Download citation
Download citation
link to html
Ascidiacycl­amide, cyclo(-Ile-Oxz-D-Val-Thz-)2, has two methyl-oxazoline (Oxz) residues, and each Oxz residue has two chiral C atoms. In the present work, C38H60N8O12S4, a chiral modification of these atoms was attempted. A total of ten diastereomers were considered, of which seven were synthesized. For the three remaining diastereomers, the reaction was incomplete or very much slowed down. These diastereomers had the D configuration for both Oxz residues. This result appeared to be related to the conformation of the reaction intermediates. Therefore, the intermediates were converted into stable forms and then isolated to confirm their structures. Crystals were obtained from one derivative and its structure was found to be of the folded form. In this form, the activated atoms were separated from the target atoms. It is suggested that this folded conformation hinders the completion of the reaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016129/wn6056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016129/wn6056Isup2.hkl
Contains datablock I

CCDC reference: 176001

Key indicators

  • Single-crystal synchrotron study
  • T = 100 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.075
  • wR factor = 0.201
  • Data-to-parameter ratio = 8.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
DIFMX_01 Alert C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 1.314 Test value = 1.200 DIFMX_02 Alert C The minimum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.380 From the CIF: _refine_ls_abs_structure_Flack_su 0.150 Alert C Flack test results are ambiguous. PLAT_320 Alert C Check Hybridisation of S(29) in main residue ? PLAT_320 Alert C Check Hybridisation of S(60) in main residue ? PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(22) - C(23) = 1.39 Ang. PLAT_601 Alert C Structure Contains Solvent Accessible VOIDS of 59.00 A   3 PLAT_703 Alert C Torsion Calc -71.0(6), Rep -70.3(6), Dev. 1.17 Sigma N1 -C2 -C3 -C5 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 167.1(5), Rep 167.7(5), Dev. 1.20 Sigma C7 -C2 -C3 -C5 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 164.0(6), Rep 164.9(6), Dev. 1.50 Sigma C2 -C3 -C5 -C6 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc -114.5(7), Rep -113.3(6), Dev. 1.71 Sigma C18 -N20 -C21 -C22 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 175.0(6), Rep 174.0(5), Dev. 1.67 Sigma N32 -C33 -C34 -C35 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 53.1(8), Rep 51.8(6), Dev. 1.62 Sigma C38 -C33 -C34 -C35 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc -70.8(8), Rep -69.4(8), Dev. 1.75 Sigma C35 -C34 -C36 -C37 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 56.3(6), Rep 57.0(6), Dev. 1.17 Sigma C42 -C41 -C49 -O50 1.555 1.555 1.555 1.555 PLAT_703 Alert C Torsion Calc 118.1(5), Rep 118.7(5), Dev. 1.20 Sigma C49 -N51 -C52 -C56 1.555 1.555 1.555 1.555 General Notes
ABSMU_01 Radiation type not identified. Calculation of _exptl_absorpt_correction_mu not performed. REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.60 From the CIF: _reflns_number_total 4973 Count of symmetry unique reflns 5005 Completeness (_total/calc) 99.36% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
16 Alert Level C = Please check

Comment top

Ascidiacyclamide (ASC), (3), is a symmetric cyclic peptide (Fig. 1) containing unusual amino acids, such as oxazoline (Oxz) and thiazole (Thz) (Hamamoto et al., 1983). Two major conformations and their conformational equilibrium have been suggested for ASC (Ishida et al., 1988; In et al., 1993). In our series of studies, the relationships between ASC conformation and symmetry of the chemical structure have been examined; additionally, we have studied the asymmetric modifications which disturb the C2 symmetry of ASC and how this affects the ASC structures in both the solid state and in solution (Doi et al., 1999; Asano et al., 2001). Here, we extend the asymmetric modifications by substituting the Oxz residues with their diastereomers.

ASC is synthesized from a cyclic hexapeptide, (1), using thionyl chloride (Hamada et al., 1987), as shown in Fig. 1. Oxz rings are formed from the threonine residues via the chlorosulfoxide intermediate (2) after reacting for 1–2 d at 273–277 K. For the synthesis of the ASC diastereomers, the threonine residues of (1) are replaced by the following threonine diastereomers: Thr, allo-threonine (aThr), D-Thr and D-aThr. A total of ten diastereomers of (1) were synthesized and their configurations at positions (10,11,41,42) are (S,S,S,S), (S,S,S,R), (S,S,R,R), (S,S,R,S), (S,R,S,R), (S,R,R,R), (S,R,R,S), (R,R,R,R), (R,R,R,S) and (R,S,R,S). Natural ASC is synthesized from (S,S,S,S)-(1). For seven of the ten diastereomers, the reaction of Oxz formation was completed under the reported conditions. However, this reaction did not complete or was very much slowed down for the three diastereomers having (R,R,R,R), (R,R,R,S) and (R,S,R,S) configurations. These configurations imply that residues 2 and 6 are D-amino acids (Cα at positions 10 and 41). We presume that a particular conformation, which hinders the completion of the reaction, is present in the intermediates (2) derived from these three diastereomers. Such a conformation is interesting because it is stable, even in thionyl chloride solution. To clarify this conformation, three methyl sulfoxide derivatives of 4 were isolated, by the addition of methanol to intermediates (2), and the structure of (R,R,R,R)-(4) was analyzed.

The structure of (R,R,R,R)-(4) is shown in Fig. 2. The configuration (R,R,R,R) is confirmed for atoms C10, C11, C41 and C42 in the structure. The molecule is folded and four intramolecular hydrogen bonds are formed to stabilize the folded conformation: N1···O39 2.983 (6), N20···O62 3.017 (6), N32···O8 2.950 (6) and N51···O31 3.112 (6) Å. This structure is very similar to the folded forms of ASC and its derivatives (Doi et al., 1999). The Thz rings (C25—N26—C27—C28—S29 and C56—N57—C58—C59—S60) face each other with an angle of 15.3° between the ring planes. The distance between the thiazole rings indicates ππ electron stacking [e.g. C27···C58 3.414 (8) Å]. This feature is an important characteristic of the folded ascidiacyclamide.

In the reaction for Oxz ring formation, the activated Cβ atoms of D-Thr residues (C11 and C42) are necessary for contact with the carbonyl O atoms of Ile (O8 and O39) (Fig. 1). However, the C11 (or C42) atom is well separated from the O8 (or O39) atom in this folded structure (Fig. 2). It seems that such spatial arrangements cause incompletion or slow down of the reaction.

Experimental top

The compound (R,R,R,R)-(4) was crystallized from chloroform solution as clusters of blocks. These crystals were crushed in 100% glycerol and a single-crystal was mounted on a nylon loop under a nitrogen stream at 100 K. Data were measured on a Rigaku R-AXIS-IV using synchrotron radiation. A total of 42 images were collected for each 4° oscillation angle and these were integrated to 35905 reflections by MOSFLM (Leslie, 1999). They were successively processed yielding 17501 reflections with Rsym = 0.054 and Rmerg = 0.076, using SCALA (Evans, 1997) of the CCP4 Suite (Collaborative Computational Project, Number 4, 1994). In the refinement the R value increased in the high-resolution shell greater than 0.82 Å. Therefore, reflections from this shell were omitted from the refinement. The absolute configuration agreed with the L– and D-configurations of the materials (amino acids), and the Flack x parameter was 0.38 (15). In the final refinement, a peak with 1.31 e A-3 was observed at a distance of 0.92 Å from atom S45.

Computing details top

Data collection: PROCESS (Higashi, 1996); cell refinement: MOSFLM (Leslie, 1999); data reduction: MOSFLM; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The structure of (R,R,R,R)-(4). Dashed lines indicate intramolecular hydrogen bonds. [Please check that this is the correct figure]
Diastereomer 8 of desoxazolin-ascidiacyclamide derivatives cyclo(–Ile-D-allo-MsThr-D-Val-Thz-Ile-D-allo-MsThr-D-Val-Thz-) Ms=methoxysufonyl top
Crystal data top
C38H60N8O12S4Dx = 1.325 Mg m3
Mr = 949.18Synchrotron radiation, λ = 0.83600 Å
Orthorhombic, P212121Cell parameters from 6840 reflections
a = 10.7820 (3) Åθ = 1.2–31.0°
b = 19.6026 (4) ŵ = 0.27 mm1
c = 22.5181 (7) ÅT = 100 K
V = 4759.3 (2) Å3Block, colorless
Z = 40.08 × 0.08 × 0.08 mm
F(000) = 2016
Data collection top
Rigaku R-AXIS-IV
diffractometer
4759 reflections with I > 2σ(I)
Radiation source: double monochromated beamRint = 0.055
Diamond monochromatorθmax = 30.6°, θmin = 1.6°
Detector resolution: 10 pixels mm-1h = 1313
oscillation scansk = 2323
16269 measured reflectionsl = 027
4973 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1152P)2 + 7.3374P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.201(Δ/σ)max = 0.042
S = 1.05Δρmax = 1.31 e Å3
4973 reflectionsΔρmin = 0.67 e Å3
560 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0085 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.38 (15)
Crystal data top
C38H60N8O12S4V = 4759.3 (2) Å3
Mr = 949.18Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.83600 Å
a = 10.7820 (3) ŵ = 0.27 mm1
b = 19.6026 (4) ÅT = 100 K
c = 22.5181 (7) Å0.08 × 0.08 × 0.08 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
4759 reflections with I > 2σ(I)
16269 measured reflectionsRint = 0.055
4973 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.201Δρmax = 1.31 e Å3
S = 1.05Δρmin = 0.67 e Å3
4973 reflectionsAbsolute structure: Flack (1983)
560 parametersAbsolute structure parameter: 0.38 (15)
0 restraints
Special details top

Geometry. Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

10.1950 x - 4.8495 y + 4.7622 z = 1.8307

* 0.0000 C25 * -0.0006 N26 * 0.0010 C27 * -0.0008 C28 * 0.0004 S29

Rms deviation of fitted atoms = 0.0007

10.5402 x - 4.0126 y - 1.1132 z = 0.7556

Angle to previous plane = 15.30

* 0.0034 C56 * -0.0063 N57 * 0.0065 C58 * -0.0039 C59 * 0.0003 S60

Rms deviation of fitted atoms = 0.0047

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4046 (4)0.6583 (2)0.75546 (19)0.0272 (9)
H10.38900.61610.74820.041*
C20.4189 (5)0.7065 (3)0.7065 (2)0.0274 (10)
H20.49170.73500.71470.041*
C30.4404 (5)0.6693 (3)0.6476 (2)0.0332 (12)
H30.37840.63310.64300.050*
C40.4295 (7)0.7200 (4)0.5953 (3)0.0490 (16)
H4A0.44370.69630.55860.049*
H4B0.49020.75550.59990.049*
H4C0.34800.73960.59500.049*
C50.5714 (7)0.6377 (4)0.6483 (3)0.0521 (17)
H5A0.63230.67350.64270.063*
H5B0.58610.61710.68680.063*
C60.5885 (8)0.5841 (5)0.6005 (4)0.069 (2)
H6A0.67000.56470.60370.069*
H6B0.57900.60480.56210.069*
H6C0.52750.54890.60540.069*
C70.3045 (5)0.7528 (3)0.7051 (2)0.0296 (11)
O80.1980 (3)0.73054 (19)0.69896 (19)0.0335 (9)
N90.3288 (4)0.8200 (2)0.7116 (2)0.0299 (10)
H90.40430.83390.71310.045*
C100.2276 (5)0.8691 (3)0.7162 (3)0.0323 (12)
H100.16270.85420.68870.048*
C110.2698 (6)0.9408 (3)0.6956 (3)0.0417 (14)
H110.19640.96950.68990.063*
C120.3572 (6)0.9761 (3)0.7384 (4)0.0476 (16)
H12A0.31660.98190.77610.048*
H12B0.37981.01990.72280.048*
H12C0.43030.94880.74360.048*
O130.3327 (4)0.9332 (3)0.6389 (2)0.0491 (11)
S140.2687 (2)0.96181 (14)0.57976 (10)0.0720 (6)
O150.3601 (6)0.9473 (4)0.5354 (3)0.0767 (17)
O160.1545 (6)0.9161 (4)0.5695 (4)0.094 (2)
C170.1761 (10)0.8445 (5)0.5531 (5)0.082 (3)
H17A0.09790.82200.54720.074*
H17B0.22090.82200.58440.074*
H17C0.22350.84260.51710.074*
C180.1689 (5)0.8733 (3)0.7774 (3)0.0332 (12)
O190.0790 (4)0.9108 (2)0.7849 (2)0.0422 (10)
N200.2190 (4)0.8355 (2)0.8215 (2)0.0332 (10)
H200.29010.81650.81610.050*
C210.1551 (7)0.8262 (3)0.8777 (3)0.0425 (14)
H210.07560.85000.87390.064*
C220.2198 (11)0.8578 (5)0.9309 (4)0.078 (3)
H220.16450.85070.96490.070*
C230.3310 (10)0.8259 (6)0.9453 (5)0.087 (3)
H22A0.36690.84770.97940.070*
H22B0.38720.82930.91240.070*
H22C0.31580.77870.95400.070*
C240.2285 (14)0.9331 (6)0.9224 (6)0.112 (5)
H24A0.22330.94470.88140.101*
H24B0.30320.94950.93940.101*
H24C0.15840.95500.94300.101*
C250.1239 (5)0.7508 (3)0.8838 (2)0.0305 (11)
N260.1254 (4)0.7094 (2)0.8382 (2)0.0307 (10)
C270.0868 (5)0.6447 (3)0.8554 (2)0.0307 (11)
C280.0561 (6)0.6383 (3)0.9142 (3)0.0416 (14)
H280.02850.59830.93210.062*
S290.07597 (18)0.71455 (9)0.94953 (7)0.0473 (4)
C300.0796 (5)0.5885 (3)0.8123 (2)0.0286 (11)
O310.0529 (4)0.5298 (2)0.82810 (18)0.0364 (9)
N320.0989 (4)0.6059 (2)0.75495 (19)0.0281 (9)
H320.11770.64720.74580.042*
C330.0878 (5)0.5541 (3)0.7088 (2)0.0296 (11)
H330.01390.52660.71720.044*
C340.0725 (6)0.5864 (3)0.6469 (2)0.0352 (12)
H340.14310.61670.63960.053*
C350.0728 (11)0.5304 (4)0.5999 (3)0.073 (3)
H35A0.15930.52000.59020.073*
H35B0.03380.54720.56440.073*
H35C0.03340.49110.61400.073*
C360.0474 (7)0.6288 (4)0.6444 (3)0.0480 (16)
H36A0.11780.59800.64480.058*
H36B0.05230.65670.67990.058*
C370.0579 (10)0.6750 (4)0.5903 (4)0.071 (2)
H37A0.13410.70030.59230.071*
H37B0.05710.64770.55490.071*
H37C0.01080.70610.58960.071*
C380.2012 (5)0.5074 (3)0.7116 (2)0.0288 (11)
O390.3079 (4)0.52856 (19)0.70402 (18)0.0319 (8)
N400.1754 (4)0.4411 (2)0.7236 (2)0.0272 (9)
H400.09940.42830.72720.041*
C410.2738 (5)0.3915 (3)0.7307 (2)0.0267 (10)
H410.34060.40520.70370.040*
C420.2343 (6)0.3193 (3)0.7120 (2)0.0335 (12)
H420.30800.29030.70890.050*
C430.1419 (6)0.2860 (3)0.7536 (3)0.0416 (14)
H43A0.12180.24120.73910.042*
H43B0.06790.31310.75530.042*
H43C0.17740.28240.79250.042*
O440.1755 (4)0.3242 (2)0.65409 (19)0.0411 (10)
S450.2563 (2)0.29921 (13)0.59711 (8)0.0643 (6)
O460.1698 (6)0.3149 (3)0.5498 (3)0.0733 (18)
O470.3745 (6)0.3455 (3)0.5962 (2)0.0642 (14)
C480.3564 (9)0.4146 (4)0.5765 (4)0.065 (2)
H48A0.43440.43820.57680.058*
H48B0.29950.43730.60270.058*
H48C0.32330.41440.53700.058*
C490.3297 (4)0.3897 (3)0.7932 (2)0.0252 (10)
O500.4182 (3)0.3519 (2)0.80324 (17)0.0323 (8)
N510.2783 (4)0.4309 (2)0.83433 (18)0.0254 (9)
H510.20650.44840.82770.038*
C520.3422 (5)0.4465 (3)0.8900 (2)0.0282 (11)
H520.42340.42420.88830.042*
C530.2747 (6)0.4183 (3)0.9449 (3)0.0351 (12)
H530.31840.43580.97990.053*
C540.1412 (6)0.4424 (4)0.9494 (3)0.0494 (16)
H54A0.13880.49130.94750.049*
H54B0.10650.42750.98650.049*
H54C0.09400.42370.91720.049*
C550.2831 (8)0.3411 (3)0.9472 (3)0.0538 (18)
H55A0.24090.32470.98190.054*
H55B0.36870.32760.94880.054*
H55C0.24520.32210.91230.054*
C560.3652 (5)0.5227 (3)0.8918 (2)0.0279 (11)
N570.3736 (4)0.5605 (2)0.84380 (18)0.0270 (9)
C580.4018 (5)0.6272 (3)0.8587 (2)0.0272 (10)
C590.4119 (6)0.6400 (3)0.9182 (3)0.0378 (13)
H590.42910.68250.93480.057*
S600.38869 (17)0.56700 (7)0.95752 (6)0.0400 (4)
C610.4156 (5)0.6798 (3)0.8121 (2)0.0274 (10)
O620.4385 (4)0.7401 (2)0.82502 (17)0.0330 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.023 (2)0.029 (2)0.029 (2)0.0002 (18)0.0034 (17)0.0018 (17)
C20.021 (2)0.029 (2)0.033 (3)0.001 (2)0.003 (2)0.003 (2)
C30.032 (3)0.038 (3)0.030 (3)0.007 (2)0.002 (2)0.005 (2)
C40.062 (4)0.053 (4)0.033 (3)0.005 (4)0.005 (3)0.004 (3)
C50.048 (4)0.061 (4)0.046 (4)0.011 (3)0.002 (3)0.011 (3)
C60.055 (4)0.083 (6)0.069 (5)0.016 (4)0.005 (4)0.024 (5)
C70.026 (3)0.032 (3)0.031 (3)0.002 (2)0.001 (2)0.007 (2)
O80.0231 (18)0.0295 (19)0.048 (2)0.0036 (15)0.0042 (17)0.0061 (17)
N90.021 (2)0.028 (2)0.040 (2)0.0026 (18)0.0004 (19)0.0044 (19)
C100.020 (2)0.035 (3)0.041 (3)0.004 (2)0.002 (2)0.008 (2)
C110.039 (3)0.027 (3)0.059 (4)0.002 (3)0.002 (3)0.013 (3)
C120.036 (3)0.038 (3)0.069 (4)0.008 (3)0.003 (3)0.003 (3)
O130.036 (2)0.054 (3)0.057 (3)0.001 (2)0.000 (2)0.021 (2)
S140.0617 (12)0.0923 (16)0.0619 (12)0.0161 (12)0.0103 (10)0.0114 (11)
O150.070 (4)0.095 (5)0.065 (4)0.002 (4)0.000 (3)0.014 (3)
O160.062 (4)0.109 (6)0.111 (6)0.006 (4)0.023 (4)0.015 (5)
C170.070 (6)0.087 (7)0.091 (7)0.011 (5)0.019 (5)0.003 (6)
C180.021 (2)0.030 (3)0.048 (3)0.002 (2)0.005 (2)0.001 (2)
O190.0254 (19)0.036 (2)0.065 (3)0.0026 (17)0.001 (2)0.002 (2)
N200.025 (2)0.035 (2)0.039 (2)0.002 (2)0.003 (2)0.003 (2)
C210.046 (3)0.046 (3)0.036 (3)0.000 (3)0.001 (3)0.003 (3)
C220.108 (8)0.081 (6)0.045 (4)0.039 (6)0.002 (5)0.022 (4)
C230.080 (6)0.109 (8)0.073 (6)0.001 (6)0.006 (5)0.029 (6)
C240.143 (11)0.072 (6)0.123 (10)0.012 (8)0.036 (9)0.037 (7)
C250.027 (3)0.034 (3)0.030 (3)0.006 (2)0.004 (2)0.007 (2)
N260.026 (2)0.035 (2)0.031 (2)0.007 (2)0.0001 (19)0.0008 (19)
C270.026 (2)0.032 (3)0.034 (3)0.003 (2)0.004 (2)0.001 (2)
C280.047 (3)0.044 (3)0.034 (3)0.006 (3)0.011 (3)0.005 (3)
S290.0652 (10)0.0462 (8)0.0304 (7)0.0086 (8)0.0076 (7)0.0042 (6)
C300.020 (2)0.036 (3)0.030 (2)0.006 (2)0.001 (2)0.000 (2)
O310.036 (2)0.039 (2)0.034 (2)0.0009 (18)0.0069 (17)0.0054 (17)
N320.023 (2)0.030 (2)0.031 (2)0.0030 (18)0.0016 (18)0.0034 (18)
C330.033 (3)0.027 (2)0.028 (2)0.005 (2)0.001 (2)0.001 (2)
C340.041 (3)0.033 (3)0.032 (3)0.002 (3)0.003 (2)0.000 (2)
C350.128 (8)0.057 (4)0.034 (3)0.037 (5)0.012 (4)0.007 (3)
C360.055 (4)0.046 (3)0.042 (3)0.011 (3)0.016 (3)0.004 (3)
C370.085 (6)0.061 (5)0.067 (5)0.030 (5)0.016 (5)0.010 (4)
C380.034 (3)0.028 (2)0.024 (2)0.000 (2)0.003 (2)0.003 (2)
O390.0294 (19)0.0281 (18)0.038 (2)0.0047 (16)0.0033 (16)0.0009 (16)
N400.0215 (19)0.027 (2)0.033 (2)0.0002 (18)0.0012 (18)0.0026 (18)
C410.022 (2)0.027 (2)0.031 (2)0.004 (2)0.001 (2)0.002 (2)
C420.034 (3)0.030 (3)0.036 (3)0.002 (2)0.007 (2)0.004 (2)
C430.042 (3)0.031 (3)0.052 (3)0.008 (3)0.009 (3)0.014 (3)
O440.039 (2)0.045 (2)0.039 (2)0.0089 (19)0.0116 (19)0.0099 (19)
S450.0608 (12)0.0955 (15)0.0365 (8)0.0210 (12)0.0043 (8)0.0025 (9)
O460.089 (4)0.079 (4)0.052 (3)0.033 (4)0.021 (3)0.009 (3)
O470.066 (3)0.069 (3)0.058 (3)0.002 (3)0.002 (3)0.003 (3)
C480.070 (5)0.060 (5)0.065 (5)0.009 (4)0.006 (4)0.010 (4)
C490.018 (2)0.028 (2)0.030 (2)0.001 (2)0.001 (2)0.001 (2)
O500.0228 (18)0.0370 (19)0.037 (2)0.0070 (17)0.0026 (16)0.0024 (17)
N510.0199 (18)0.029 (2)0.027 (2)0.0049 (18)0.0015 (17)0.0004 (17)
C520.027 (2)0.029 (2)0.028 (2)0.005 (2)0.002 (2)0.002 (2)
C530.037 (3)0.039 (3)0.030 (3)0.002 (3)0.000 (2)0.006 (2)
C540.039 (3)0.064 (4)0.046 (3)0.003 (3)0.017 (3)0.014 (3)
C550.079 (5)0.034 (3)0.049 (4)0.001 (3)0.017 (4)0.014 (3)
C560.024 (2)0.031 (3)0.029 (2)0.008 (2)0.001 (2)0.000 (2)
N570.023 (2)0.033 (2)0.025 (2)0.0015 (18)0.0012 (17)0.0003 (17)
C580.024 (2)0.026 (2)0.032 (3)0.005 (2)0.004 (2)0.001 (2)
C590.040 (3)0.037 (3)0.037 (3)0.003 (3)0.006 (3)0.002 (2)
S600.0593 (9)0.0365 (7)0.0242 (6)0.0003 (7)0.0033 (6)0.0001 (5)
C610.016 (2)0.034 (3)0.032 (3)0.002 (2)0.002 (2)0.003 (2)
O620.0307 (19)0.0334 (19)0.035 (2)0.0009 (17)0.0036 (16)0.0048 (16)
Geometric parameters (Å, º) top
N1—C611.348 (7)C30—N321.351 (7)
N1—C21.460 (6)N32—C331.457 (6)
C2—C71.532 (7)C33—C381.530 (7)
C2—C31.532 (7)C33—C341.540 (7)
C3—C51.543 (9)C34—C351.524 (9)
C3—C41.544 (8)C34—C361.538 (9)
C5—C61.514 (10)C36—C371.522 (10)
C7—O81.236 (7)C38—O391.235 (7)
C7—N91.351 (7)C38—N401.356 (7)
N9—C101.459 (7)N40—C411.448 (6)
C10—C181.519 (8)C41—C491.533 (7)
C10—C111.547 (7)C41—C421.537 (7)
C11—O131.453 (8)C42—O441.454 (7)
C11—C121.516 (9)C42—C431.514 (9)
O13—S141.602 (5)O44—S451.627 (5)
S14—O151.431 (7)S45—O461.449 (6)
S14—O161.540 (8)S45—O471.565 (6)
O16—C171.470 (13)O47—C481.438 (10)
C18—O191.229 (7)C49—O501.229 (6)
C18—N201.351 (8)C49—N511.348 (7)
N20—C211.454 (8)N51—C521.462 (7)
C21—C221.519 (10)C52—C561.515 (7)
C21—C251.521 (9)C52—C531.537 (7)
C22—C231.391 (15)C53—C551.518 (8)
C22—C241.492 (15)C53—C541.518 (9)
C25—N261.310 (7)C56—N571.315 (7)
C25—S291.722 (6)C56—S601.734 (5)
N26—C271.390 (7)N57—C581.383 (7)
C27—C281.371 (8)C58—C591.369 (8)
C27—C301.469 (8)C58—C611.479 (7)
C28—S291.708 (7)C59—S601.701 (6)
C30—O311.240 (7)C61—O621.241 (7)
C61—N1—C2120.1 (4)C30—N32—C33119.5 (4)
N1—C2—C7108.2 (4)N32—C33—C38108.8 (4)
N1—C2—C3111.2 (4)N32—C33—C34111.6 (4)
C7—C2—C3112.7 (4)C38—C33—C34111.6 (4)
C2—C3—C5108.7 (5)C35—C34—C36111.4 (6)
C2—C3—C4110.1 (5)C35—C34—C33109.4 (5)
C5—C3—C4109.6 (5)C36—C34—C33110.2 (5)
C6—C5—C3112.5 (6)C37—C36—C34114.4 (7)
O8—C7—N9122.4 (5)O39—C38—N40122.8 (5)
O8—C7—C2122.8 (5)O39—C38—C33122.5 (5)
N9—C7—C2114.8 (5)N40—C38—C33114.7 (5)
C7—N9—C10120.4 (5)C38—N40—C41121.0 (4)
N9—C10—C18114.2 (4)N40—C41—C49113.8 (4)
N9—C10—C11111.0 (5)N40—C41—C42112.7 (4)
C18—C10—C11110.3 (5)C49—C41—C42109.8 (4)
O13—C11—C12108.4 (5)O44—C42—C43107.3 (5)
O13—C11—C10107.9 (5)O44—C42—C41107.7 (4)
C12—C11—C10114.0 (5)C43—C42—C41114.3 (5)
C11—O13—S14119.5 (4)C42—O44—S45117.0 (4)
O15—S14—O16109.3 (5)O46—S45—O47113.1 (3)
O15—S14—O13102.3 (3)O46—S45—O4499.8 (3)
O16—S14—O13105.4 (4)O47—S45—O44105.7 (3)
C17—O16—S14117.8 (6)C48—O47—S45116.1 (6)
O19—C18—N20122.9 (6)O50—C49—N51123.7 (5)
O19—C18—C10119.0 (5)O50—C49—C41119.2 (5)
N20—C18—C10118.1 (5)N51—C49—C41117.1 (4)
C18—N20—C21121.3 (5)C49—N51—C52121.3 (4)
N20—C21—C22114.8 (6)N51—C52—C56107.8 (4)
N20—C21—C25107.7 (5)N51—C52—C53113.0 (4)
C22—C21—C25115.3 (6)C56—C52—C53114.2 (4)
C23—C22—C24114.8 (11)C55—C53—C54111.4 (6)
C23—C22—C21113.3 (8)C55—C53—C52110.9 (5)
C24—C22—C21109.3 (9)C54—C53—C52113.0 (5)
N26—C25—C21122.0 (5)N57—C56—C52123.0 (5)
N26—C25—S29114.9 (4)N57—C56—S60114.1 (4)
C21—C25—S29123.0 (4)C52—C56—S60122.8 (4)
C25—N26—C27110.2 (5)C56—N57—C58110.5 (4)
C28—C27—N26115.1 (5)C59—C58—N57115.4 (5)
C28—C27—C30123.8 (5)C59—C58—C61123.9 (5)
N26—C27—C30121.1 (5)N57—C58—C61120.7 (5)
C27—C28—S29109.9 (5)C58—C59—S60110.1 (4)
C28—S29—C2589.9 (3)C59—S60—C5690.0 (3)
O31—C30—N32123.0 (5)O62—C61—N1122.5 (5)
O31—C30—C27121.2 (5)O62—C61—C58121.2 (5)
N32—C30—C27115.7 (5)N1—C61—C58116.3 (5)
C61—N1—C2—C3163.9 (4)C27—C30—N32—C33177.3 (4)
C61—N1—C2—C771.7 (6)O31—C30—N32—C330.4 (7)
C2—N1—C61—C58179.0 (4)C30—N32—C33—C34162.1 (4)
C2—N1—C61—O620.9 (7)C30—N32—C33—C3874.1 (6)
N1—C2—C3—C4168.8 (4)N32—C33—C34—C35174.0 (5)
N1—C2—C3—C570.3 (6)N32—C33—C34—C3662.0 (6)
C7—C2—C3—C446.8 (6)C38—C33—C34—C3551.8 (6)
C7—C2—C3—C5167.7 (5)C38—C33—C34—C36175.8 (5)
N1—C2—C7—O859.1 (6)N32—C33—C38—O3961.2 (6)
N1—C2—C7—N9120.6 (5)N32—C33—C38—N40118.2 (5)
C3—C2—C7—O864.6 (7)C34—C33—C38—O3962.4 (7)
C3—C2—C7—N9115.8 (5)C34—C33—C38—N40118.2 (5)
C2—C3—C5—C6164.9 (6)C33—C34—C36—C37168.0 (6)
C4—C3—C5—C675.7 (7)C35—C34—C36—C3769.4 (8)
C2—C7—N9—C10174.9 (4)C33—C38—N40—C41176.6 (4)
O8—C7—N9—C104.8 (8)O39—C38—N40—C412.7 (8)
C7—N9—C10—C11155.1 (5)C38—N40—C41—C42150.5 (5)
C7—N9—C10—C1879.6 (6)C38—N40—C41—C4983.9 (6)
N9—C10—C11—C1271.8 (6)N40—C41—C42—C4369.9 (6)
N9—C10—C11—O1348.4 (6)N40—C41—C42—O4449.0 (6)
C18—C10—C11—C1255.4 (7)C49—C41—C42—C4357.8 (6)
C18—C10—C11—O13175.6 (4)C49—C41—C42—O44176.7 (4)
N9—C10—C18—O19176.3 (5)N40—C41—C49—O50176.0 (4)
N9—C10—C18—N204.2 (7)N40—C41—C49—N512.8 (6)
C11—C10—C18—O1957.9 (7)C42—C41—C49—O5057.0 (6)
C11—C10—C18—N20121.6 (5)C42—C41—C49—N51124.2 (5)
C10—C11—O13—S14110.1 (5)C41—C42—O44—S45103.7 (4)
C12—C11—O13—S14126.2 (5)C43—C42—O44—S45132.9 (4)
C11—O13—S14—O15177.9 (5)C42—O44—S45—O46177.8 (4)
C11—O13—S14—O1667.7 (5)C42—O44—S45—O4760.2 (4)
O13—S14—O16—C1767.8 (7)O44—S45—O47—C4874.3 (6)
O15—S14—O16—C1741.7 (8)O46—S45—O47—C4834.2 (6)
C10—C18—N20—C21167.8 (5)C41—C49—N51—C52164.2 (4)
O19—C18—N20—C2112.8 (8)O50—C49—N51—C5214.6 (8)
C18—N20—C21—C22113.3 (6)C49—N51—C52—C53114.2 (5)
C18—N20—C21—C25115.2 (6)C49—N51—C52—C56118.7 (5)
N20—C21—C22—C2368.8 (7)N51—C52—C53—C5456.1 (6)
N20—C21—C22—C2461.4 (7)N51—C52—C53—C5570.7 (6)
C25—C21—C22—C2358.4 (7)C56—C52—C53—C5467.5 (6)
C25—C21—C22—C24171.5 (6)C56—C52—C53—C55165.7 (5)
N20—C21—C25—N2617.0 (7)N51—C52—C56—N5725.2 (7)
N20—C21—C25—S29166.8 (4)N51—C52—C56—S60157.5 (4)
C22—C21—C25—N26147.3 (5)C53—C52—C56—N57151.6 (5)
C22—C21—C25—S2936.5 (7)C53—C52—C56—S6031.1 (6)
C21—C25—N26—C27176.8 (5)C52—C56—N57—C58176.1 (5)
S29—C25—N26—C270.3 (6)S60—C56—N57—C581.4 (6)
C21—C25—S29—C28176.3 (5)C52—C56—S60—C59176.9 (5)
N26—C25—S29—C280.2 (5)N57—C56—S60—C590.6 (4)
C25—N26—C27—C280.8 (7)C56—N57—C58—C591.7 (6)
C25—N26—C27—C30179.8 (5)C56—N57—C58—C61179.7 (5)
N26—C27—C28—S290.9 (7)N57—C58—C59—S601.3 (6)
C30—C27—C28—S29179.8 (4)C61—C58—C59—S60179.2 (4)
N26—C27—C30—O31175.4 (5)N57—C58—C61—N13.5 (7)
N26—C27—C30—N326.9 (7)N57—C58—C61—O62178.4 (5)
C28—C27—C30—O315.8 (8)C59—C58—C61—N1178.8 (5)
C28—C27—C30—N32171.9 (5)C59—C58—C61—O620.6 (8)
C27—C28—S29—C250.6 (5)C58—C59—S60—C560.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O390.862.172.983 (6)158
N9—H9···O50i0.861.982.818 (5)165
N20—H20···O620.862.203.017 (6)158
N32—H32···O80.862.132.950 (6)160
N40—H40···O19ii0.861.972.813 (6)165
N51—H51···O310.862.303.112 (6)158
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC38H60N8O12S4
Mr949.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.7820 (3), 19.6026 (4), 22.5181 (7)
V3)4759.3 (2)
Z4
Radiation typeSynchrotron, λ = 0.83600 Å
µ (mm1)0.27
Crystal size (mm)0.08 × 0.08 × 0.08
Data collection
DiffractometerRigaku R-AXIS-IV
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16269, 4973, 4759
Rint0.055
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.201, 1.05
No. of reflections4973
No. of parameters560
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.67
Absolute structureFlack (1983)
Absolute structure parameter0.38 (15)

Computer programs: PROCESS (Higashi, 1996), MOSFLM (Leslie, 1999), MOSFLM, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PLATON.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds