffractometer
2747 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.034
Tmin = 0.411, Tmax = 0.7433 standard reflections every 200 reflections
5119 measured reflections intensity decay: 5%
2951 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2951 reflectionsΔρmin = 0.31 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S190.09820 (3)0.39270 (5)0.16659 (4)0.05765 (19)
O210.04416 (12)0.27815 (16)0.12467 (17)0.0850 (5)
O70.22028 (10)0.50640 (18)0.50900 (13)0.0797 (5)
O160.51319 (13)0.77639 (18)0.56081 (16)0.0869 (5)
O150.55160 (14)0.7375 (2)0.38477 (18)0.0973 (6)
O200.12730 (11)0.4642 (2)0.07183 (15)0.0857 (5)
N170.19856 (10)0.35423 (14)0.28886 (15)0.0552 (4)
N140.50130 (11)0.71966 (16)0.45550 (16)0.0618 (4)
C100.42369 (11)0.62339 (16)0.41260 (16)0.0491 (4)
C12$0.33644 (13)0.46585 (18)0.25715 (17)0.0542 (4)
C80.28922 (11)0.52039 (17)0.44807 (16)0.0504 (4)
C130.27459 (11)0.44752 (16)0.33146 (15)0.0469 (3)
C90.36518 (12)0.60666 (17)0.49095 (16)0.0521 (4)
H90.37660.65230.57060.063*
C110.41069 (13)0.55540 (19)0.29531 (17)0.0563 (4)
H110.45070.56950.24360.068*
C30.31187 (16)0.4931 (2)0.7455 (2)0.0681 (5)
H30.35370.43330.72830.082*
C40.23891 (13)0.54821 (19)0.64109 (17)0.0567 (4)
C220.03142 (16)0.4925 (3)0.2367 (3)0.0801 (6)
H22A0.06730.57010.26780.120*
H22B0.02050.44960.31120.120*
H22C0.03020.51250.16970.120*
C10.26067 (18)0.6124 (2)0.9017 (2)0.0724 (6)
H10.26730.63290.99030.087*
C20.32242 (18)0.5271 (2)0.8760 (2)0.0719 (5)
H20.37240.49130.94710.086*
C50.17718 (15)0.6381 (2)0.6648 (2)0.0714 (5)
H50.12910.67770.59420.086*
C60.18948 (18)0.6677 (2)0.7993 (3)0.0796 (6)
H60.14780.72660.81840.095*
C180.18954 (18)0.2569 (2)0.3867 (3)0.0826 (7)
H18A0.25310.23800.44980.124*
H18B0.16130.18010.33950.124*
H18C0.14850.28940.43430.124*
H120.32960.42240.17820.071 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S190.0491 (3)0.0693 (3)0.0530 (3)0.00738 (17)0.01497 (18)0.00689 (18)
O210.0707 (9)0.0824 (10)0.0943 (11)0.0200 (7)0.0170 (8)0.0286 (8)
O70.0535 (7)0.1426 (14)0.0514 (7)0.0261 (8)0.0286 (6)0.0203 (8)
O160.0821 (10)0.1003 (12)0.0759 (9)0.0309 (9)0.0229 (8)0.0212 (8)
O150.0878 (11)0.1210 (14)0.0976 (11)0.0441 (10)0.0503 (9)0.0093 (10)
O200.0648 (8)0.1299 (14)0.0572 (8)0.0108 (9)0.0132 (6)0.0203 (8)
N170.0506 (7)0.0555 (8)0.0597 (8)0.0035 (6)0.0187 (6)0.0047 (6)
N140.0523 (8)0.0684 (9)0.0625 (9)0.0063 (7)0.0164 (7)0.0074 (7)
C100.0408 (7)0.0566 (9)0.0484 (8)0.0006 (6)0.0131 (6)0.0084 (6)
C12$0.0517 (9)0.0661 (10)0.0493 (8)0.0004 (7)0.0227 (7)0.0039 (7)
C80.0428 (8)0.0678 (10)0.0434 (8)0.0027 (7)0.0183 (6)0.0053 (7)
C130.0421 (7)0.0529 (8)0.0461 (8)0.0039 (6)0.0150 (6)0.0061 (6)
C90.0467 (8)0.0653 (10)0.0445 (8)0.0025 (7)0.0155 (6)0.0002 (7)
C110.0491 (8)0.0751 (11)0.0511 (8)0.0015 (8)0.0253 (7)0.0046 (8)
C30.0701 (12)0.0756 (12)0.0620 (11)0.0078 (9)0.0268 (9)0.0037 (9)
C40.0529 (9)0.0754 (11)0.0493 (8)0.0099 (8)0.0271 (7)0.0036 (8)
C220.0548 (11)0.0934 (15)0.0839 (14)0.0104 (10)0.0122 (10)0.0186 (12)
C10.0928 (15)0.0701 (12)0.0627 (11)0.0159 (11)0.0371 (11)0.0128 (9)
C20.0870 (14)0.0734 (12)0.0548 (10)0.0037 (10)0.0229 (10)0.0033 (9)
C50.0615 (11)0.0752 (12)0.0790 (13)0.0038 (9)0.0254 (10)0.0055 (10)
C60.0859 (15)0.0712 (13)0.0953 (16)0.0028 (11)0.0484 (13)0.0201 (12)
C180.0760 (13)0.0714 (13)0.0967 (16)0.0074 (10)0.0239 (12)0.0275 (11)
Geometric parameters (Å, º) top
S19—O211.4177 (15)C11—H110.9300
S19—O201.4183 (16)C3—C41.373 (3)
S19—N171.6405 (15)C3—C21.376 (3)
S19—C221.745 (2)C3—H30.9300
O7—C81.3647 (19)C4—C51.377 (3)
O7—C41.395 (2)C22—H22A0.9600
O16—N141.217 (2)C22—H22B0.9600
O15—N141.218 (2)C22—H22C0.9600
N17—C131.428 (2)C1—C61.349 (3)
N17—C181.484 (2)C1—C21.353 (3)
N14—C101.465 (2)C1—H10.9300
C10—C91.378 (2)C2—H20.9300
C10—C111.381 (3)C5—C61.400 (3)
C12$—C111.382 (3)C5—H50.9300
C12$—C131.387 (2)C6—H60.9300
C12$—H120.9229C18—H18A0.9600
C8—C91.378 (2)C18—H18B0.9600
C8—C131.399 (2)C18—H18C0.9600
C9—H90.9300
O21—S19—O20119.28 (11)C4—C3—C2119.3 (2)
O21—S19—N17107.01 (9)C4—C3—H3120.3
O20—S19—N17106.58 (8)C2—C3—H3120.3
O21—S19—C22107.87 (12)C3—C4—C5121.05 (18)
O20—S19—C22108.71 (13)C3—C4—O7120.55 (18)
N17—S19—C22106.74 (10)C5—C4—O7118.18 (18)
C8—O7—C4120.37 (13)S19—C22—H22A109.5
C13—N17—C18119.16 (15)S19—C22—H22B109.5
C13—N17—S19118.12 (11)H22A—C22—H22B109.5
C18—N17—S19116.83 (13)S19—C22—H22C109.5
O16—N14—O15123.36 (17)H22A—C22—H22C109.5
O16—N14—C10118.41 (15)H22B—C22—H22C109.5
O15—N14—C10118.22 (16)C6—C1—C2120.3 (2)
C9—C10—C11122.79 (16)C6—C1—H1119.8
C9—C10—N14117.85 (15)C2—C1—H1119.8
C11—C10—N14119.35 (15)C1—C2—C3120.5 (2)
C11—C12$—C13121.26 (16)C1—C2—H2119.7
C11—C12$—H12115.7C3—C2—H2119.7
C13—C12$—H12123.0C4—C5—C6117.5 (2)
O7—C8—C9123.26 (16)C4—C5—H5121.2
O7—C8—C13115.68 (15)C6—C5—H5121.2
C9—C8—C13120.91 (14)C1—C6—C5121.2 (2)
C12$—C13—C8118.82 (15)C1—C6—H6119.4
C12$—C13—N17119.71 (15)C5—C6—H6119.4
C8—C13—N17121.46 (14)N17—C18—H18A109.5
C10—C9—C8118.21 (15)N17—C18—H18B109.5
C10—C9—H9120.9H18A—C18—H18B109.5
C8—C9—H9120.9N17—C18—H18C109.5
C10—C11—C12$117.94 (15)H18A—C18—H18C109.5
C10—C11—H11121.0H18B—C18—H18C109.5
C12$—C11—H11121.0
O21—S19—N17—C13168.05 (13)C18—N17—C13—C851.1 (2)
O20—S19—N17—C1339.39 (16)S19—N17—C13—C8101.08 (16)
C22—S19—N17—C1376.65 (16)C11—C10—C9—C81.6 (3)
O21—S19—N17—C1839.15 (18)N14—C10—C9—C8177.13 (15)
O20—S19—N17—C18167.82 (17)O7—C8—C9—C10172.45 (16)
C22—S19—N17—C1876.14 (18)C13—C8—C9—C102.9 (2)
O16—N14—C10—C93.0 (2)C9—C10—C11—C12$0.9 (3)
O15—N14—C10—C9178.01 (18)N14—C10—C11—C12$179.59 (16)
O16—N14—C10—C11178.23 (17)C13—C12$—C11—C102.2 (3)
O15—N14—C10—C110.7 (3)C2—C3—C4—C50.9 (3)
C4—O7—C8—C920.3 (3)C2—C3—C4—O7173.58 (18)
C4—O7—C8—C13164.13 (17)C8—O7—C4—C363.9 (3)
C11—C12$—C13—C80.9 (3)C8—O7—C4—C5121.5 (2)
C11—C12$—C13—N17179.91 (16)C6—C1—C2—C31.8 (3)
O7—C8—C13—C12$173.96 (16)C4—C3—C2—C11.1 (3)
C9—C8—C13—C12$1.7 (2)C3—C4—C5—C62.2 (3)
O7—C8—C13—N176.9 (2)O7—C4—C5—C6172.44 (19)
C9—C8—C13—N17177.49 (15)C2—C1—C6—C50.4 (4)
C18—N17—C13—C12$128.11 (19)C4—C5—C6—C11.5 (3)
S19—N17—C13—C12$79.74 (18)

Experimental details

Crystal data
Chemical formulaC14H14N2O5S
Mr322.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.522 (1), 10.439 (1), 10.523 (1)
β (°) 109.460 (4)
V3)1504.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)2.16
Crystal size (mm)0.46 × 0.36 × 0.15
Data collection
DiffractometerNonius
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.411, 0.743
No. of measured, independent and
observed [I > 2σ(I)] reflections
5119, 2951, 2747
Rint0.034
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.05
No. of reflections2951
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1992), CAD-4 EXPRESS, PLATON (Spek, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON, SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds