Download citation
Download citation
link to html
The title complex, C6H9NO6·C12H8N2·H2O, is composed of nitrilo­tri­acetic acid (NTA), 1,10-phenanthroline and water in the molar ratio of 1:1:1. The crystal structure, determined at 180 K, contains an extensive network of hydrogen bonds and both intra- and intermolecular H-atom transfers are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012612/wn6038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012612/wn6038Isup2.hkl
Contains datablock I

CCDC reference: 170941

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.102
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

With a view towards the prediction of solid-state organic crystal structures, we are currently studying the supramolecular structures of cocrystals containing organic acids and organic bases. Nitrilotriacetic acid (NTA), which posesses three carboxylic acid groups, is commonly found as a multidentate ligand in many metal–chelate compounds (Kaneyoshi et al., 1999; Martell, 1975). Organic cocrystals involving NTA, however, have not been reported previously. We describe here the structure of a cocrystal of NTA, incorporating the organic base 1,10-phenanthroline, determined at 180 K.

The asymmetric unit and atomic numbering scheme for (I) are shown in Fig. 1. An intramolecular hydrogen bond is observed in the acid molecule, although the interaction is somewhat distorted from linearity (N1···O1 2.631 (1) Å and N1–H1···O1 115.6°). The location of H1 in a difference Fourier map suggests that intramolecular H-atom transfer occurs from the carboxylic acid group to the N atom [O1–C2 1.235 (2) Å and O2–C2 1.266 (2) Å]. Intermolecular H-atom transfer is also observed from the O5—C6—O6 carboxylic acid group to N2 in the phenanthroline base [O5–C6 1.248 (2) Å and O6–C6 1.253 (2) Å]. The O3—C4—O4 group is the only carboxylic acid group which remains protonated (Fig. 1).

Crinkled supramolecular tapes are formed along the c direction from acid molecules linked via O4i—H100···O2 hydrogen bonds [symmetry code: (i) -x + 1.5, -y + 0.5, z + 0.5]. Adjacent tapes are bound via hydrogen bonds through water molecules (Table 1) such that supramolecular sheets are formed parallel to the (100) plane (Fig. 2). The 1,10-phenanthroline molecule, furthermore, is bonded to O6 via an N2ii—H2···O6 hydrogen bond [Table 1; symmetry code: (ii) 1 - x, y, 0.5 - z]. The 1,10-phenanthroline molecules adopt a face-to-face stacking arrangement along the c direction.

Experimental top

Nitrilotriacetic acid and 1,10-phenanthroline were obtained from Aldrich. The title complex was prepared by slow evaporatioin of an acid–base (1:1) solution in N,N-dimethylformamide (DMF) at room temperature.

Refinement top

All H atoms not bonded to carbon were located from difference Fourier maps and were refined with isotropic displacement parameters. H100 was refined without restraint. H1 and H2 were refined with the N—H distances restrained to be equivalent with an s.u. of 0.01 Å. H101 and H102, associated with the water molecule, were refined with the O—H distances restrained to be equivalent with an s.u. of 0.01 Å, and the H101···H102 distance was restrained to be 1.633 times the value of the O—H distance, with an s.u. of 0.02 Å; these restraints ensure a reasonable geometry for the water molecule. All H atoms bonded to C atoms were placed geometrically and refined using a riding model with the Uiso values for each H atom taken as 1.2 Ueq of the carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular unit of (I) showing displacement ellipsoids at the 50% probability level (XP; Sheldrick, 1993).
[Figure 2] Fig. 2. Projection onto (100) showing the NTA–water supramolecular sheet (CAMERON; Watkin et al., 1996).
[Figure 3] Fig. 3. Projection on to (010) showing the organic acid–base interactions and face-to-face stacking of 1,10-phenanthroline molecules (CAMERON; Watkin et al., 1996).
Nitrilotriacetic acid–1,10-phenanthroline–water (1/1/1) top
Crystal data top
C6H8NO6·C12H9N2·H2ODx = 1.441 Mg m3
Mr = 389.36Melting point: not measured K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 22.7045 (6) ÅCell parameters from 22808 reflections
b = 11.1044 (3) Åθ = 1.0–27.5°
c = 14.2366 (2) ŵ = 0.11 mm1
V = 3589.33 (14) Å3T = 180 K
Z = 8Block, colourless
F(000) = 16320.46 × 0.46 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
4114 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
thin–slice ω and ϕ scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2129
Tmin = 0.932, Tmax = 0.967k = 1114
22344 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.3895P]
where P = (Fo2 + 2Fc2)/3
4114 reflections(Δ/σ)max = 0.013
275 parametersΔρmax = 0.39 e Å3
5 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H8NO6·C12H9N2·H2OV = 3589.33 (14) Å3
Mr = 389.36Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 22.7045 (6) ŵ = 0.11 mm1
b = 11.1044 (3) ÅT = 180 K
c = 14.2366 (2) Å0.46 × 0.46 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
4114 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3414 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.967Rint = 0.038
22344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
4114 reflectionsΔρmin = 0.26 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68405 (4)0.35751 (10)0.17166 (7)0.0340 (2)
O20.76622 (4)0.32979 (9)0.08694 (6)0.0283 (2)
O30.71315 (4)0.30620 (8)0.39570 (6)0.0280 (2)
O40.76944 (5)0.36248 (9)0.51723 (6)0.0299 (2)
H1000.7565 (10)0.283 (2)0.5426 (14)0.065 (6)*
O50.62768 (5)0.56998 (9)0.35713 (8)0.0351 (3)
O60.64027 (4)0.76469 (9)0.31835 (8)0.0336 (2)
N10.73304 (5)0.50254 (9)0.29515 (7)0.0187 (2)
H10.6992 (7)0.4529 (15)0.2951 (12)0.040 (5)*
N20.47064 (5)0.82797 (11)0.13801 (8)0.0254 (2)
H20.4298 (7)0.8316 (17)0.1537 (13)0.049 (5)*
N30.42069 (5)1.05270 (11)0.16445 (8)0.0271 (3)
C10.77282 (5)0.44984 (11)0.22214 (8)0.0209 (3)
H1A0.80320.39930.25260.025*
H1B0.79290.51520.18740.025*
C20.73673 (6)0.37369 (12)0.15421 (8)0.0219 (3)
C30.75899 (6)0.49919 (12)0.39187 (8)0.0230 (3)
H3A0.74220.56470.43070.028*
H3B0.80220.51060.38850.028*
C40.74486 (6)0.37797 (11)0.43542 (8)0.0212 (3)
C50.71133 (6)0.62433 (11)0.26760 (9)0.0223 (3)
H5A0.70390.62610.19910.027*
H5B0.74190.68520.28200.027*
C60.65459 (6)0.65571 (12)0.32009 (9)0.0250 (3)
C70.49264 (7)0.71759 (13)0.12856 (10)0.0307 (3)
H70.46790.64980.13840.037*
C80.55140 (7)0.70006 (14)0.10448 (11)0.0351 (3)
H80.56720.62110.09920.042*
C90.58612 (6)0.79899 (14)0.08853 (10)0.0324 (3)
H90.62630.78840.07160.039*
C100.56293 (6)0.91605 (13)0.09691 (9)0.0261 (3)
C110.59705 (6)1.02138 (14)0.07812 (9)0.0295 (3)
H110.63691.01340.05850.035*
C120.57330 (6)1.13219 (14)0.08793 (10)0.0303 (3)
H120.59671.20110.07510.036*
C130.51324 (6)1.14768 (13)0.11745 (9)0.0270 (3)
C140.48717 (7)1.26186 (14)0.12946 (10)0.0331 (3)
H140.50911.33300.11720.040*
C150.42995 (7)1.26917 (14)0.15894 (11)0.0345 (3)
H150.41161.34530.16780.041*
C160.39880 (6)1.16227 (13)0.17589 (10)0.0312 (3)
H160.35921.16890.19700.037*
C170.47769 (6)1.04597 (13)0.13567 (9)0.0241 (3)
C180.50349 (6)0.92899 (12)0.12381 (8)0.0231 (3)
O1000.59649 (6)0.44024 (12)0.04777 (9)0.0489 (3)
H1010.6313 (9)0.425 (2)0.0823 (16)0.096 (9)*
H1020.6095 (11)0.444 (3)0.0154 (14)0.103 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (5)0.0451 (6)0.0298 (5)0.0066 (4)0.0002 (4)0.0102 (4)
O20.0347 (5)0.0264 (5)0.0239 (5)0.0019 (4)0.0046 (4)0.0074 (4)
O30.0353 (5)0.0234 (5)0.0254 (5)0.0092 (4)0.0059 (4)0.0028 (4)
O40.0419 (6)0.0261 (5)0.0216 (5)0.0089 (4)0.0097 (4)0.0061 (4)
O50.0344 (5)0.0252 (5)0.0457 (6)0.0014 (4)0.0144 (5)0.0040 (4)
O60.0285 (5)0.0215 (5)0.0508 (6)0.0038 (4)0.0115 (4)0.0016 (4)
N10.0239 (5)0.0155 (5)0.0166 (5)0.0010 (4)0.0001 (4)0.0002 (4)
N20.0219 (5)0.0293 (6)0.0250 (5)0.0008 (5)0.0006 (4)0.0001 (5)
N30.0223 (5)0.0310 (6)0.0279 (6)0.0004 (5)0.0010 (4)0.0006 (5)
C10.0223 (6)0.0197 (6)0.0208 (6)0.0016 (5)0.0008 (5)0.0022 (5)
C20.0274 (6)0.0196 (6)0.0185 (6)0.0009 (5)0.0019 (5)0.0000 (5)
C30.0326 (7)0.0203 (6)0.0160 (6)0.0047 (5)0.0037 (5)0.0002 (5)
C40.0247 (6)0.0204 (6)0.0186 (6)0.0015 (5)0.0003 (5)0.0010 (5)
C50.0274 (6)0.0164 (6)0.0232 (6)0.0024 (5)0.0022 (5)0.0030 (5)
C60.0263 (6)0.0224 (7)0.0264 (6)0.0004 (5)0.0029 (5)0.0002 (5)
C70.0310 (7)0.0279 (7)0.0334 (7)0.0010 (6)0.0023 (6)0.0006 (6)
C80.0314 (8)0.0347 (8)0.0390 (8)0.0054 (6)0.0010 (6)0.0049 (6)
C90.0230 (7)0.0426 (9)0.0317 (7)0.0037 (6)0.0010 (5)0.0046 (6)
C100.0218 (6)0.0356 (8)0.0209 (6)0.0001 (5)0.0024 (5)0.0015 (5)
C110.0207 (6)0.0435 (9)0.0244 (6)0.0047 (6)0.0009 (5)0.0006 (6)
C120.0267 (7)0.0369 (8)0.0273 (7)0.0090 (6)0.0018 (5)0.0044 (6)
C130.0271 (7)0.0317 (8)0.0221 (6)0.0036 (6)0.0044 (5)0.0024 (5)
C140.0348 (8)0.0297 (8)0.0348 (8)0.0053 (6)0.0052 (6)0.0034 (6)
C150.0350 (8)0.0291 (8)0.0395 (8)0.0043 (6)0.0063 (6)0.0003 (6)
C160.0248 (7)0.0348 (8)0.0340 (7)0.0029 (6)0.0033 (6)0.0018 (6)
C170.0222 (6)0.0308 (7)0.0194 (6)0.0015 (5)0.0034 (5)0.0007 (5)
C180.0216 (6)0.0290 (7)0.0187 (6)0.0024 (5)0.0027 (5)0.0001 (5)
O1000.0501 (7)0.0527 (8)0.0438 (7)0.0170 (6)0.0038 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C21.2348 (16)C5—H5B0.9900
O2—C21.2661 (15)C7—C81.391 (2)
O3—C41.2137 (15)C7—H70.9500
O4—C41.3029 (15)C8—C91.371 (2)
O4—H1001.00 (2)C8—H80.9500
O5—C61.2480 (16)C9—C101.408 (2)
O6—C61.2532 (16)C9—H90.9500
N1—C51.4920 (16)C10—C181.4103 (18)
N1—C11.4962 (15)C10—C111.428 (2)
N1—C31.4981 (15)C11—C121.351 (2)
N1—H10.946 (15)C11—H110.9500
N2—C71.3303 (18)C12—C131.437 (2)
N2—C181.3621 (17)C12—H120.9500
N2—H20.954 (15)C13—C141.410 (2)
N3—C161.3243 (18)C13—C171.4122 (19)
N3—C171.3593 (17)C14—C151.368 (2)
C1—C21.5237 (17)C14—H140.9500
C1—H1A0.9900C15—C161.403 (2)
C1—H1B0.9900C15—H150.9500
C3—C41.5164 (18)C16—H160.9500
C3—H3A0.9900C17—C181.4350 (19)
C3—H3B0.9900O100—H1010.95 (2)
C5—C61.5295 (18)O100—H1020.95 (2)
C5—H5A0.9900
C4—O4—H100108.3 (12)N2—C7—C8120.92 (14)
C5—N1—C1111.80 (9)N2—C7—H7119.5
C5—N1—C3113.21 (10)C8—C7—H7119.5
C1—N1—C3113.05 (10)C9—C8—C7118.70 (14)
C5—N1—H1105.0 (11)C9—C8—H8120.7
C1—N1—H1105.2 (10)C7—C8—H8120.7
C3—N1—H1107.8 (10)C8—C9—C10120.72 (13)
C7—N2—C18122.56 (12)C8—C9—H9119.6
C7—N2—H2115.3 (11)C10—C9—H9119.6
C18—N2—H2122.1 (11)C9—C10—C18118.36 (13)
C16—N3—C17116.42 (12)C9—C10—C11122.52 (13)
N1—C1—C2109.47 (10)C18—C10—C11119.11 (13)
N1—C1—H1A109.8C12—C11—C10120.67 (13)
C2—C1—H1A109.8C12—C11—H11119.7
N1—C1—H1B109.8C10—C11—H11119.7
C2—C1—H1B109.8C11—C12—C13121.20 (13)
H1A—C1—H1B108.2C11—C12—H12119.4
O1—C2—O2127.47 (12)C13—C12—H12119.4
O1—C2—C1118.30 (11)C14—C13—C17117.19 (13)
O2—C2—C1114.16 (11)C14—C13—C12122.79 (13)
N1—C3—C4108.33 (10)C17—C13—C12120.02 (13)
N1—C3—H3A110.0C15—C14—C13119.31 (14)
C4—C3—H3A110.0C15—C14—H14120.3
N1—C3—H3B110.0C13—C14—H14120.3
C4—C3—H3B110.0C14—C15—C16118.78 (14)
H3A—C3—H3B108.4C14—C15—H15120.6
O3—C4—O4125.72 (12)C16—C15—H15120.6
O3—C4—C3121.19 (11)N3—C16—C15124.54 (13)
O4—C4—C3113.08 (11)N3—C16—H16117.7
N1—C5—C6110.88 (10)C15—C16—H16117.7
N1—C5—H5A109.5N3—C17—C13123.74 (13)
C6—C5—H5A109.5N3—C17—C18118.29 (12)
N1—C5—H5B109.5C13—C17—C18117.97 (12)
C6—C5—H5B109.5N2—C18—C10118.71 (12)
H5A—C5—H5B108.1N2—C18—C17120.30 (12)
O5—C6—O6128.17 (13)C10—C18—C17120.99 (12)
O5—C6—C5116.42 (11)H101—O100—H102103.9 (17)
O6—C6—C5115.39 (11)
C5—N1—C1—C292.27 (12)C17—C13—C14—C150.9 (2)
C3—N1—C1—C2138.58 (11)C12—C13—C14—C15179.15 (13)
N1—C1—C2—O16.00 (16)C13—C14—C15—C160.3 (2)
N1—C1—C2—O2176.76 (10)C17—N3—C16—C151.1 (2)
C5—N1—C3—C4145.42 (11)C14—C15—C16—N30.7 (2)
C1—N1—C3—C486.16 (12)C16—N3—C17—C130.43 (19)
N1—C3—C4—O35.62 (17)C16—N3—C17—C18179.03 (12)
N1—C3—C4—O4175.05 (10)C14—C13—C17—N30.54 (19)
C1—N1—C5—C6158.04 (10)C12—C13—C17—N3179.51 (12)
C3—N1—C5—C672.89 (13)C14—C13—C17—C18180.00 (12)
N1—C5—C6—O517.20 (17)C12—C13—C17—C180.04 (18)
N1—C5—C6—O6164.49 (11)C7—N2—C18—C100.79 (19)
C18—N2—C7—C80.8 (2)C7—N2—C18—C17179.51 (12)
N2—C7—C8—C91.4 (2)C9—C10—C18—N21.77 (18)
C7—C8—C9—C100.4 (2)C11—C10—C18—N2177.46 (11)
C8—C9—C10—C181.2 (2)C9—C10—C18—C17178.55 (12)
C8—C9—C10—C11178.02 (13)C11—C10—C18—C172.23 (18)
C9—C10—C11—C12179.31 (13)N3—C17—C18—N22.28 (18)
C18—C10—C11—C121.50 (19)C13—C17—C18—N2178.22 (11)
C10—C11—C12—C130.0 (2)N3—C17—C18—C10178.03 (11)
C11—C12—C13—C14179.27 (13)C13—C17—C18—C101.46 (18)
C11—C12—C13—C170.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H100···O2i1.00 (2)1.49 (2)2.4897 (13)175 (2)
N1—H1···O10.95 (2)2.08 (2)2.6310 (14)116 (1)
N2—H2···O6ii0.95 (2)1.80 (2)2.6874 (15)153 (2)
O100—H101···O10.95 (2)1.90 (2)2.8119 (17)161 (2)
O100—H102···O5iii0.95 (2)1.87 (2)2.8072 (16)171 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H8NO6·C12H9N2·H2O
Mr389.36
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)180
a, b, c (Å)22.7045 (6), 11.1044 (3), 14.2366 (2)
V3)3589.33 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.46 × 0.46 × 0.30
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.932, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
22344, 4114, 3414
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections4114
No. of parameters275
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1993), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H100···O2i1.00 (2)1.49 (2)2.4897 (13)175 (2)
N1—H1···O10.946 (15)2.080 (16)2.6310 (14)115.6 (13)
N2—H2···O6ii0.954 (15)1.801 (16)2.6874 (15)153.2 (17)
O100—H101···O10.95 (2)1.90 (2)2.8119 (17)161 (2)
O100—H102···O5iii0.95 (2)1.87 (2)2.8072 (16)171 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds