Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C8H16N2O4, is the product of a Mitsunobu coupling using the diiso­propyl­azodi­carboxyl­ate. It forms hydrogen-bonded chains similar to those in its previously reported diethyl analogue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012648/wn6039sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012648/wn6039Isup2.hkl
Contains datablock I

CCDC reference: 170934

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.069
  • wR factor = 0.143
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), was obtained as a byproduct of a Mitsunobu coupling reaction using triphenylphosphine and diisopropylazodicarboxylate as reagents. The N1—N2 bond is 1.380 (3) %A, and the two CO bond distances are 1.216 (3) and 1.217 (4) Å. These values are in agreement with the parameters of 1.381 and 1.202/1.206 Å, respectively, reported for the 1:1 adduct of (I) with triphenylphosphine oxide (Héroux & Brisse, 1997). The torsion angle around the central N—N bond is 73.2° in the latter structure, compared with 100.4° in the title compound.

Each molecule of (I) is connected to two adjacent molecules by four N—H···O hydrogen bonds (Fig. 2 and Table 1). The hydrogen-bond linkage between two neighbouring molecules A and B involves one H-atom donor site and one acceptor site in each of them, N—H(A)···O(B) and N—H(B)···O(A). The hydrogen-bonded chains propagate parallel to [100], with N···O distances of 2.853 (3) and 2.829 (3) Å and N—H···O bond angles of 157 and 174°. A similar hydrogen-bonded one-dimensional network occurs in the diethyl analogue of (I) (Linke & Kalker, 1977).

In contrast, in the 1:1 adduct of diisopropyl hydrazocarboxylate, (I), with triphenylphosphine oxide, (II), the carbonyl O atoms do not participate in hydrogen bonding. Instead, each phosphoryl O atom of (II) is a bifurcated acceptor to the NH groups of two molecules of (I). The result is a cyclic arrangement of four molecules, two (I) + two (II) (Héroux & Brisse, 1997).

Experimental top

Crystals of (I) were isolated as colourless needles from CHCl3.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Projections of the crystal structure viewed along c (top) and along b showing hydrogen-bonded chains parallel to [100] (bottom).
(I) top
Crystal data top
C8H16N2O4F(000) = 440
Mr = 204.23Dx = 1.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0299 (16) ÅCell parameters from 4438 reflections
b = 12.765 (3) Åθ = 3.0–25.0°
c = 10.587 (2) ŵ = 0.10 mm1
β = 92.11 (3)°T = 120 K
V = 1084.4 (4) Å3Needle, colourless
Z = 40.12 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1890 independent reflections
Radiation source: Nonius FR591 rotating anode1289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scans to fill Ewald sphereθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1997)
h = 99
Tmin = 0.988, Tmax = 0.995k = 1515
4768 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0001P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1890 reflectionsΔρmax = 0.51 e Å3
128 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Crystal data top
C8H16N2O4V = 1084.4 (4) Å3
Mr = 204.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0299 (16) ŵ = 0.10 mm1
b = 12.765 (3) ÅT = 120 K
c = 10.587 (2) Å0.12 × 0.05 × 0.05 mm
β = 92.11 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1890 independent reflections
Absorption correction: multi-scan
(Blessing, 1997)
1289 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.995Rint = 0.099
4768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
1890 reflectionsΔρmin = 0.32 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2492 (2)0.23490 (16)0.0148 (2)0.0231 (5)
O20.0593 (2)0.14300 (17)0.0931 (2)0.0251 (6)
O30.4424 (2)0.04803 (17)0.1561 (2)0.0250 (6)
O40.2496 (2)0.17839 (16)0.13712 (19)0.0205 (5)
N10.2581 (3)0.0624 (2)0.0204 (3)0.0232 (6)
H10.33530.07030.07640.028*
N20.2159 (3)0.03625 (19)0.0211 (2)0.0234 (7)
H20.12590.06770.01020.028*
C10.2215 (5)0.4111 (3)0.0826 (4)0.0372 (9)
H1A0.19740.38520.16850.056*
H1B0.16530.47840.07120.056*
H1C0.34200.42030.06940.056*
C20.1907 (4)0.3649 (3)0.1472 (3)0.0323 (8)
H2A0.14920.31020.20300.048*
H2B0.31070.37430.16390.048*
H2C0.13270.43080.16310.048*
C30.1595 (4)0.3330 (2)0.0118 (3)0.0248 (8)
H30.03730.32170.00420.030*
C40.1791 (3)0.1470 (2)0.0263 (3)0.0193 (7)
C50.3136 (4)0.0842 (2)0.1101 (3)0.0194 (7)
C60.3539 (4)0.2462 (2)0.2196 (3)0.0213 (7)
H60.47290.24060.19570.026*
C70.3381 (4)0.2133 (3)0.3553 (3)0.0284 (8)
H7A0.37830.14130.36600.043*
H7B0.22090.21710.37780.043*
H7C0.40470.26020.41040.043*
C80.2918 (4)0.3558 (3)0.1948 (3)0.0288 (8)
H8A0.30490.37320.10560.043*
H8B0.35620.40520.24790.043*
H8C0.17380.36020.21480.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (12)0.0132 (12)0.0288 (13)0.0017 (9)0.0061 (9)0.0002 (10)
O20.0225 (11)0.0290 (13)0.0241 (12)0.0036 (10)0.0052 (9)0.0037 (10)
O30.0219 (12)0.0303 (14)0.0231 (12)0.0039 (10)0.0024 (9)0.0009 (10)
O40.0260 (11)0.0150 (11)0.0208 (12)0.0023 (9)0.0018 (9)0.0017 (9)
N10.0287 (14)0.0149 (14)0.0267 (15)0.0017 (11)0.0090 (12)0.0023 (12)
N20.0289 (14)0.0144 (14)0.0266 (15)0.0049 (11)0.0023 (12)0.0063 (12)
C10.051 (2)0.025 (2)0.036 (2)0.0006 (17)0.0004 (17)0.0032 (17)
C20.042 (2)0.0226 (19)0.032 (2)0.0037 (15)0.0008 (16)0.0042 (16)
C30.0262 (16)0.0147 (17)0.0332 (19)0.0047 (13)0.0007 (14)0.0007 (14)
C40.0224 (16)0.0169 (17)0.0184 (16)0.0019 (13)0.0035 (13)0.0010 (13)
C50.0227 (16)0.0183 (17)0.0179 (16)0.0008 (13)0.0088 (13)0.0015 (13)
C60.0239 (15)0.0212 (17)0.0188 (17)0.0037 (13)0.0021 (13)0.0059 (14)
C70.0366 (18)0.031 (2)0.0175 (17)0.0023 (15)0.0041 (14)0.0005 (15)
C80.0398 (19)0.0225 (18)0.0241 (18)0.0025 (15)0.0030 (14)0.0039 (15)
Geometric parameters (Å, º) top
O1—C41.336 (3)C2—C31.503 (5)
O1—C31.476 (4)C2—H2A0.9800
O2—C41.216 (3)C2—H2B0.9800
O3—C51.217 (4)C2—H2C0.9800
O4—C51.342 (4)C3—H31.0000
O4—C61.470 (4)C6—C81.504 (4)
N1—C41.354 (4)C6—C71.506 (4)
N1—N21.380 (3)C6—H61.0000
N1—H10.8800C7—H7A0.9800
N2—C51.351 (4)C7—H7B0.9800
N2—H20.8800C7—H7C0.9800
C1—C31.509 (5)C8—H8A0.9800
C1—H1A0.9800C8—H8B0.9800
C1—H1B0.9800C8—H8C0.9800
C1—H1C0.9800
C4—O1—C3115.9 (2)C1—C3—H3109.2
C5—O4—C6116.1 (2)O2—C4—O1125.2 (3)
C4—N1—N2119.2 (2)O2—C4—N1124.7 (3)
C4—N1—H1120.4O1—C4—N1110.0 (2)
N2—N1—H1120.4O3—C5—O4125.5 (3)
C5—N2—N1119.5 (3)O3—C5—N2124.7 (3)
C5—N2—H2120.2O4—C5—N2109.7 (3)
N1—N2—H2120.2O4—C6—C8105.4 (2)
C3—C1—H1A109.5O4—C6—C7109.6 (2)
C3—C1—H1B109.5C8—C6—C7112.8 (3)
H1A—C1—H1B109.5O4—C6—H6109.6
C3—C1—H1C109.5C8—C6—H6109.6
H1A—C1—H1C109.5C7—C6—H6109.6
H1B—C1—H1C109.5C6—C7—H7A109.5
C3—C2—H2A109.5C6—C7—H7B109.5
C3—C2—H2B109.5H7A—C7—H7B109.5
H2A—C2—H2B109.5C6—C7—H7C109.5
C3—C2—H2C109.5H7A—C7—H7C109.5
H2A—C2—H2C109.5H7B—C7—H7C109.5
H2B—C2—H2C109.5C6—C8—H8A109.5
O1—C3—C2110.2 (3)C6—C8—H8B109.5
O1—C3—C1105.0 (2)H8A—C8—H8B109.5
C2—C3—C1113.9 (3)C6—C8—H8C109.5
O1—C3—H3109.2H8A—C8—H8C109.5
C2—C3—H3109.2H8B—C8—H8C109.5
C4—N1—N2—C5100.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.022.853 (3)157
N2—H2···O2ii0.881.952.829 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC8H16N2O4
Mr204.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.0299 (16), 12.765 (3), 10.587 (2)
β (°) 92.11 (3)
V3)1084.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.988, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4768, 1890, 1289
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.143, 1.06
No. of reflections1890
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.32

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.022.853 (3)157.0
N2—H2···O2ii0.881.952.829 (3)174.1
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds